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Chapter 1  Introduction
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OVERVIEW

Missing data cripple most routines in statistical packages that typically 
expect a complete data set (a data set with no missing values). The 
common practice is to artificially create a complete data set as 
follows: 

• Throw away cases with missing values, or

• Impute (estimate and fill in missing data using some ad hoc  
method). 

The analyst then treats the altered data set as if 

• The deleted cases had never  been observed, or 

• The imputed values had always  been observed. 

These and other ad hoc  methods can lead to misleading inferences 
because they either throw away or distort information in the data. 
More principled methods require methodology and computational 
methods that can be expensive to implement.

The Spotfire S+ library S+MISSINGDATA extends the statistical modelin
capabilities of Spotfire S+  to support model–based  missing data methods 
outlined in Little and Rubin (1987). These may be applied more or 
less routinely to handle a wide variety of missing data problems. The 
models are fit using a variety of computational tools including:

1. Expectation-Maximization (EM) algorithm (Dempster, Laird, 
and Rubin (1977)) and extensions (see Rubin (1992) for a 
review).

2. Data Augmentation (DA) algorithms (Tanner and Wong 
(1987), Schafer (1991), Schafer (1997)). These are Monte Carlo 
Markov Chain methods (Gelfand and Smith (1990), Gelman 
and Rubin(1992), Geyer (1992), Smith and Roberts (1993), 
Tierney (1991)). One important property is that these DA 
algorithms also produce proper multiple imputations (Rubin 
(1987)), which are discussed at length below.

This chapter briefly discusses model–based methods, including 
multiple imputation. It explains how this software for missing data 
adds to the collection of Spotfire S+ modeling functions and expands th
Spotfire S+ modeling paradigm to incorporate multiple imputation. It 
2



Overview
explains the steps you will take in using this software to perform 
statistical analysis on data with missing values, and organizes the 
functions and objects by these steps.

Model-Based 
Approaches

Compared with more ad hoc  methods of handling missing data, 
model–based methods have two advantages: you can display and 
evaluate model assumptions, and you can estimate the variance of the 
parameter estimates.

One model–based approach assumes a distribution for the complete 
data (the missing and observed data together). Intuitively, this model 
describes the relationships among the variables, and when combined 
with observed data, can be used to “fill the holes” in the data.

The S+MISSINGDATA library implements a parametric approach 
instead. The approach assumes a multivariate parametric model with 
parameter θ  for the complete data, possibly with a prior distribution 
for θ  (Little and Rubin (1987) and Schafer (1997)). S+MISSINGDATA 
implements three models for independent, identically distributed (iid) 
observations: the Gaussian model for numeric variables, the loglinear 
model for factor variables, and the conditional Gaussian model for 
both numeric and factor variables. In some situations, you may want 
to fit these specific models to your data. In such cases, 
S+MISSINGDATA provides tools to fit model parameters and perform 
inference. More commonly, you will want to perform other analyses 
but must first deal with the missing data. In such cases, you can 
proceed using multiple imputation.

Model-Based 
Multiple 
Imputation  

In model-based multiple imputation , a missing data model (as described 
in the previous section) is used as an imputation model  to create M 
complete data sets. An analysis model  is then used to perform M 
statistical analyses on the complete data sets. The analysis model may 
require fewer assumptions than the imputation model, or even be 
entirely different (see Meng (1994) for a discussion of congeniality ). 
The resultant M analyses are then combined to produce one overall 
inference. 
3



Chapter 1  Introduction
For example, to perform a regression analysis on data containing 
missing values, you can use the following procedure:

1. Multiply impute missing data under a Gaussian imputation 
model.

2. Perform a regression analysis on each of the completed data 
sets.

3. Appropriately combine the results. 

Multiple imputation is fairly robust to imputation model mis-
specification, especially with small fractions of missingness. This is 
because the imputation model is applied only to handle the missing 
part of the data (Ezzati-Rice et al. (1995), Rubin and Schenker (1986), 
Schafer (1997)). 
4
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IMPUTING MISSING DATA WITH S+MISSINGDATA 

Normally, Spotfire S+ model fitting functions combine the model 
formula and data to produce a fitted model object, as shown in 
Figure 1.1. You can then manipulate the fitted model object with 
inference and diagnostic procedures. For example, you can print, 
summarize, or plot the model.

Data Frame
Object

Model
Spec.

Fitted Model
Object

Fit Model
Options &
Parameters

Figure 1.1:  Spotfire S+ modeling functions combine data and models to produce a fitted
model object.

S+MISSINGDATA extends the statistical modeling capabilities of 
Spotfire S+ to support a model–based approach to multiple imputation.
Multiple imputation can be viewed as a front end procedure resulting 
in a multi-stage process, as illustrated in Figure 1.2. 
5



Chapter 1  Introduction
Data Frame
Object (*)

Analysis Model
Spec. (*)

Multiple Fitted
Model(s) Object

Fit Model(s)
Options &
Parameters

Impute

Imputed
Data Frame

Imputation
Model Spec.

Figure 1.2:  The role of multiple imputation objects and functions in Spotfire S+. 
The asterisk (*) indicates components that are the same as in Figure 1.1.

Multiple imputation allows you to reach valid inferences by applying 
familiar analysis techniques and suitably combining the results. Figure 
1.2 illustrates this by showing two stages of modeling:

1. Multiply impute missing data using a missing data model.

2. Analyze the resulting complete data sets with respect to an 
analysis model. 

Dealing with the missing data is mostly confined to the imputation 
phase. Multiple imputation creates M data sets in complete 
rectangular form that the analysis procedures can accept. The objects 
that input and output to the analysis functions thus represent M 
complete data sets. Several S+MISSINGDATA functions manipulate 
these objects to obtain one inference that incorporates uncertainty 
due to missing values.
6



Imputing Missing Data with S+MISSINGDATA
Workflow The workflow  for using S+MISSINGDATA can be broken down into 
distinct stages:

• Explore. Look for and understand patterns in the missing 
data.

• Preprocess. Process the data to create an object that contains 
information needed by the model fitting algorithms. By 
creating this object once, calculation can be saved if the 
model fitting functions are used several times.

• Fit. Fit a missing data model.

For multiple imputation, the additional steps are:

• Impute. Create M  complete data sets, starting the imputation 
algorithm from the parameters of the fitted missing data 
model.

• Analyze. Analyze the completed data sets with respect to a 
standard analysis model to produce M  fitted analysis objects.

• Consolidate. Combine the M  fitted analysis objects to obtain 
a single inference that incorporates uncertainty due to missing 
values.
7



Chapter 1  Introduction
S+MISSINGDATA FEATURES

Table 1.1 organizes the objects and functions available in 
S+MISSINGDATA by the activities specified in the workflow on page 
7. 

Table 1.1:  Objects and functions in the S+MISSINGDATA library, organized by activites in the workflow. 

Activity Objects Functions

Explore miss miss

print.miss

summary.miss

plot.miss

Preprocess preGauss

preLoglin

preCgm

preGauss

preLoglin

preCgm

Fit missmodel mdGauss

mdLoglin

mdCgm

(and associated functions)

Impute miVariable, or a data frame 
consisiting of columns with 
class "miVariable"

impGauss

impLoglin

impCgm

Analyze miVariable

miList

miApply

miEval

Consolidate miVariable

miList

miMeanSE

miFTest

miChiSquareTest

miLikelihoodTest
8
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USING S+MISSINGDATA

If you are familiar with Spotfire S+, getting started with S+MISSINGDAT
is simple. If you have not used Spotfire S+  before, consult the Spotfire S
User’s Guide ; we recommend that you learn more about Spotfire S+ befor
proceeding with S+MISSINGDATA.

Starting and 
Quitting 
S+MISSINGDATA

To start S+MISSINGDATA, you must first start Spotfire S+ . See the 
Spotfire S+ User’s Guide  for detailed instructions on starting Spotfire S+.

To add the S+MISSINGDATA functions to your Spotfire S+ session, type
the following at the Spotfire S+ command line:

 > library(missing) 

In Spotfire S+ for Windows, you can also select File � Load Library 
from the main menu to add S+MISSINGDATA to your session.

If you plan to use S+MISSINGDATA extensively, you may want to 
customize your Spotfire S+  start-up routine to automatically attach the 
S+MISSINGDATA library. You can do this by adding the line 
library(missing) to your .First function. If you do not already 
have a .First function, you can create one from the Spotfire S+  
command line by typing: 

 > .First <- function() { library(missing) }

Organizing 
Your Working 
Data

To help you organize the data you analyze with S+MISSINGDATA, 
you can create separate directories for individual projects. In this 
section, we briefly describe how to create project directories in both 
UNIX and Windows. For a detailed discussion, see the Spotfire S+ User’s
Guide .
9
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UNIX

To create a specific project directory in Spotfire S+ for UNIX, use the 
CHAPTER utility. To then work in a particular project, simply start 
Spotfire S+ from that project’s directory. For example, to create and use
the directory missingdir for an S+MISSINGDATA project, type the 
following commands from the UNIX prompt:

mkdir dir 
cd dir 
Splus CHAPTER 
Splus 

In these commands, Splus should be replaced with whatever you 
type to start Spotfire S+  on your system.

Windows

To create a specific project directory in Spotfire S+ for Windows, use th
Open Spotfire S+ Project dialog. If this dialog does not automatically
appear when you start Spotfire S+ , choose Options � General Settin
from the main menu, click the Startup tab, and check the Prompt 
for project folder box. The next time you launch Spotfire S+, the Ope
Spotfire S+ Project dialog appears, in which you can specify a project 
folder for the duration of your session. If the folder you select does 
not already exist, Spotfire S+ creates and initializes it for you.

Getting Help S+MISSINGDATA provides help files for virtually all functions 
included in the library. For example, you can obtain help on the 
function impGauss by typing the following at the Spotfire S+ command 
line:

> help(impGauss)

Alternatively, you can use the ? function:

> ?impGauss 

In Spotfire S+ for Windows, you can also select Help � Available Hel
� missing after loading S+MISSINGDATA into your session. Note 
that some functions intended for internal use do not have help files. 
10



Using This Manual
USING THIS MANUAL

This manual describes how to use the S+MISSINGDATA library and 
includes detailed descriptions of the principal S+MISSINGDATA 
functions and objects.

Intended 
Audience

Like the S+MISSINGDATA library, this book is intended for 
statisticians, clinical researchers, and other analysts involved in 
analyzing data with missing values. This book is not meant to be a 
text book in missing data methods; we refer you to the Bibliography 
for recommended reading in this area. Schafer (1997) should be 
viewed as an essential companion to this software and manual.

For users familiar with Spotfire S+, this manual contains all the 
information most users need to begin making productive use of 
S+MISSINGDATA. Users who are not familiar with Spotfire S+ should 
read their Spotfire S+ User’s Guide, which provides complete procedures 
for basic Spotfire S+ operations, including graphics manipulation, 
customization, and data input and output. Other useful information 
can be found in the Spotfire S+ Guide to Statistics. This manual describes 
how to analyze data using a variety of statistical and mathematical 
techniques, including classical statistical inference, time series 
analysis, linear regression, ANOVA models, generalized linear and 
generalized additive models, loess models, nonlinear regression, and 
regression and classification trees.

Organization The main body of this book is divided into 11 chapters that guide you 
step-by-step through the S+MISSINGDATA library.

• Chapter 1 (this chapter) introduces you to S+MISSINGDATA, 
lists its features, and tells you how to use this manual.

• Chapter 2 briefly gives background information, which may 
be skimmed at first and revisited as needed.

• Chapters 3 to 8 describe each step in the workflow given on 
page 7.

• Chapters 9 to 11 provide examples using the functions and 
objects in S+MISSINGDATA.
11
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Typographic 
Conventions

This book uses the following typographic conventions:

• The italic font is used for emphasis, new terminology, and 
user-supplied variables in UNIX, DOS, and Spotfire S+  
commands.

• The bold font is used for UNIX and DOS commands and 
filenames. For example:

setenv S_PRINT_ORIENTATION portrait 
SET SHOME=C:\Spotfire S+  

The bold font is also used for components of the Spotfire S+  
graphical user interface, such as menus, dialogs, and fields.

• The typewriter font is used for Spotfire S+  code, output, and 
examples. For example:

> miss(myData)

Displayed Spotfire S+ commands are shown with the default 
Spotfire S+ prompt > and commands that require more than one
line of input are displayed with the Spotfire S+  continuation 
prompt +:

> miss(
+ myData)
12
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Chapter 2  Background
OVERVIEW

This chapter discusses background information regarding model–
based missing data methods. You may want to skim this chapter at 
first and return to it when needed as you read the rest of the manual.

To put model–based methods into context, we briefly describe 
common approaches to handling missing data, with additional details 
on imputation. Two algorithms, expectation-maximization (EM) and 
data augmentation (DA), are described for fitting missing data models.

The DA algorithm may be used to produce either multiple 
imputations or multiple sets of parameter estimates. The average of 
the parameter estimates may be used as a point estimate; their 
variability indicates the additional uncertainty due to missing data. 
Whether you use DA to produce multiple imputations or parameter 
estimates, assessing convergence is an important practical problem.  
To address this problem, we discuss simple diagnostic procedures that 
may be enough to assess convergence in the missing data models 
described here.

Finally, we describe how the EM and DA algorithms complement 
each other in analysis.
14
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TAXONOMY OF MISSING DATA METHODS

To put model–based methods into context, it is instructive to first 
consider a taxonomy of methods for missing data (Little and Rubin 
(1987)). 

Note

The methods discussed here are not mutually exclusive. For example, S+MISSINGDATA provides 
a model–based approach to multiple imputation.

Omit Cases 
with Missing 
Values

Omitting cases with missing values is easy to do and may be 
satisfactory with small amounts of missing data. However, it can lead 
to serious biases. This approach is usually not very efficient.

Imputation With imputation methods, you estimate and fill in missing values, 
then analyze the resulting complete data set by standard methods. To 
obtain valid inferences, the standard analyses must be modified to 
account for the differing status of the observed and imputed values.

Single imputation  replaces each missing value by a single imputed 
value. Multiple imputation replaces each missing value by a vector of 
M 2≥  imputed values, and thereby shares the advantages of single 
imputation while overcoming its disadvantages. We discuss this in 
more detail in the section Imputation on page 17.

Weighting Weighting is used mostly for unit missingness , in which the values for 
all variables in a case are missing. Respondents and non-respondents 
are grouped together into a relatively small number of classes based 
on other variables recorded for both respondents and non-
respondents. This arises, for example, in survey design variables. The 
non-respondents are assigned weights of zero, and the weights of the 
remaining cases are proportionately inflated so that the total weight of 
the cases within cells is preserved.
15



Chapter 2  Background
Model–Based 
Approaches

In a model–based approach, you define a model for the missing data 
and base inferences on the likelihood or posterior distribution under 
that model. Parameters are estimated by procedures such as 
maximum likelihood or iterative simulation.
16



Imputation
IMPUTATION

One advantage of imputation over the other methods described in the 
previous section is that, once the missing values have been imputed, 
standard analysis methods can be applied to the complete data. 
Imputation is also advantageous in contexts where the data producer 
(collector) and consumer (data analyst) are different individuals:

• The producer may have access to information and resources 
for creating imputations that are not available to the 
consumer;

• The created set of “official” imputations tends to increase the 
comparability of analyses of the same data set;

• The possibly substantial effort required to create sensible 
imputations need be carried out only once.

Single 
Imputation

Single imputation  replaces each missing value in a data set by a single 
imputed value. While this is a straightforward approach to filling in 
missing data, it does not provide valid inferences that adjust for 
observed differences between respondents and non-respondents. In 
addition, single imputation does not provide standard errors that 
reflect the reduced sample size, nor does it display sensitivity of 
inferences to various plausible models for nonresponse.

Multiple 
Imputation

Multiple imputation replaces each missing value in a data set by a 
vector of M 2≥  imputed values. It shares the advantages of single 
imputation while overcoming its disadvantages. If the M  imputations 
are taken from the same model, the resulting M complete data 
analyses may be combined to create an inference that reflects 
sampling variability due to the missing values. If the multiple 
imputations are from more than one missing data model, uncertainty 
about the correct model is shown by the variation in inferences across 
the models.
17



Chapter 2  Background
The following are desirable properties for general-purpose 
imputations (Heitjan and Little (1991)):

• Imputations of missing values should condition on the values 
of observed variables for that case;

• Imputations of missing values should account for the 
multivariate  nature of the non-response (that is, values are 
missing on more than one variable) with a general pattern of 
missing data;

• Imputations should not distort marginal distributions and 
associations between observed and imputed variables. To 
achieve this, they should be stochastic and represent values 
from the predictive distribution of the missing variables, 
rather than the means.

Commonly used variable–by–variable methods do not meet these 
requirements (Schafer (1997)). For example, replacing the missing 
values for a variable by the mean of that variable preserves the 
sample means, but biases the estimated variances and covariances 
toward zero. Using predicted values from regression models based on 
other variables tends to bias the observed correlations away from 
zero. With complex patterns of missing data, it is nearly impossible to 
achieve good properties using ad hoc  techniques.

Proper multiple imputation reflects evidence about the missing data 
from all available sources. This is most directly motivated from the 
Bayesian perspective (Little and Rubin (1987), Schafer et al. (1993)). 
Let Y Yobs Ymis,( )=  denote the complete data, with Yobs  and Ymis  
denoting the observed and missing portions of the data, respectively. 
Proper multiple imputations reflect evidence about Ymis  from: Yobs , 

the complete–data model, and the prior distribution for θ  (Schafer 
(1997)). 

For each model considered, the M  imputations of Ymis  can be most 
easily conceptualized as M  independent draws from the posterior 
predictive distribution of Ymis  given the observed data:

P Ymis Yobs( ) P Ymis Yobs θ,( )P θ Yobs,( ) θd∫= .
18



Imputation
In this equation, P θ Yobs( )  is the posterior density of the parameters 

given the observed data. Directly simulating Ymis  from P Ymis Yobs( )  

is typically difficult. In the section Multiple Imputation Using DA on 
page 23, we discuss Schafer’s iterative simulation approach that 
produces multiple imputations (Schafer (1991), Schafer (1997)). 
Schafer’s algorithms are general–purpose, and can be routinely 
applied to produce proper multiple imputations in a multivariate 
setting.

Multiple imputation results in M  complete data sets, each of which are 
analyzed by complete data methods. Results of the M  analyses may 
be combined to yield a single overall inference (Li et al. (1991), Li, 
Raghunathan, and Rubin (1991), Meng and Rubin (1992)). In 
addition, exploratory analyses such as graphical displays of the M 
completed data sets help to informally assess how interesting features 
of the data are affected by missing data uncertainty. Typically, if the 
fractions of missing information are moderate, M 3=  or M 5=  is 
adequate.
19
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MODEL FITTING ALGORITHMS

In S+MISSINGDATA, you can fit models to your data with missing 
values using a variety of computational tools. Sometimes the goal is to 
estimate the parameters of the models themselves, rather than to 
create multiple imputations. In such cases, the following algorithms 
are used:

• The expectation-maximization (EM) algorithm (Dempster, 
Laird, and Rubin (1977)) and extensions (see Rubin (1992) for 
a review) may be used to maximize either the likelihood 
function or posterior distribution. 

• The data augmentation (DA) algorithm may be used to draw a 
sample of parameters from the posterior distribution from 
which further inference is achieved. (References include 
Tanner and Wong (1987), Schafer (1991), Schafer (1997). DA 
algorithms are Monte Carlo Markov Chain methods, so see 
also Gelfand and Smith (1990), Gelman and Rubin (1992), 
Geyer (1992), Smith and Roberts (1992), Tierney (1991)). 

The EM and DA algorithms can also be used in a complementary 
fashion to create multiple imputations.

In this chapter, we briefly describe the EM and DA algorithms and 
then discuss how they are used to create multiple imputations. If you 
are interested in the specifics of the algorithms for particular models, 
you must work them out on your own. For details, see Little and 
Rubin (1987) and Schafer (1997); Fraley (1998) describes the Spotfire S+
implementation of algorithms for the Gaussian model. 

Expectation-
Maximization 
(EM)

The EM algorithm (Dempster, Laird, and Rubin (1977)) is a 
likelihood-based approach to handling missing data. Let 
Y Yobs Ymis,( )=  be the complete data.  Maximizing l θ Y( ) , the log-
likelihood of the complete data, may be complicated because of the 
missing data. Instead, suppose that the best current estimate of the 

parameters is θ t( )
. We can create (E step) and maximize (M step) with 

respect to θ  as follows:

Q θ θ t( )( ) l θ Y( )f Ymis Yobs θ t( )
,( ) Ymisd∫= .
20



Model Fitting Algorithms
This procedure is iterated until convergence; one of the optimality 
characteristics of the EM algorithm is that the likelihood increases at 
each iteration.

For the complete exponential family of distributions, EM iteratively 
calculates the expected values of the sufficient statistics, then performs 
the usual maximization for complete data. This is close to the intuitive 
practice of iteratively imputing missing values, then performing a 
complete data analysis.

Data 
Augmentation 
(DA)

Data augmentation algorithms are Monte Carlo Markov Chain 
(MCMC) methods. These methods are similar to Monte Carlo 
methods, which estimate features of an unknown distribution π x( )  by 
either sampling from that distribution or suitably reweighting samples 
drawn from some other appropriately chosen distribution. For 
general and high dimensional distributions, however, Monte Carlo 
methods are difficult if not impossible to perform. MCMC methods 
overcome this limitation by constructing a Markov chain with an 
equilibrium equal to π x( )  and a state space that is easy to sample 
from. If the chain is run for a long time, simulated values of the chain 
can be used to summarize features of π x( ) , often through familiar 
exploratory data analysis tools like the histogram.

Several algorithms have been proposed for constructing chains with 
specified equilibrium distributions. Some of these algorithms include 
the Gibbs sampler (Geman and Geman (1984), Ripley (1977), Ripley 
(1979), Gelfand and Smith (1990), Zeger and Karim (1991)), the data 
augmentation methods of Tanner and Wong (1987), and sequential 
imputation (Kong and Wong (1991)). The Gibbs sampler leads to a 
relatively straightforward implementation, even in situations that are 
intractable for other approaches. Gibbs sampling succeeds because it 
reduces the problem to a simpler sequence of problems, each of 
which deals with one unknown quantity at a time. Each unknown 
quantity is then sampled from its full conditional distribution.

In missing data problems, both the parameters θ  and the missing 
data Ymis  are unknown. Because the joint posterior distribution of θ  

and Ymis  is typically intractable, we can simulate the posterior 
iteratively. The algorithm described below (Schafer (1991), Schafer 
(1997)) is a special case of both the Gibbs sampler and the data 
augmentation methods of Tanner and Wong (1987).
21



Chapter 2  Background
The posterior distribution is simulated by alternately drawing random 
values of the missing data and parameters as follows. At iteration t , 
perform the following steps:

• Imputation step (I-step). Given the current value θ t( )
 of the 

parameter, draw Ymis
t 1+( )

 from its conditional predictive 

distribution P Y[ mis Yobs θ t( ) ], .

• Posterior step (P-step). Given Ymis
t 1+( )

, draw θ t 1+( )
 from its 

complete data posterior P θ[ Yobs Ymis
t 1+( ) ], .

With a sample of independent, identically distributed, incomplete 
multivariate data, the following is true:

P Y[ mis Yobs θ ], P y[ i mis( ) yi obs( ) θ ],

i 1=

n

∏= .

Here, yi mis( )  and yi obs( )  are the missing and observed parts of the 

i th row of data, respectively. Thus, in the I-step above, the missing 
data are imputed independently for each row.
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MULTIPLE IMPUTATION USING DA

Repeating the I-step and P-step described on page 22 using a starting 

value θ 0( )
 gives the following stochastic sequences:

• The sequence θ( t( ) Ymis
t( )

, ) t 1 2 …, ,=;{ }  has a stationary 

distribution of P θ Ymis,[ Yobs ] .  

• The subsequence θ t( ) t 1 2 …, ,=;{ }  has a stationary 

distribution of P θ[ Yobs ] .

• The subsequence Ymis
t( ) t 1 2 …, ,=;{ }  has a stationary 

distribution of P Ymis[ Yobs ] .

To produce multiple imputations using data augmentation, you must 
first ensure that the sequence of parameters and imputations has 
converged to stationarity. That is, the imputations must be 
approximately independent draws from P Ymis[ Yobs ] . If 

convergence is reached by k  iterations, then θ s( )
 and Ymis

s( )
 are 

approximately independent of θ s k+( )
 and Ymis

s k+( )
 for all s .

Schafer (1997) argues that either

θ t( ) P θ[ Yobs ]∼

or

 Ymis
t( ) P Ymis[ Yobs ]∼   

implies that

 θ( t s+( ) Ymis
t s+( )

, ) P θ Ymis,[ Yobs ]∼  

for all s 0> . Therefore, to assess convergence in distribution of the 
sequence, it is sufficient to assess the convergence of either sub-
sequence. In practice, however, it is usually easier to monitor 
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Chapter 2  Background
convergence using the parameter subsequence rather than the 
imputed data subsequence, since parameters are typically of lower 
dimension than imputations.

Once stationarity is reached, a set of parameter values can be 
combined with the data to produce a set of Bayesianly proper 
M M 1>( )  imputations. That is, the imputations are approximately 
independent realizations of P Ymis Yobs[ ] , the posterior predictive 

distribution of the missing data under some complete-data model and 
prior. Data augmentation simulates values of Ymis  that have 

P Ymis Yobs[ ]  as their stationary distribution.

In practice, M  imputations are produced either with one long chain or 
several parallel chains. Imputations are produced with one long chain 
by repeating the following steps M  times:

1. Run the DA algorithm for k  steps.

2. Use the parameter estimates at the last step to impute one set 
of data.

3. Use the parameter estimates at the last step to start the next 
run.

Imputations are produced with parallel chains by performing these 
steps:

1. Supply M  sets of parameters to start M  separate chains of 
length k . 

2. Save the results of the final I-step in each chain to achieve M 
imputations.
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USING THE EM AND DA ALGORITHMS IN CONJUNCTION

It is more difficult to monitor convergence of an empirical 
distribution to an unknown limiting distribution (as in DA) than to 
monitor the convergence of a sequence of iterates to an unknown 
maximizing value (as in EM). But since the rate of convergence of 
both algorithms is governed by the fraction of missing information, 
Schafer (private communication) has suggested that the number of 
iterations needed for EM to converge gives a conservative estimate of 
the number of iterations needed for DA. This suggests that the EM 
and DA algorithms can be used in a complementary fashion to create 
multiple imputations, as follows:

1. Use EM to obtain the maximum likelihood estimate (MLE) 
and the value of the maximized log-likelihood. Note the 
number of iterations required to converge. Estimate the 
“worst fraction of missing information” from the EM iterates, 
which is an eigenvalue and its corresponding eigenvector 
(Fraley (1999), Schafer (1997)). If convergence is slow and the 
fraction of missing information is very high, either adopt a 
more parsimonious model, apply an informative prior 
distribution, or try to find overdispersed starting values. 
Otherwise, proceed to Step 2.

2. Perform an experimental run of DA.  Start with the MLE 
obtained in Step 1 and run a  single chain for at least ten times 
the number of steps needed for EM to converge.  Save the 
sequence of parameter estimates produced at each iteration.

3. Assess convergence (see Chapter 5).

4. Create M  imputations, either by continuing the DA run and 
saving every k th imputation (where k  is large enough to make 
the sample values approximately independent), or by starting 
from M  overdispersed starting values and iterating until 
convergence.
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Chapter 3  Exploring and Preprocessing
OVERVIEW

Most data analyses begin by exploring the data, often graphically. 
When there are missing values in the data, additional tools are 
necessary to analyze patterns of missingness. In particular, the EM 
and DA algorithms require initial analysis of the patterns in missing 
data. To accomplish this, S+MISSINGDATA includes functions that 
preprocess the data. If you perform this preprocessing once at the 
beginning of an analysis, it need not be repeated every time you 
apply EM or DA. As described in Chapter 2, the EM and DA 
algorithms are often used in a complementary fashion and called 
several times, so preprocessing can save considerable resources over 
the course of a large analysis.

In this chapter, we discuss graphical and numerical techniques for 
discovering patterns in missing data, some of which are implemented 
in the miss function and its methods. In the final section of this 
chapter, we discuss model-specific preprocessing functions that 
compute and return information required by the EM and DA fitting 
algorithms. 
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Exploring Patterns of Missingness

r 
EXPLORING PATTERNS OF MISSINGNESS

There are often patterns to missing values in data. For example, if a 
patient in a clinical trial misses a follow-up visit, then all data for that 
follow-up is missing. Similarly, if participants in a marketing survey 
are randomly given one of two questionnaires containing some 
overlapping and some disjoint questions, then the results for each 
participant shows missing values for one of two groups of questions.

It is important to discover patterns in missing data when performing 
calculations and analysis. For instance, if missingness patterns are 
monotone  (that is, there is an ordering of the variables such that an 
observation which is missing in one variable is also missing in all later 
variables), then efficient algorithms can be used for EM estimation as 
well as for DA (Schafer (1997)). Whether data are monotone (or 
nearly so) can be discovered by sorting rows and columns by the 
number of missing values.

Initial 
Explorations

A variety of Spotfire S+ functions can be used to explore the variables o
cases in your data set that have missing values. Existing Spotfire S+  
functions include is.na and which.na; both functions indicate which 
values are missing. Newer functions in the S+MISSINGDATA library 
include anyMissing and numberMissing. We demonstrate all four of 
these functions using the built-in health data set, which is available as 
part of S+MISSINGDATA.

For a single variable, using the functions is straightforward:

> is.na(health$Hyp)
[1] T F F T F T F F F T T T F F F T F F F F T F F F F

> which.na(health$Hyp)
[1]  1  4  6 10 11 12 16 21

> anyMissing(health$Hyp)
[1] T

> numberMissing(health$Hyp)
[1] 8
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Chapter 3  Exploring and Preprocessing
You can also use these functions to explore the variables in a 
multivariate data set all at once. To do this, combine the output with 
Spotfire S+  functions such as apply, colSums, and rowSums:

# Apply anyMissing to each of the columns in health.
# Variables 2:4 in health have missing values.
> apply(health, 2, anyMissing)

 Age Hyp BMI Chl 
   F   T   T   T

# Apply which.na to each of the columns in health.
# This lists the row numbers of the missing values in 
# each column.
> apply(health, 2, which.na)

$Age:
numeric(0)

$Hyp:
[1]  1  4  6 10 11 12 16 21

$BMI:
[1]  1  3  4  6 10 11 12 16 21

$Chl:
 [1]  1  4 10 11 12 15 16 20 21 24

The number of missing values by column is given by either of the 
following commands:

> colSums(is.na(health))

 Age Hyp BMI Chl 
   0   8   9  10

> apply(health, 2, numberMissing)

 Age Hyp BMI Chl 
   0   8   9  10
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Exploring Patterns of Missingness
The number of missing values by row is given by:

> rowSums(is.na(health))

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 3 0 1 3 0 2 0 0 0  3  3  3  0  0  1  3  0  0  0  1  3  0

 23 24 25 
  0  1  0

The percent missing by column is given by:

> round(100 * colMeans(is.na(health)))

 Age Hyp BMI Chl 
   0  32  36  40

Finally, you can compute the correlations of missingness with:

> round(cor(is.na(health)), 2)

    Age  Hyp  BMI  Chl 
Age  NA   NA   NA   NA
Hyp  NA 1.00 0.91 0.67
BMI  NA 0.91 1.00 0.58
Chl  NA 0.67 0.58 1.00

The miss 
Function

The miss function facilitates the discovery of patterns in missing data 
by grouping together similar variables and observations. The output 
of the miss function is an object of class "miss". You can use the 
print, summary, and plot methods to display the information in a 
miss object.

For example, create a miss object for the built-in health data set and 
then print it:

> M <- miss(health)
> M

Summary of missing values
     4 variables, 25 observations, 5 patterns of missing 
       values
      3    variables (75%) have at least one missing value
     12 observations (48%) have at least one missing value
For more detailed information use summary(x).
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Chapter 3  Exploring and Preprocessing
By default, miss rearranges the rows and columns of the data 
according to the numbers and patterns of missing values. It then 
summarizes the patterns it finds. Optionally, the indicators of missing 
values can be printed in the original row order and modified column 
order. The formatted display can be bypassed using the Spotfire S+  
function print.default.

As the above output suggests, use summary for more information:

> summary(M)

Summary of missing values
     4 variables, 25 observations, 5 patterns of missing 
       values
      3    variables (75%) have at least one missing value
     12 observations (48%) have at least one missing value

Breakdown by variable
 V O name Missing % missing 
 1 2  Hyp       8        32
 2 3  BMI       9        36
 3 4  Chl      10        40
V = Variable number used below,  O = Original number (before 
sorting)
No missing values for variables:
Age

Patterns of missing values (variables in columns, patterns 
in rows)
Pattern Variables
        123
      1 ...
      2 ..m
      3 .m.
      4 mm.
      5 mmm

Pattern #Missing #Obs Observations 
      1        0   13 2 5 7:9 13:14 17:19 22:23 25
      2        1    3 15 20 24
      3        1    1 3
      4        2    1 6
      5        3    7 1 4 10:12 16 21
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Exploring Patterns of Missingness
Patterns of missing values (variables in columns, 
observations in rows)
Obs.    Variables
        123
      1 mmm
      2 ...
      3 .m.
. . .

See Figure 3.1 for the plots that result from the following commands:

# This plot sorts observations to show common patterns.
> plot(M)
# This plot sorts observations as in the original data.
> plot(M, sort.obs = F) 

Figure 3.1:  Plots of the miss object for the health data set.
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Chapter 3  Exploring and Preprocessing
If your data set has a missing value code other than NA, you should 
change it to NA before calling miss. For example, the following 
command changes all missing values in the vector x as from -9 to NA.

> x[x == -9] <- NA
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PREPROCESSING DATA

Preprocessing functions  in S+MISSINGDATA process a data set to create 
an object that contains the information needed for the EM and DA 
model fitting algorithms. Note that the preprocessing functions are 
model-specific; see Chapter 4 for detailed descriptions of the models 
mentioned here.

• To fit a Gaussian imputation model, use the preGauss function 
to preprocess the data. This returns an object of class 
"preGauss". For example, the following preprocesses the 
built-in cholesterol data:

> cholesterol.pre <- preGauss(cholesterol)

• To fit a loglinear imputation model, use the preLoglin 
function to preprocess the data. This returns an object of class 
"preLoglin". For example, the following preprocesses the 
built-in crime data: 

> crime.pre <- preLoglin(crime, 
+ margins = count ~ Visit.1 : Visit.2)

• To fit a conditional Gaussian imputation model, use the 
preCgm  function to preprocess the data. This returns an object 
of class "preCgm". For example, the following preprocesses the 
built-in language data:

> language.pre <- preCgm(language)

For additional details about the preGauss, preLoglin, and preCgm 
functions, see their on-line help files.

Calling preprocessing functions manually before fitting a missing data 
model is optional. If preprocessing is not performed once in advance, 
it is performed automatically as needed. However, this may cause the 
same processing to be repeated at different stages of your analysis, 
which consumes your machine’s resources unneccessarily.
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Chapter 4  Fitting a Missing Data Model
OVERVIEW

Once you’ve explored the patterns of missingness in your data and 
preprocessed it for the fitting algorithms, the next step is to fit a 
model. The model you fit is the distribution assumed for the complete 
data (the missing and observed data together). 

S+MISSINGDATA implements three models for independent, 
identically distributed (iid) observations: the Gaussian model for 
numeric variables, the loglinear model for factor variables, and the 
conditional Gaussian model for both numeric and factor variables. 
This chapter describes these three models and their associated priors, 
and then shows how to fit the models using functions in 
S+MISSINGDATA.
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Missing Data Models
MISSING DATA MODELS

The Gaussian 
Model

The Gaussian model handles missing data when all the variables are 
numeric.

Model

Let Y1 … Yp, ,  be numeric variables in which values are recorded for 

n  cases, so that the complete data form an n p×  data frame Y . The 
cases are assumed to be independent and identically distributed 
multivariate Gaussians with mean μ  and covariance Σ .

Prior distribution

In complete data problems, using a normal inverted-Wishart  prior 
distribution leads to a conjugate analysis. The posterior distribution is 
again normal inverted-Wishart with updated parameters involving the 
data and prior parameters. In the presence of missing data, though, 
this family is not conjugate in general. However, using this family of 
distributions is computationally convenient for the EM and DA 
model fitting algorithms. This is because both algorithms depend on 
the complete data problem being tractable; see the section S-PLUS 
Implementation on page 48. Further details may be found in Schafer 
(1997).

A normal inverted-Wishart prior distribution means the following. 
Given Σ , the mean μ  is assumed to have a conditional Gaussian 
distribution: 

μ Σ N μ0 τ 1– Σ,( )∼

with known and fixed hyperparameters μ0  and τ 0> . In addition, Σ  
is assumed to have an inverted-Wishart distribution:

Σ W 1– m Λ,( )∼

with fixed hyperparameters m p≥  and Λ 0> . Schafer (1997) 
discusses choosing between noninformative , informative , and ridge  prior 
hyperparameters.
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Chapter 4  Fitting a Missing Data Model
• A noninformative  prior is used when little is known about the 
parameters. This improper prior is the limiting form of the 

normal inverted-Wishart as τ 0→ , m 1–→ , and Λ 1– 0→ :

π μ Σ,( ) Σ p 1+( ) 2⁄( )–∝ .

Note that μ  does not appear on the right side of this equation; 
its distribution is assumed to be uniform. 

• With an informative  prior, you choose reasonable values for 
the hyperparameters by interpreting them as a summary of 
the information provided by an imaginary set of data. The 
value μ0  is the best guess as to what μ  is, τ  is the number of 

imaginary prior observations on which μ0  is based, and 

m 1– Λ 1–  is the best guess for Σ . The parameter m  is the 
number of imaginary prior degrees of freedom on which 

m 1– Λ 1–  is based.

• A ridge  prior is useful for stabilizing the inference about μ  
when the sample covariance matrix is singular or nearly so, 
and little is known a priori  about μ  or Σ . This can happen, for 
example, when the data are sparse. 

A ridge prior is the limiting form of the normal inverted-
Wishart distribution when τ 0→ . Take m ε 0>=  and 

Λ 1– ε Ψ⋅= , where Ψ  is a covariance matrix. For complete 

data, the estimate for Σ  is a weighted average of Ψ  and the 
sample covariance S . When S  is nearly singular, set 

Ψ diag S( )= , the matrix with sample variances along the 
diagonal and zeroes elsewhere. This helps to smooth the 
calculated variances towards the observed data variances and 
the correlations towards zero; the smoothing results in 
something closer to an independence model. The relative 
sizes of ε  and the sample size n  determine the degree of 
smoothing. 
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Missing Data Models
When there are missing data, S  is not available. However, set   
Ψ Diag V( )=  in this case, where V  is a matrix with diagonal 
elements that are the sample variances of the observed values 
for each variable. 

The Loglinear 
Model

The loglinear model handles missing data when all the variables are 
categorical, or of class "factor".

Models

Let W1 W2 … Wq, , ,  be factor variables with values recorded for n  

cases, so that the complete data form an n q×  data frame W . If the 
cases are independent and identically distributed, the information in 
W  is equivalent to a contingency table with D  cells, where D  is the 
number of level combinations:

D dj
j 1=

q

∏= .

Here, dj  is the number of levels for the variable Wj . Some cells in the 
contingency table are empty because of logical constraints; these are 
known as structural zeroes .

If the sample size is assumed fixed, the set of D  cell frequencies (or 
counts) has a multinomial distribution. The parameters of the 
distribution are the D  probabilities that a case falls into each of the D  
cells of the contingency table. If there are no restrictions on the 
parameters other than that they are true probabilities, then the model 
is said to be saturated . In many realistic examples, however, the 
amount of data is insufficient to model such arbitrarily complex 
associations among the variables.

Loglinear models are a flexible class of models for specifying possible 
dependencies among variables. The cell probabilities are 
parameterized as the product of effects for each variable and the 
associations among variables. The log of the probabilities is therefore 
linear. Eliminating terms from this decomposition imposes equality 
constraints on odds ratios in the contingency table. See Bishop, 
Fienberg, and Holland (1975) or Agresti (1990) for details. 
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Chapter 4  Fitting a Missing Data Model
The implementation of these models in S+MISSINGDATA assumes 
hierarchical  loglinear models. That is, it is assumed that no high-order 
interaction is present unless all main effects and lower-order 
interactions involving the same variables are also present.

Other situations

If the levels of the factors in your data are ordered, you may either:

• Pretend that they are approximately normally distributed, or

• Disregard the order. If the immediate goal is to create 
plausible multiple imputations of missing data, then applying 
a loglinear model may be reasonable in this case (Schafer, 
1997, page 240).

The multinomial model can also be applied in some non-multinomial 
situations:

• If the distribution of one or more categorical variables is fixed 
by design, the cell frequencies follow a product-multinomial 
model. This arises, for example, in variables used to define 
strata in sample surveys. The multinomial model may still be 
valid in this situation if the missing values are confined to 
variables that are not fixed.

• If the total sample size n  is random, the multinomial 
likelihood may lead to valid conditional inferences. This 
occurs, for example, in Poisson sampling.

Prior distribution

With complete data, using a Dirichlet prior distribution for the 
saturated model leads to a conjugate analysis. The posterior 
distribution is again Dirichlet with updated parameters involving the 
data and prior parameters. 

For the loglinear model, Schafer (1997) adopts the constrained Dirichlet  
as the prior distribution. This has the same functional form as the 
Dirichlet but requires the parameters to satisfy constraints imposed by 
a loglinear model. The advantage of this prior is that it forms a 
conjugate class: the posterior distribution is another constrained 
Dirichlet with updated parameters. Note, however, that the 
constrained Dirichlet prior assumes that the given loglinear model is 
true. This can be assessed by performing goodness-of-fit tests against 
more general alternative models.
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The parameters are updated in a way that suggests thinking of the 
prior parameters as imaginary prior counts in the cells of the 
contingency table. Schafer (1997) gives the form of a Dirichlet 
distribution and discusses noninformative , flattening , and data-dependent  
values for the hyperparameters.

• As with Gaussian models, noninformative  priors are used when 
little is known about the parameters. Taking all 
hyperparameters equal to a common value is a sensible 
approach when little information is available a priori . Schafer 
(1997, page 252) argues that any common value between 0 
and 1 is potentially noninformative. For the EM algorithm, 
the uniform prior sets all hyperparameters equal to 1 and 
leads to a maximum likelihood estimate. Therefore, this is 
adopted as the default noninformative prior for the EM 
algorithms. For DA algorithms, the default noninformative 
prior is arbitrarily established as the Jeffreys prior, in which all 
hyperparameters are equal to 1 2⁄ .

• The flattening  prior is related to the noninformative prior, in 
that all hyperparameters are set to a common value. The 
effect is to smooth estimates toward a uniform table in which 
all cell probabilities are equal. For mode-finding algorithms 
such as EM, a prior with common value greater than 1 is 
flattening; for DA, a common value that is greater than 0 is 
flattening. However, Schafer (1997, page 253) warns that for 
nonlinear parameters, common prior values close to 0 can 
cause problems. 

A flattening prior is often useful when the contingency table is 
sparse. In such cases, model parameters may be inestimable 
or lie on the boundary of the parameter space. A flattening 
prior can help ensure that the mode is unique and lies in the 
interior of the parameter space. Since a uniform table implies 
no relationship between variables, smoothing toward a 
uniform table is conservative; it does not increase the chance 
of concluding relationships among variables when they do not 
exist. 

Since flattening priors are used in sparse data situations, care 
must be taken not to inadvertently smooth the data too much. 
More specifically, sparse data situations imply that the sample 
size n  is small relative to the number of cells D . If we think of 
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the hyperparameters as imaginary prior counts, even small 
values can result in an effective prior sample size that is 
greater than the actual sample size.

• A data-dependent  prior is used to smooth estimates toward a 
model of mutual independence among the variables, leaving 
the marginal distributions unaffected (Fienberg and Holland, 
1970, 1973). This is calculated as follows. For each factor Yk , 

estimate the probabilities P̂ Yk ik=( )  of the levels ik  from the 

completely observed data for that factor. If cell d  has the level 

combination y1 y2 … yp, , ,( ) , estimate the cell d  probability 

by 

θd
ˆ P̂ Yk yk=( )

k 1=

p

∏= .

The number of prior observations allocated to cell d  is then 

given by n0Θ
ˆ

d , where n0  is the desired total number of prior 

observations. For the DA algorithm, this is the data-

dependent prior for cell d : αd n0θ̂d= . For EM, add 1 to this 

quantity.

In applying any of these priors, Schafer (1997) recommends 
conducting a sensitivity analysis by applying several priors to see if 
and how the choice of prior affects inferences. When the goal is to 
help cure inestimable parameters or estimates on the boundary, 
Schafer (1997) warns against compromising the integrity of the 
observed data by adding more prior information than prior beliefs 
support. Instead, he recommends simplifying the model by 
eliminating variables or imposing loglinear constraints.

The 
Conditional 
Gaussian 
Model

The conditional Gaussian model (CGM) handles missing data when 
some of the variables are factors and others are numeric. This arises, 
for example, in the analysis of covariance and logistic regression with 
continuous predictors.
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Model

Let W1 W2 … Wp, , ,  be factor variables and let Z1 Z2 … Zq, , ,  be 

numeric variables in which values are recorded for n  cases. Thus, the 
complete data form an n p q+( )×  data frame Y W Z( , )= . The rows 
are assumed to be:

•  Independent and identically distributed, and

• Distributed according to a general location model (Olkin and 
Tate, 1961), or more descriptively as a conditional Gaussian 
model. 

The conditional Gaussian model is best described in terms of the 
marginal distribution of W  and the conditional distribution of Z  
given W , as follows. The information in W  is equivalent to a 
contingency table with D  cells, where D  is the number of level 
combinations:

D dj
j 1=

p

∏= .

Here, dj  is the number of levels for the factor variable Wj . If the 

sample size is assumed fixed, the set of D  cell frequencies (or counts) 
has a multinomial distribution. The parameters of the distribution are 
the D  probabilities that a case falls into each of the D  cells of the 
contingency table.

Given W , the conditional distribution of Z  is Gaussian. Each case 
falls into one of the D  cells of the contingency table defined by W . 
The distribution of the continuous variables for the cases that fall into 
cell d  is conditionally  Gaussian with mean μd  and covariance Σ .   

Note that the means vary from cell to cell, but the covariance matrix 
is common to all cells. For a single binary factor variable, the CGM is 
the model that underlies classical discriminant analysis.

Restricted models

The number of parameters in the unrestricted conditional Gaussian 
model is:

D 1–( ) Dq q q 1+( ) 2⁄+ + . 
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.

In this equation, D  is the number of cells in the contingency table 
defined by W  and q  is the number of numeric variables in Z . Note 
that D  affects not only the number of cell parameters but also the 
number of mean parameters Dq . The value of D  increases quickly 
with both the number of factor variables and the number of levels in 
each factor variable. The unrestricted CGM is feasible only when the 
sample size n  is large relative to D . When data are sparse relative to 
the size of the model, more cells are likely to be empty and the 
parameters related to the empty cells are inestimable. 

The number of parameters can be reduced by restricting the 
parameter sets in two possible ways:

• Loglinear constraints on the cell probabilities, and

• Multivariate analysis of variance (MANOVA) for the numeric 
variables Z  with effects defined by the factor variables W .

Loglinear constraints are discussed in the section The Loglinear 
Model on page 41. They are specified in Spotfire S+ functions for the 
CGM identically to the way they are specified in the loglinear model 
fitting function. See the section Spotfire S+  Implementation on page 48

The remainder of this discussion focuses on the MANOVA model for 
the numeric variables Z . First, note that the model for Z  given W  
may be written as a standard multivariate regression: 

Z Uμ ε+= ,

where U  is an n D×  matrix. Each row of U  is a dummy variable 
indicating which cell the case falls into: if case i  falls into cell d , the 

i th row of U  is 1 in position d  and 0 elsewhere. The matrix μ  is 

D q×  and has rows that are the means of the cells. The error ε  is an 
n q×  matrix whose rows have independent Gaussian distributions 

with mean 0 and covariance Σ . 

The means μ  vary freely among the cells. A restricted model is 

obtained by parametrizing μ  in terms of a smaller number of 

regression coefficients β :   

μ Aβ= .
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Here, A  is a fixed matrix of dimension D r×  and β  is r q× . The 
multivariate regression model now becomes:

Z UAβ ε+=

Taking A  to be the D D×  identity matrix gives the unrestricted 
model as a special case.

You can create A  as you would a design matrix for a factorial 
ANOVA (Schafer 1997, page 343). The rows of A  correspond to 
possible level combinations of the factor variables. Columns 
represent the main effects and possibly interactions. Creating a design 
matrix is simplified in Spotfire S+ by using formulas and specifying 
contrasts, as shown in the section Specifying a Restricted Model on 
page 152.

Prior distribution

The likelihood factors as a product of a multinomial distribution 
involving W  and a conditional Gaussian distribution for Z  given W . 
By applying independent prior distributions for the parameters of 
each distribution, the parameter sets remain independent in the 
posterior distribution.

In principal, the same prior distributions discussed in the sections The 
Gaussian Model on page 39 and The Loglinear Model on page 41 can 
be used. In practice, however, it may be difficult to quantify prior 
knowledge about the Gaussian model parameters. A noninformative 
prior for these parameters is the only option allowed in the Spotfire S+ 
functions for fitting a CGM. 

In sparse data situations, the posterior distribution may be improper 
or the Gaussian parameters from certain cells may be poorly 
estimated. Rather than trying to stabilize the inferences through 
informative priors, Schafer (1997; pages 341, 348) recommends 
restricting the model. In case of problems, simplify the model by 
using a design matrix that has fewer columns.

For the multinomial portion of the model, apply a Dirichlet prior 
distribution. See the section The Loglinear Model on page 41 for 
details.
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Spotfire S+ IMPLEMENTATION

This section describes the functions in S+MISSINGDATA that fit the 
models introduced in the section Missing Data Models on page 39. 
Table 4.1 lists the available fitting functions for each model.

Table 4.1:  The model fitting functions available in S+MISSINGDATA.

Model Functions Description

Gaussian mdGauss

emGauss

daGauss

The mdGauss function estimates the parameters of a 
Gaussian model, with or without missing values in the 
data. 

The emGauss and daGauss functions fit the model using the 
EM and DA algorithms, respectively.

Loglinear mdLoglin

emLoglin

daLoglin

The mdLoglin function estimates the parameters of a 
loglinear model, with or without missing values in the 
data. 

The emLoglin and daLoglin functions fit the model using 
the EM and DA algorithms, respectively.

Conditional Gaussian mdCgm

emCgm

daCgm

The mdCgm function estimates the parameters of a 
conditional Gaussian model, with or without missing 
values in the data. 

The emCgm and daCgm functions fit the model using the EM 
and DA algorithms, respectively.

The output of all model fitting functions is an object of class 
"missmodel". This is a list with two components, paramIter and 
algorithm.

• The paramIter component contains parameter iterates. 
Depending on the model used, the paramIter component is 
an object of class "Gauss", "Loglin", or "Cgm". A paramIter 
object is a matrix in which the i th row is the set of parameters 
produced by the i th iteration of the algorithm. In the DA 
algorithm, this sequence is used to assess convergence and 
produce point estimates, standard errors, confidence intervals, 
and other inferential quantities.
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• The algorithm component contains information about the 
fitting algorithm that produced the iterates in paramIter. 
Depending on the algorithm used, the algorithm component 
is an object of class "em" or "da". An algorithm object 
describes aspects of the algorithm such as the number of 
iterations and the value of the objective function (log-
likelihood or posterior) at the termination of the algorithm.

All model fitting functions take data as input in the form of a matrix, 
data frame, preproccessed object (see the section Preprocessing Data 
on page 35), or another missmodel object. 

Fitting a 
Gaussian 
Model

The main wrapper function for the Gaussian model is mdGauss. It 
estimates the parameters of a Gaussian model, with or without 
missing values in the data. Missing data options are specified through 
the argument na.proc; Table 4.2 lists the possible values for this 
argument.
Table 4.2:  Possible values for the na.proc argument to the mdGauss function.

Value of na.proc Description

"fail" Prints an error message stating that there are 
missing values and stops the program.

"omit" Creates a rectangular data set by eliminating any 
cases with at least one missing value, and then 
estimates parameters using this reduced, complete 
data set.

"em" Estimates the parameters using the EM algorithm.

"da" Estimates the parameters using the DA algorithm.

S+MISSINGDATA also includes the lower level functions emGauss and 
daGauss, which fit a Gaussian model using a specific algorithm. The 
emGauss function implements EM while daGauss implements DA. 
The main wrapper function calls either emGauss or daGauss, but you 
may also call them directly; emGauss is equivalent to calling mdGauss 
with na.proc="em", and daGauss is equivalent to calling mdGauss with 
na.proc="da".
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All three functions for fitting the Gaussian model have a prior 
argument that specifies the hyperparameters of the normal inverted-
Wishart distribution. The following are possible values for prior:

• One of the character strings "ml", "noninformative", or 
"ridge". When prior="ml", no prior is specified and 
maximum likelihood estimates are produced. Specifying 
prior="ridge" sets the scale hyperparameter of the inverted-
Wishart distribution to a diagonal matrix of observed 
variances with degrees of freedom equal to 1. 

To specify a different scale hyperparameter or different 
degrees of freedom, use the function dataDepPrior (for “data-
dependent prior”). This is a generic function with methods for 
preGauss and preLoglin objects (see page 35).

• Output from the function priorGauss, which allows you to 
explicitly supply the hyperparameters. The priorGauss 
function has the arguments tau, mean, df, and scale. See the 
on-line help file for more details. 

The default value for prior is the noninformative prior. When you 
give a missmodel object to one of the model fitting functions, the prior 
used to produce that object is applied instead of the default, unless 
prior is explicitly set.

Control parameters that influence behavior of the EM or DA 
algorithms are specified through the control argument, which is 
governed by algorithm-specific functions. Convergence criteria for 
EM are specified through the emGauss.control function, while 
criteria for DA are specified through daGauss.control. For example, 
convergence occurs in one of three ways for emGauss.control: 

• The maximum relative change in the estimates is less than the 
first element in the tolerance argument. The default value of 
tolerance[1] is 0.001. 

• The relative change in the log–likelihood is less than the 
second element in the tolerance argument. By default, this 
criterion is not used. 

• A maximum number of iterations is reached, as determined 
by the maxit argument. The default value is Inf. 
50



Spotfire S+ Implementation
These values can be specified directly as a list to the control 
argument of mdGauss. For example, to change the maxit criterion to 
2000 and accept the default values of the other control parameters, 
use either of the following in a call to mdGauss:

control = emGauss.control(maxit = 2000)

control = list(maxit= 2000)

Fitting a 
Loglinear 
Model

The model fitting functions for a loglinear model are analogous to 
those described for the Gaussian model in the previous section. The 
wrapper function mdLoglin estimates the parameters of the loglinear 
model, with or without missing values in the data. Missing data 
options are specified through the argument na.proc, which has the 
values described in Table 4.2. The lower level functions emLoglin and 
daLoglin fit the model using the EM and DA algorithms, 
respectively; they are equivalent to calling mdLoglin with 
na.proc="em" and na.proc="da".

The functions mdLoglin, emLoglin, and daLoglin all accept the 
argument prior, which specifies the hyperparameters of the Dirichlet 
distribution. The following are possible values for prior:

• One of the character strings "ml", "noninformative", or 
"data.dependent". When prior="ml", no prior is specified 
and maximum likelihood estimates are produced. Specifying 
prior="data.dependent" calls the function dataDepPrior, 
which is a generic function with methods for preLoglin and 
preGauss objects (see page 35). For preLoglin objects, you 
must supply the argument nPriorObs, which is the total 
number of prior observations; this is referred to as n0  in the 

section The Loglinear Model on page 41.

• The output object from the function priorLoglin.

• A vector that explicitly defines the Dirichlet hyperparameters. 
The length of the vector equals the number of distinct 
combinations of the variables’ factor levels. The ordering is 
such that the first variable varies the fastest, then the second 
variable, and so on. Structural zeroes must be coded as 
missing values (NAs). If a single numeric value is given to 
prior, its value is replicated for all cells in the contingency 
table. 
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The default value for prior is the noninformative prior. When you 
give a missmodel object to one of the model fitting functions, the prior 
used to produce that object is applied instead of the default, unless 
prior is explicitly set.

Table 4.3 summarizes values of the cell hyperparameters for different 
priors. For the data-dependent prior, n0  is the total number of prior 

observations and θ̂d  is the cell probability estimated under 
independence using the observed data. 
Table 4.3:  Values of the cell hyperparameters for different priors. 

Prior EM Algorithm DA Algorithm

maximum likelihood c 1= c 0=

noninformative c 1= c 1 2⁄=

data-dependent αd 1 n0θ̂d+= αd n0θ̂d=

flattening c 1> c 0>

Control parameters that influence behavior of the EM or DA 
algorithms are specified through the control argument, which is 
governed by algorithm-specific functions. Convergence criteria for 
EM are specified through the emLoglin.control function, while 
criteria for DA are specified through daLoglin.control. For example, 
the arguments to daLoglin.control include: 

• niter, which sets the number of iterations. The default value 
is 1.

• seed, which sets the seed required by the random number 
generator used by the algorithm. The default is .Random.seed.

• save, which specifies the parameter iterates to return as a row 
in the paramIter component of the missmodel object. You can 
choose, for example, to throw away some of the early iterates. 
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Another possibility is to thin the iterates by saving only a 
subsequence of them. The default behavior throws away the 
first 10 percent of the iterates.

• monotone, a logical value that determines whether a monotone 
algorithm is used. A monotone algorithm potentially saves a 
computation resources and is appropriate when the 
missingness pattern is (nearly) monotone. By default, 
monotone=FALSE.

• trace, a logical value that determines whether information is 
printed during the course of the algorithm. By default, 
trace=FALSE.

These values can be specified directly as a list to the control 
argument of mdLoglin. For example, to change the monotone criterion 
to TRUE and accept the default values of the other control parameters, 
use either of the following in a call to mdLoglin:

control = daLoglin.control(monotone = T)

control = list(monotone = T)

The loglinear model fitting functions also accept the argument 
margins, which specifies loglinear constraints (if any). The margins 
argument refers to the marginal totals to be fit, and can be specified in 
one of three ways:

• A list of integers representing the variables. For example, 
margins=list(1:2, 3:4) fits the 1,2 margin (summing over 
variables 3 and 4) and the 3,4 margin in a four way table. This 
fits main effects for each variable and the two-way interactions 
between variables 1 and 2, and 3 and 4.

• A list of the names of the variables. For example, 
margins=list(c("V1","V2"), c("V3","V4")) also fits the 1,2 
margin and the 3,4 margin in a four way table, if the variable 
names are "V1","V2", "V3", and "V4".

• An S-PLUS formula. For example, margins=~V1:V2 + V3:V4 
specifies the same model described in the previous two cases. 
The argument frequency to mdLoglin may be included as the 
dependent variable in the formula, as in frequency~V1:V2 + 
V3:V4.
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If margins is not specified, a saturated model is fit if the data object is 
a matrix, data frame, or preLoglin object. If the data is a missmodel 
object, margins defaults to the margins used to fit the missmodel 
object.

Fitting a 
Conditional 
Gaussian 
Model

The model fitting functions for a conditional Gaussian model are 
entirely analogous to those described for the Gaussian and loglinear 
models of the previous sections. The wrapper function mdCgm 
estimates the parameters of the conditional Gaussian model, with or 
without missing values in the data. Missing data options are specified 
through the argument na.proc, which has the values described in 
Table 4.2. The lower level functions emCgm and daCgm fit the model 
using the EM and DA algorithms, respectively; they are equivalent to 
calling mdCgm with na.proc="em" and na.proc="da". Control 
parameters for the fitting algorithms are specified through the 
control argument to mdCgm. See the on-line help files for 
emCgm.control and daCgm.control for details.

Several arguments to these fitting functions behave the same as those 
for the loglinear model. For details, see the on-line help for mdCgm, 
emCgm, and daCgm.
54



CONVERGENCE OF DATA 
AUGMENTATION 
ALGORITHMS 5

Overview 56

Parameter Simulation 57

Multiple Imputation 58

Practical Considerations for Missing Data Problems 60
Starting Values 60
S-PLUS Functions 61
55



Chapter 5  Convergence of Data Augmentation Algorithms
OVERVIEW

The goal of Monte Carlo Markov Chain (MCMC) methods is to 
sample values from a convergent Markov chain in which the limiting 
distribution is the true joint posterior of quantities of interest. In 
practice, you need to determine when the algorithm has converged. 
That is, you must determine when the samples are representative of 
the stationary distribution of the Markov chain can be used to 
estimate characteristics of the distribution of interest.

Theoretical convergence rates involve laborious and sophisticated 
mathematics that must be repeated for each model. In addition, the 
bounds of such rates can be so loose as to be impractical. Instead, 
S+MISSINGDATA uses statistical analysis, called convergence diagnostics, 
on the generated samples to assess convergence. The diagnostics for 
assessing convergence vary according to the method of inference 
being used.

This chapter discusses diagnostics used for both parameter simulation 
and multiple imputation. In conclusion, we discuss practical 
considerations for missing data problems, including starting values 
and the implementation of convergence diagnostics in 
S+MISSINGDATA.
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PARAMETER SIMULATION

In parameter simulation, the goal is to accurately estimate 
characteristics of the posterior distribution P θ Yobs[ ] , such as its 
moments and quantiles. Convergence is given by the law of large 
numbers and occurs when the sample summaries are sufficiently 
close to the posterior quantities they estimate.

To reduce bias due to starting values, samples within an initial burn-in 
period  are thrown away. The length of this period varies according to 
how fast the algorithm converges to the parameters of the target 
distribution.

To estimate a quantity g g θ( )=  of interest such as a point estimate, 
standard error, interval estimate, or p-value, collect iterates

gk 1+ gk 2+ … gk n+, , , .

Here, k  is the burn-in period and n  is the Monte Carlo sample size. If 

k  is large enough to ensure stationarity and n k⁄  is large enough for 
the law of large numbers to apply, then the sample quantities estimate 
the corresponding posterior quantities (for example, the posterior 
mean E g Yobs[ ] ). The burn-in period k  should be chosen large 

enough to make gk
 practically independent of g0

. To determine k , 
Schafer (1997) recommends looking at time series and autocorrelation 

function plots of gt{ }  . 

After convergence, the following should apply:

• Time series plots should not show a trend, nor should iterates 
k  steps apart have more than negligible correlation. See 
Schafer (1997), page 121 for examples.

• Autocorrelation function (ACF) plots should die out. The 
sample ACFs should fall within approximate 0.05-level 
critical values for testing that the ACFs are zero. See Schafer 
(1997), page 122 for examples.
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MULTIPLE IMPUTATION

In multiple imputation, the goal is to generate Bayesianly proper 
multiple imputations. These are independent realizations of 
P Ymis Yobs[ ] , the posterior predictive distribution of the missing data 

under some complete-data model and prior. 

The DA algorithm simulates values of Ymis  that have P Ymis Yobs[ ]  as 

their stationary distribution. In practice, M  imputations are produced 
either with one long chain or several chains. The working notions of 
convergence differ depending on whether one or several chains are 
used, as we discuss below. In both cases, however, the main problem 
is to approximate the burn-in period  k . As in parameter simulation, 
samples within an initial burn-in period  are discarded to reduce bias 
due to starting values.

Note

As discussed in the section Multiple Imputation Using DA on page 23, it is easier to monitor 
convergence using the parameter sequence rather than the imputed data sequence.

• Single chain. Here, imputations are obtained by 
subsampling the long chain, taking every k th iterate, for 
example. The value k  must be large enough so that the 
dependence between imputations is negligible. To determine 
k , Schafer (1997) recommends looking at time series and ACF 
plots of scalar functions of θ , the distribution parameter of 
interest.

• Several chains. Here, imputations are obtained by 
simulating M  independent chains of length k  and keeping the 
last values of Ymis  from each chain.  The value k  must be 
large enough so that the imputations are independent of the 
starting values and starting distribution. 

For the M  chains, at each step t  there are M  replicate values of 
the distribution parameter θ . Denote these by θ *:t( ) . If 
stationarity has been achieved by step t , then θ *:t( )  is an iid 
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sample from P θ Yobs[ ] . To determine k , Schafer (1997) 
recommends monitoring summaries of the distribution of 
θ *:t( ) . Some scalar functions of θ  to consider are sample 
moments, quantiles, and density estimates. Presumably, these 
do not change after stationarity is achieved, although if M  is 
small there is likely to be sampling variability.
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PRACTICAL CONSIDERATIONS FOR MISSING DATA 
PROBLEMS

So far, we have discussed assessing convergence of the DA algorithm 
in general. Our main goal is to provide tools that work quickly and 
reliably for the current methods and models used to handle missing 
data. To quote Schafer (1997) (page 120):

In typical missing-data scenarios addressed by this book, fractions of 
missing information are moderate and data augmentation algorithms tend 
to converge quickly. Pathological behavior such as slow convergence or 
nonexistence of a stationary distribution usually means that the model is 
too complicated (i.e. has too many parameters) to be supported by the 
observed data, and the problem should probably be reformulated. For our 
purposes, the most sensible diagnostics are those that can be implemented 
quickly and easily, providing an informal but reliable assessment of 
whether the situation is normal or pathological.

Since the rate of convergence of both the EM and DA algorithms is 
governed by the fraction of missing information, Schafer (private 
communication) suggests that the number of iterations needed for 
EM to converge gives a conservative estimate of the number of 
iterations needed for DA. Therefore, for missing data applications, it 
may suffice to use ten times the number of iterations needed for EM 
to converge and then look at:

1. Time series plots for each parameter (parameter iterates 
versus iteration number);

2. An autocorrelation plot for each parameter;

3. An autocorrelation plot of the worst linear function  , discussed 
below.

Starting Values The rate of convergence to stationarity for DA partly depends on the 
starting values or starting distribution. Schafer (1997) recommends 
using starting values that are near the center of the posterior. For 
example, use a maximum likelihood estimate or posterior mode 
obtained from running an EM algorithm. 

To facilitate this, objects of class "missmodel" returned by the EM 
fitting functions emGauss, emLoglin, and emCgm may be used as input 
to a DA algorithm. For example, the missmodel object returned by 
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emLoglin can be used as data input to daLoglin. Similarly, objects of 
class "missmodel" returned by the wrapper functions mdGauss, 
mdLoglin, and mdCgm can be given back to the wrapper functions as 
input. For example, the object created by calling mdLoglin with 
na.proc="em" can be used as input to mdLoglin again, this time 
specifying the DA algorithm instead of EM. 

For multiple chains, Gelman and Rubin (1992) recommend starting 
values that are overdispersed  (exhibit greater variability) relative to 
P θ Yobs,[ ] . This results in a conservative estimate of the number of 
iterations needed to achieve stationarity. It also reduces the chance of 
being misled if the posterior is so oddly shaped that single runs tend 
to get stuck in small regions.

In practice, Schafer (1997) recommends using the bootstrap method 
to obtain an overdispersed starting distribution. For example, repeat 
the following M  times:

1. Draw with replacement n*  rows from Yobs  to obtain a 

bootstrap sample Yobs
b

.

2. Calculate θb
ˆ θ̂ Yobs

b( )= .

If we take n*  to be smaller than n , say n* n
2
---= , then θ̂b  tends to be 

overdispersed relative to P θ Yobs,[ ] . Care is required, however, since 
a reduced data set size may lead to problems such as colinearity.

S-PLUS 
Functions

Several S+MISSINGDATA functions help diagnose convergence of a 
DA chain. The tsplot and generic plot functions produce univariate 
time series plots of the parameter iterates. Similarly, acf and 
daAcfPlot calculate and plot autocorrelation function plots of the 
parameter iterates. The daAcfPlot function is a simpler version of 
acf; it avoids the default title and does not calculate cross-
correlations.

It can also be useful to plot functions of the parameter iterates. The 
function worstLinFun calculates the worst linear function of the 
parameters , which is the inner product of the parameter iterates with 
the eigenvector returned by worstFraction. Intuitively, this function 
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has a high rate of missing information and is useful to monitor 
because the rate of convergence to stationarity depends partly on the 
fraction of missing information.
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Chapter 6  Imputation
OVERVIEW

As discussed in Chapter 2, the DA algorithm can be used to produce 
multiple imputations under one of the models discussed in Chapter 4: 
Gaussian, loglinear, and conditional Gaussian. Applied within the 
framework of multiple imputation, these models are more widely 
applicable than would appear at first glance. This is because multiple 
imputation is fairly robust to model misspecification, especially with 
small fractions of missing information (Ezzati-Rice et al. (1995), Rubin 
and Schenker (1986), Schafer (1997)). Multiple imputation under 
these models thus applies more or less routinely to a wide variety of 
missing data problems.

This chapter discusses the functions and objects in S+MISSINGDATA 
that support multiple imputation. The main functions discussed are 
impGauss, impLoglin, and impCgm, corresponding to each of the 
models from Chapter 4. All three imputation functions return objects 
of class "impute", which are designed to store multiple imputations 
efficiently with the original data. The impute objects work with a 
variety of utility functions available in S+MISSINGDATA.

In principal, you can generate multiple imputations by using 
nonparametric procedures, or by using parametric models that are 
different than the ones provided in S+MISSINGDATA. As long as your 
custom procedures and models return an object of class "impute", 
you may use the capabilities described in the next two chapters to 
perform multiple complete data analyses and consolidate results.
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IMPUTING DATA

The following functions for imputing data are available in 
S+MISSINGDATA:

• The impGauss function produces multiple imputations under 
the Gaussian model.

• The impLoglin function produces multiple imputations under 
the loglinear model.

• The impCgm function produces multiple imputations under the 
conditional Gaussian model.

These functions are generic with methods for preGauss, preLoglin, 
and preCgm objects, respectively; see the section Preprocessing Data 
on page 35 for descriptions of these objects. The impGauss, 
impLoglin, and impCgm functions also have methods for the missmodel 
objects described in Chapter 4, as well as default methods for 
matrices and data frames.

All three functions for imputing data return an object of class 
"impute", which by default is a data frame with columns of class 
"miVariable". See the section The Class of impute Objects on page 
68 for details on miVariable. Alternatively, you can set the argument 
return.type="matrix" in a call to impGauss, impLoglin, or impCgm. In 
this case, an miVariable version of a matrix is returned instead of a 
data frame. The form of the return object usually depends on the 
whether the original data is a data frame or matrix. Preserving the 
form of the original data in the impute object makes the commands 
for subsequent complete data analyses parallel to those used when the 
data has no missing values.

The form of the starting values, given by the argument start in the 
impGauss, impLoglin, and impCgm functions, determines how many 
chains are run. The possible values for start are model-specific, as 
we discuss below.

The Gaussian 
Model

For one long chain, the start argument of the impGauss function is a 
list with two components: a vector that gives the mean and a matrix 
that gives the covariance matrix. 
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For multiple chains, start may take several forms:

• A list of lists. The inner lists must all have a vector component 
containing the mean and a matrix component containing the 
covariance. Each list of parameters starts a separate chain.

• An object of class "Gauss", which is the paramIter 
component of a missmodel object created by one of the 
functions mdGauss, emGauss, or daGauss. A Gauss object is a 
matrix in which each row contains one set of parameter 
estimates; each row then starts a separate chain. Typically, a 
Gauss object contains a limited set of iterations, obtained 
either through subsetting or by specifying the save argument 
to emGauss.control or daGauss.control.

• A list of Gauss objects. In this case, the last row of each Gauss 
object starts a separate chain.

The Loglinear 
Model

For one long chain, the start argument of the impLoglin function is a 
vector of cell probabilities. The length of start equals the number of 
distinct combinations of levels in the factor variables. The ordering is 
such that the first variable varies the fastest, then the second variable, 
and so on. Starting values should be zero for cells that are structural 
zeros. For one long chain, you must also supply the argument 
nimpute, which gives the number of imputations.

For multiple chains, start may take several forms:

• A list with vector components that contain cell probabilities.  
Each component starts a separate chain.

• An object of class "Loglin", which is the paramIter 
component of a missmodel object created by one of the 
functions mdLoglin, emLoglin, or daLoglin. A Loglin object is 
a matrix in which each row contains one set of cell 
probabilities; each row then starts a separate chain. Typically, 
a Loglin object contains a limited set of iterations, obtained 
either through subsetting or by specifying the save argument 
to emLoglin.control or daLoglin.control.

• A list of Loglin objects. In this case, the last row of each 
Loglin object starts a separate chain.
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The 
Conditional 
Gaussian 
Model

For one long chain, the start argument of the impCgm function is a list 
with the following components:

• mu, which is matrix of cell means. Each column in the matrix 
represents one numeric variable and each row represents a 
cell. The ordering of the rows is equivalent to the ordering in 
the pi component.

• sigma, which is a variance-covariance matrix of the numeric 
variables.

• pi, which is vector of cell probabilities. The length of pi 
equals the number of distinct combinations of the factor 
variable levels. The ordering is such that the first variable 
varies the fastest, then the second variable, and so on. Starting 
values should be zero for cells that are structural zeros.  

For multiple chains, the start argument may take several forms:

• A list of lists. The inner lists must all have a vector component 
containing the mean, a matrix component containing the 
covariance, and a vector component containing the cell 
probabilities. Each list of parameters starts a separate chain.

• An object of class "Cgm", which is the paramIter component 
of a missmodel object created by one of the functions mdCgm, 
emCgm, or daCgm. A Cgm object is a matrix in which each row 
contains one set of parameter estimates; each row then starts a 
separate chain. Typically, a Cgm object contains a limited set of 
iterations, obtained either through subsetting or by specifying 
the save argument to emCgm.control or daCgm.control.

• A list of Cgm objects. In this case, the last row of each Cgm 
object starts a separate chain.
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s 

s 
THE CLASS OF IMPUTE OBJECTS

Calculating and storing multiple imputations involves two types of 
impute objects: miVariable and miList. An miVariable object has 
three slots:

• The Data slot contains the original data object, including 
missing values.

• The whichNA slot is a numeric vector that indicates which 
positions in the data are missing. The order of whichNA 
matches the order of the rows in the Imputations slot.

If the original data object is a vector, matrix, or array, whichNA 
is a vector with each position represented as a single integer. 
Note that positions are not represented by matrix subscripts. 
For example, for a matrix with 10 rows and 2 columns that 
has missing values in positions [2,1] and [3,2], the whichNA 
slot contains the values 2 and 13. See the Spotfire S+ Programmer’
Guide  for details on vector subscripts of matrices and arrays.

• The Imputations slot is a data frame that contains the actual 
imputations. There are as many rows in Imputations as the 
length of whichNA, and it has M  columns. Each column is a 
variable with the same class and many of the same attributes 
as the original object.

An miList object is a list of length M  with the SV3 class "miList" (see 
the Spotfire S+ Programmer’s Guide  for a general discussion on SV3 versu
SV4 classes). It has one component for each set of imputations. Each 
component contains a complete data object , which is either complete 
data obtained by filling in missing values using a set of imputations, or 
the results of an analysis using a single set of complete data. 
Components of an miList object typically have the same structure; 
for example, they might all be lm objects.

Any impute object must have names for the imputations. These are 
the names of the components of the miList list or the column names 
of the Imputations slot in an miVariable.

Any miVariable object can be converted to a corresponding miList 
object, though this may result in loss of information. For example, for 
a categorical variable in which all of the M  random imputations are 
the same for one data value, it is not possible to determine from an 
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miList that the data value was originally missing. The converse is not 
always true, however. Only an miList object with components that 
have the same length, names, attributes, and atomic mode may be 
converted to an miVariable object. The generic function 
miVariablePossible determines whether an object can be converted 
to an miVariable; you may write your own methods for this function.

Generally, miVariable objects should be used for data and miList 
objects for the results of analyses. Results of analyses that can be 
treated as data, such as a vector of residuals from a regression, are 
usually created and stored as miList objects. However, it is possible 
to convert them to miVariable objects.

Both miList and miVariable objects may be components of a list. In 
particular, variables in a data frame may be miVariable objects. 
These types of objects may be contained in an attribute, though this 
has not been well tested and is not currently recommended.  These 
objects can also be contained in a slot if the definition for the class 
allows this.

Extracting 
Imputations

Extracting complete-data objects from an impute object is handled by 
the miSubscript function. This operation is similar to regular S-PLUS 
subscripting. In fact, it is implemented using subscripting for miList 
objects. For example, the command

> miSubscript(x,3) <- miSubscript(y,3) 

is equivalent to

> x[[3]] <- y[[3]] 

when x and y are both miList objects.

Extraction for miVariable objects involves replacing missing values 
in the Data slot by a set of imputations, then returning the Data slot as 
the complete-data object. The miSubscript function performs these 
steps. For example, suppose crime.imp is an miVariable object. To 
extract the second set of completed data for crime.imp, type:

> y <- miSubscript(crime.imp, 2) 

Extraction for lists (or objects with slots) containing miList and 
miVariable objects proceeds recursively. Each miList or miVariable 
component is replaced with the corresponding extracted complete-
data object, then the whole list (or object with slots) is returned.
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Replacing 
Imputations

The reverse of extraction involves replacing complete-data objects in 
an impute object. This begins by converting the new object to an 
miList object, if it was not one already. This holds for ordinary and 
miVariable objects, as well as for lists or objects with slots containing 
impute objects. The appropriate component of the  miList is then 
replaced. For example, if x is an impute object, then

> miSubscript(x,2) <- value 

converts x to an miList and then replaces the second component.

An ordinary object with no imputations must first be converted to an 
miList object by replicating the object into each component of a new 
miList object. This is usually accomplished by calling the as.miList 
function. For example,

> x <- as.miList(x, 
+ Names = paste("Imputation", 1:5, sep=""))
> miSubscript(x,2) <- value 

connverts x to an miList with 5 imputations, then replaces the 
second. 

Manipulating 
impute Objects

The miList and miVariable objects can be created using the miList 
and miVariable functions, respectively.

To determine the number, names, or existence of imputations, use  
miReps, miNames, and is.mi functions, respectively. These functions 
operate recursively, searching for imputations in any list component 
or slot of an object. The is.miVariable and is.miList existence 
functions are also useful. The latter has an optional argument 
recursive; if recursive=TRUE, the is.miList function searches for 
miList objects recursively.

To convert between the two types of impute objects, use the 
as.miList and as.miVariable functions. In the latter case, the 
original object is returned if it is not possible to convert it to an  
miVariable object.

Use miTrim to simplify an impute object. This replaces miList with 
miVariable objects wherever possible, and replaces both with 
ordinary objects if all imputations are identical. The miTrim function 
also restructures recursive objects so that the imputations are stored at 
the lowest levels. For example, an miList containing ordinary lists 
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can be converted to a list of miList objects, provided that this does 
not result in an object that has a class and contains impute objects 
where they are not allowed for that particular class.

The miPrint function may be used to print an miVariable or a data 
frame containing one or more miVariable columns. This provides a 
formatted printout that shows the imputations more clearly than 
would otherwise occur with regular printing. 
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OVERVIEW

The process of statistical analysis may involve creating graphics, 
fitting models, investigating diagnostics, and comparing results. If you 
use multiple imputation to handle missing values, you still perform a 
similar sequence of analysis steps. However, you need to perform the 
steps on several data sets, each of which is completed by filling in the 
missing values using one set of imputations. Each completed data set 
gives a different result; the results must then be collected as described 
in this chapter and combined as described in the next chapter.

The S+MISSINGDATA library provides two functions to facilitate the 
process of performing analyses and collecting results:

• The miApply function is analogous to S-PLUS functions such as 
apply and sapply. It is useful when the complete data analysis 
can be expressed as a function applied to one set of data. 

• The miEval function is analogous to the S-PLUS function eval. 
If the complete data analysis involves more than one set of 
data or requires an S-PLUS expression, then miEval is the 
function to use.

In this chapter, we discuss miApply and miEval in detail. Both 
functions usually produce miList objects in which each component is 
the result of one complete data analysis.  
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ANALYSIS FUNCTIONS

The miEval 
Function

The miEval function evaluates a user-supplied expression. Suppose, 
for example, that the commands for complete data are:

> mean(x, trim = 0.2)
> any(x + y > z) 

For multiply imputed data, the commands are:

> miEval(mean(x, trim = 0.2)) 
> miEval(any(x + y > z)) 

or

> miEval({ 
+ print(mean(x, trim = 0.2))
+ any(x + y > z) 
+ }) 

Similarly, the assignment

> meanx <- mean(x, trim = 0.2) 

corresponds to either

> meanx <- miEval(mean(x, trim = 0.2)) 

or

> miEval(meanx <- mean(x, trim = 0.2)) 

However, the latter command is less efficient.

The miEval function handles simple expressions internally and passes 
control to a more complicated version of the function if any 
assignments are detected in the expression. It handles nearly arbitrary 
S-PLUS expressions, including loops, function calls, and assignments. 
It does not support S-PLUS expressions that include the following 
functions, though in some cases they work:

assign, get, <<-, rm, remove, eval, attach, detach
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The miEval function does not provide support for functions that 
access data directly, without being passed through the argument list. 
This becomes a problem when, for example, the function is called by 
another function. However, miEval has an advantage in this situation: 
the given expression is evaluated in the calling frame, so that data that 
would be visible if the expression was evaluated outside of miEval is 
also visible inside of miEval. If the data is an impute object, the 
appropriate set of imputations is not extracted. The expression given 
to miEval can include explicit assignments to frame 1 to handle these 
situations.

The miApply 
Function

An alternative to miEval is miApply, which is a member of the apply 
family of functions. In the simplest call, you provide an impute object, 
a function, and any additional arguments to be passed to the function; 
the additional arguments should not contain imputations. 

For example, if a complete data set is named x, the following 
computes its mean:

> meanx  <- mean(x, trim = 0.2) 

For an impute object x, the corresponding call is:

> meanx  <- miApply(x, mean, trim = 0.2) 

In some analyses, the impute object is not the first argument to a 
function. This occurs when you pass an impute object as the data 
argument to S-PLUS modeling functions (lm(y~x, data=myData), for 
example). In these cases, miApply can be used in one of two ways.

1. Provide all arguments to the function by name, including 
formula:

> miApply(myData, lm, formula = y~x)

2. Use a wrapper function:

> miApply(myData, function(data) lm(y~x, data))

Note that miApply cannot be used for expressions; you must use a 
wrapper function instead. For example, the expression x+y/z 
becomes the following:

> miApply(list(x=x, y=y, z=z), 
+ function(l) l$x + l$y / l$z)) 
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You must also use a wrapper function when calling functions that 
require multiple impute objects. For example, the command

> anova(fit1, fit2) 

corresponds to the following:

> miApply(list(fit1=fit1, fit2=fit2), 
+ function(X) anova(X$fit1, X$fit2)) 

Additional 
Arguments

Both miEval and miApply have an optional logical argument 
simplify. If simplify=TRUE and all imputations (components) of the 
result are identical, then the returned miList is simplified to an 
ordinary object with a single component.

The miEval function has an optional argument vnames, which is a 
vector of names for all impute objects used, including assigned objects 
that will become impute objects.  For example, the command

> miEval(lm(y~x, data=myData), vnames = "myData") 

specifies that only myData (and not y or x) is an impute object. In this 
simple example, it is not strictly necessary to specify vnames because 
miEval contains code to handle modeling functions like lm. If the 
expression passed to miEval is a call to a function for which one 
argument is a formula and another has the name data, then variable 
names in the formula are assumed to refer to columns in the data and 
not impute objects. This intelligence is limited, however. For example, 
in the command

> miEval(coef(lm(y~x, data=myData)), vnames = "myData") 

it is necessary to specify vnames because the expression is a call to 
coef, which does not have a formula or a data argument. In general, 
it is safest to always supply vnames when calling functions that handle 
their arguments symbolically.

Other optional arguments are described in the help files for the 
miEval and miApply functions.

Compatibility 
of miEval and 
miApply

In most cases, the objects produced by miEval and miApply (when 
called with analogous expressions) are compatible. When the 
expressions contain modeling functions such as lm or glm, however, 
the objects produced by miEval and miApply are slightly different. 
77



Chapter 7  Analyzing Completed Data Sets
This is because modeling functions return objects that contain call 
attributes. We recommend using miEval in these cases because some 
subsequent analyses will be easier. 

For example, suppose m.kyphosis is a data frame similar to the built-
in data set kyphosis, but containing variables with multiple 
imputations. A glm analysis can be performed using either of the 
following commands:

> m.fit1 <- miApply(m.kyphosis, function(xx) 
+ glm(Kyphosis ~ Age + Start + Number, 
+ family = binomial, data = xx))

> m.fit2 <- miEval(glm(Kyphosis ~ Age + Start + Number,
+ family = binomial, data = m.kyphosis))

Both m.fit1 and m.fit2 are miList objects with components that are 
glm objects. The call attributes for the first components of each are, 
respectively:

glm(Kyphosis ~ Age + Start + Number, family = binomial, 
data = xx)

glm(Kyphosis ~ Age + Start + Number, family = binomial, 
data = miSubscript(m.kyphosis, 1))

Note the differences in the data arguments. The expression 
miSubscript(m.kyphosis, 1) is valid outside miEval, while xx is 
simply a dummy name. In fact, the data expression in the call 
attribute for m.fit2 actually produces the completed data set used in 
calculating the first component of m.fit2.

Objects produced by miEval can be used by miApply, but the 
converse is not always true. Indeed, results from miApply cannot 
always be used easily by miApply. For example, both of the following 
commands work as expected:

> miApply(m.fit2, predict, type = "terms")
> miEval(predict(m.fit2, type = "terms"))

However, the same commands using m.fit1 fail because the data 
cannot be found. Instead, you must do one of the following:

> miApply(m.fit1, predict, type = "terms",
+ X.frame1 = list(xx=m.kyphosis))
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> miEval({ 
+ assign("xx", m.kyphosis, frame = 1)
+ predict(m.fit1, type = "terms") 
+ })

This ensures that the appropriate data sets are assigned to frame 1 
where they are sure to be found. The first completed data set from 
m.kyphosis is assigned to frame 1 with the name xx before the first 
analysis is run, then the second completed data set is assigned there, 
and so on. Note that replacing the dummy name xx with m.kyphosis 
when creating m.fit1 would be dangerous, because some code would 
not know whether to use the original m.kyphosis (which contains 
multiple imputations) or its completed data sets with the same names. 
Results could be transparently incorrect.
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Chapter 8  Consolidating Analyses
OVERVIEW

The final step in an analysis of multiple imputations is consolidating 
results from all imputations to produce a single result. If the result 
from a single set of imputations is an estimate with no associated 
standard error or other inferences, then you can use the miMean 
function, which computes the average result across imputations. 
Likewise, the miVar function computes the variance across 
imputations.

More interesting is the case where you need to combine not only 
estimates but also standard errors or other inferences. The final result 
must encompass both the uncertainty associated with individual 
estimates, such as standard errors for linear regression coefficients, as 
well as the additional uncertainty due to missing data. The miMeanSE 
function combines point and variance estimates that are used for 
inference assuming asymptotic normality (Rubin (1987), Chapter 3) 
or Students-t  (Barnard and Rubin (1999); Hesterberg (1998)). The 
functions miChiSquareTest, miFTest, and miLikelihoodTest combine 

inferences based on χ2  (Li et al. (1991)), F  (Hesterberg (1998); Li, 
Ragunathan, and Rubin (1991)), and likelihood ratio statistics, 
respectively. 
82



Simple Statistics
SIMPLE STATISTICS

S+MISSINGDATA includes two functions for calculating simple 
statistics across imputation sets. The miMean function calculates the 
mean across imputation sets and the miVar function calculates the 
variances:

> miMean(m.coef) 
> miVar(m.coef)

Both functions return vectors, matrices, or arrays, depending on the 
shape of the original data. For positions without missing data, the 
variances across imputations are zero.
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INFERENCES

Normal and 
Students-t 
Inferences

Many inferences are based on estimates, standard errors, and 
approximate normality. The miMeanSE function consolidates both 
estimates and their standard deviations or standard errors by 
averaging the estimates and obtaining adjusted standard errors. The 
rules implemented in miMeanSE are based on those described in Rubin 
(1987) for combining normal-based inferences, and in Barnard and 
Rubin (1999) and Hesterberg (1998) for combining Students-t 
inferences. In this section, we describe the computations underlying 
miMeanSE.

Let θ  be a scalar parameter and θ̂  its estimate with standard 

deviation σ
θ̂

. Normal-based confidence intervals with no missing 

data are of the form θ̂ zα 2⁄ σ
θ̂

± , where zα 2⁄  is a quantile of the 

normal distribution. With multiple imputations, denote the estimates 

and standard errors as θ̂m  and σm , for m 1 2 … M, , ,= . The 

consolidated estimate is obtained by averaging the individual 
estimates:

θ 1
M
----- θ̂m∑= .

The within-imputation variance  averages the estimated complete data 
variances:

σ
2 1

M
----- σ̂m

2
∑= .

The between-imputation variance  is the variance of the complete data 
point estimates:

B 1
M 1–
-------------- θ̂m θ–( )

2
∑= .

Finally, the consolidated variance  combines the within and between 
variances:

σ̂θ
2

σ
2

1 M 1–
+( )B+= .
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Inferences are then based on Students-t quantiles θ tν α 2⁄, σ̂θ± ,

where the degrees of freedom ν  reflect the uncertainty in estimating 
the standard error.

For small sample sizes, where Students-t  distributions are used for 
inferences in the absence of missing data, estimates and standard 
errors are consolidated as above except that estimated standard errors 

Ŝθ  are used in place of standard deviations. Degrees of freedom 

combine the degrees of freedom for Ŝθ  as an estimate of σθ  and the 

additional uncertainty due to multiple imputations. The final degrees 
of freedom is not greater than what is obtained in the absence of 
missing data.

As input, miMeanSE accepts the estimates, standard errors, and degrees 
of freedom computed for each completed data set. Other possible 
arguments include the degrees of freedom and the sample size. The 
degrees of freedom should not normally vary across imputations, as 
this may indicate violations of assumptions. To obtain normal-based 
inference, let the degrees of freedom be infinite (df=Inf). 

For example:

> m.sumfit <- miApply(m.fit, summary) 
> miMeanSE(m.coef, 
+ se = miEval(m.sumfit$coef[,2]), 
+ df = miEval(m.fit$df, simplify=T), 
+ n = nrow(m.data)) 

This returns a list containing the consolidated estimates, standard 
errors, and degrees of freedom. In addition, it returns the relative 
increase in variance  due to nonresponse and the estimated fraction of 
missing information  due to nonresponse.

The miMeanSE function also accepts variance-covariance matrices in 
place of standard errors. In this situation, it produces adjusted 
variance-covariance matrices using methods described in Hesterberg 
(1998). The results differ from those obtained using methods in Rubin 
(1987) and Schafer (1997). In particular, the square roots of the 
diagonal elements of the resulting variance-covariance matrix are the 
same as the standard errors produced above, and results are more 
stable with small numbers of imputations. 
85



Chapter 8  Consolidating Analyses
An example command is:

> miMeanSE(m.coef), 
+ cov = miEval(sumfit$cov.unscaled * sumfit$sigma^2), 
+ df = miEval(m.fit$df, simplify=T), 
+ n = nrow(m.data)) 

The miMeanSE function handles certain standard data structures 
automatically. For example, since m.fit is an miList with 
components that are lm objects, miMeanSE automatically extracts the 
regression coefficients and their variance-covariance matrices and 
consolidates them. The above example could have been written more 
simply as:

> miMeanSE(fit) 

This allows you to call miMeanSE without first calculating sumfit and 
extracting the coefficients, degrees of freedom, and covariance 
matrices.

Chi-Square and 
F Inferences 

When complete data inferences are based on χ2  or F  statistics, there 
are two cases to consider:

• The estimates and variance-covariance estimates are available 
from each set of imputations; or

• Only the χ2  or F  statistics are available.

In the first case, consolidate the estimates and variance-covariance 
matrices using miMeanSE and calculate an F  statistic using the formula:

θ θ0–( )
T
Σ
ˆ 1–

θ θ0–( ) df1( )⁄ .

Here, θ  is the consolidated estimate, θ0  is the null hypothesis value 
(or the consolidated version of the estimates obtained under a 

composite null hypothesis), Σ
ˆ

 is the consolidated variance-covariance 

matrix, and df1  is the numerator degrees of freedom. The 
denominator degrees of freedom are obtained from the output of 

miMeanSE. Note that even if complete-data inferences are based on χ2  
statistics, the consolidated inferences are based on F  statistics because 
of uncertainty in the variance-covariance estimate.
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For example, suppose we test whether a factor variable with 6 levels is 
significant in a linear model. This test involves an F   test with 5 
degrees of freedom (5 contrasts).  The null hypothesis is that the 
coefficients for the 5 contrasts are all zero. First, create an miVariable 
object from the built-in data set fuel.frame:

# Set the seed for reproducibility.
> set.seed(0)
> m.fuel.frame <- fuel.frame

# Create missing values in m.fuel.frame.
> for(j in c(1:3,5)) 
+ m.fuel.frame[[j]][sample(1:60, 2*j)]  <- NA
> m.fuel.frame <- RandomImpute(m.fuel.frame)
> m.fuel.frame[[4]] <- 100/m.fuel.frame[[3]]

Next, fit the linear model:

> m.fit <- miEval(lm(Fuel ~ Weight + Disp. + Type, 
+ data = m.fuel.frame))

The goal is to test whether the categorical variable Type is significant. 
The null hypothesis is that all coefficients for the Type variable are 
zero.

The following commands calculate consolidated estimates and 
variance-covariance matrices for m.fit:

> m.C <- miMeanSE(m.fit)
> coefType <- m.C$est[4:8] 
> covType <- m.C$cov[4:8, 4:8]
> m.F <- coefType %*% solve(covType, coefType)/5

The denominator degrees of freedom vary across dimensions:

> m.C$df[4:8])

    Type1    Type2   Type3    Type4    Type5 
 35.56862 16.85757 28.7291 45.00113 5.512315

Therefore, calculate the p-value conservatively using the smallest 
degrees of freedom:

> 1-pf(m.F, 5, min(m.C$df[4:8]))
[1] 0.3541523
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When only the χ2  or F  statistics are available, the functions in 
S+MISSINGDATA follow Schafer (1997, page 115) and Li et al. (1991), 
with natural extensions to F statistics. The functions miChiSquareTest 

and miFTest accept as input the scalar χ2  or F  statistics calculated on 
each completed data set and the degrees of freedom for the tests. 
They return the consolidated F  statistic, numerator and denominator 
degrees of freedom, estimated average relative increase in variance 
due to nonresponse, and approximate p-value corresponding to the F  
statistic. The p-value should be used for screening only; the actual 
p-value may be larger or smaller by a factor of two.

For example, we might use the F  statistics computed by the anova 
function to compare linear models with and without a factor variable. 
To continue the preceding example:

> m.fit2 <- miEval(lm(Fuel ~ Weight + Disp., 
+ data = m.fuel.frame))
> m.anov <- miEval(anova(m.fit2, m.fit))
> miFTest(x = miEval(m.anov$"F Value"[2]),
+ df1 = miEval(m.anov$Df[2]),
+ df2 = miEval(m.anov$"Resid. Df"[2]))

$Fstatistic:
[1] 0.2926602

$df1:
[1] 5

$df2:
[1] 5.758413

$r:
[1] 0.3130781

$p:
[1] 0.9001019

Both procedures fail to reject the null hypothesis that all coefficients 
for the Type variable are zero. However, note that the p -value 
obtained by combining F  statistics is larger than the p -value based on 
averaging parameter estimates (obtained earlier). The p -value here is 
based on a less powerful test.
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To see why, consider  a similar problem. Suppose that X1 X2 …Xn, ,  

are iid N μ 1,( )  random variables. The null hypothesis H0  is that 

μ 0= ; the alternative hypothesis H1  is that μ 0≠ .

• Case 1: The X  values are observed. In this case, the test uses 

the consolidated estimate X  of μ .

• Case 2: Only Yi Xi
2

=  is observed (these are equivalent to 

χ2
 test statistics). In this case, the test uses the statistic Yi∑ .

Both procedures give exact tests, where the probability of Type I 
error is exactly equal to α . However, any single set of data can reach 
different conclusions. The first procedure, which averages individual 
parameter estimates, is more powerful.

The next example consolidates chi-square statistics from a loglinear 
analysis of a contingency table.  First, create an impute object from 
the built-in data set barley:

# Set the seed for reproducibility.
> set.seed(0)
> m.barley.exposed <- barley.exposed

# Create 10 random missing values.
> w  <- sample(1:120, 10) 
> m.barley.exposed[w] <- NA
> imputes <- matrix(rpois(40, barley.exposed[w]+0.1), 10)
> m.barley.exposed <- miVariable(m.barley.exposed, 
+ data.frame(imputes))

Fit a loglinear model to each completed data set:

> ml <- miApply(m.barley.exposed, loglin, 
+ margin = list(1:2, c(1,3)))

Finally, consolidate the chi-square statistics:

> miChiSquareTest(miApply(ml, "[[", "pearson"),
+ df = miApply(ml, "[[", "df"))
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Likelihood 
Ratio 
Inferences

The final consolidation function that we discuss in this chapter, 
miLikelihoodTest, combines likelihood ratio inferences. There are 
two ways to call this function. The first is

miLikelihoodTest(m.data, FUN, df1, estimates, estimates0,
...) 

Here, m.data is an miVariable object, and estimates and estimates0 
are the maximum likelihood parameter estimates under the 
alternative and null hypotheses, respectively. The df1 argument is the 
degrees of freedom for the test, FUN is a function that calculates the 
likelihood ratio statistic (twice the likelihood ratio) for the data 
between estimates and estimates0, and ... are additional 
arguments to FUN. 

For example, the following commands illustrate miLikelihoodTest 
when the parameters are the mean and variance of a normal 
distribution. The null hypothesis is that the mean is zero:

> x <- rnorm(20) 
> x[2:5] <- NA 
> x <- miVariable(x, Imputations = 
+ split(sample(x[-(2:5)], 12, replace=T), rep(1:3,4)))

> estimates <- miEval(c(mean(x), mean((x-mean(x))^2))) 
> estimates0 <- miEval(c(0, mean(x^2))) 
> f1 <- function(dat, e1, e0, ...) { 
+ n <- length(dat) 
+ 2*((-n*log(e1[2])/2 - sum((dat-e1[1])^2)/(2*e1[2])) - 
+ (-n*log(e0[2])/2 - sum((dat-e0[1])^2)/(2*e0[2]))) 
+ } 

> miLikelihoodTest(x, f1, 1, estimates, estimates0) 

The parameter estimates are assumed to be approximately normally 
distributed and the estimates are averaged in the course of 
computations. This is not always appropriate. Indeed, if the 
parameter space is nonconvex, the average of the parameter 
estimates may lie outside of it. In any case, the procedure is not 
invariant under transformations of the parameters.

The second way to call miLikelihoodTest is:

miLikelihoodTest(data, FUN, df1, ...) 
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Inferences
Here, the df1 and ... arguments are defined as before, but FUN is a 
function that calculates parameter estimates internally for both the 
alternative and null hypotheses and returns the likelihood ratio 
statistic. Furthermore, the data argument must be such that the 
completed data sets can be combined into a single large data set using 
rbind, and FUN must be able to take this large data set as input and 
compute likelihood ratios. The log-likelihood statistic for the large 
data set formed by stacking M  copies of a single data set should be M  
times the statistic obtained for the single data set. The procedure 
followed in this case is invariant under transformations of the 
parameters.

For example:

> f2 <- function(dat, ...) { 
+ n <- length(dat) 
+ mu0 <- 0 
+ mu1 <- mean(dat) 
+ var0 <- mean(dat^2) 
+ var1 <- mean((dat-mu1)^2) 
+ 2*((-n*log(var1)/2 - sum((dat-mu1)^2)/(2*var1)) - 
+ (-n*log(var0)/2 - sum((dat-mu0)^2)/(2*var0))) 
+ } 

> miLikelihoodTest(x, f2, 1) 

In either case, the function returns the likelihood ratio F  statistic, 
numerator and denominator degrees of freedom, and an estimate of 
the average increase in variance due to missing data.
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Chapter 9  Example 1: The Gaussian Model
OVERVIEW

This chapter provides detailed examples illustrating the Gaussian 
model fitting process, in which all variables with missing values are 
numeric. Chapter 4 briefly describes the Gaussian model, the 
associated priors, and the functions in S+MISSINGDATA used to fit it. 
In this chapter, we illustrate the S+MISSINGDATA functions using the 
cholesterol example from Schafer (1997). Note that the algorithms in 
S+MISSINGDATA differ from those in Schafer’s book, which involve 
sweep operators; details are in Fraley (1998). 

Multivariate normality is often assumed in analyzing continuous data. 
It is therefore natural to treat missing data using the same 
assumptions. The Gaussian model handles missing data even when 
data sets deviate from normality, however. Some reasons are:

• Transformations of the variables may make normality more 
tenable.

• If some variables are clearly non-normal but complete, the 
Gaussian model can be used if the incomplete variables may 
be modeled as conditionally Gaussian, given a linear function 
of the complete variables. In this case, inferences must be 
made about the parameters of the conditional distribution 
only.

• When used as a model for multiple imputation, the Gaussian 
model is applied only to the missing part of the data. Multiple 
imputation inferences are robust to assumptions on the 
imputation model as long as the fraction of missing 
information is small.

The 
Cholesterol 
Data

Schafer (1997) illustrates the Gaussian model using a data set of 28 
patients treated for heart attacks at a Pennsylvania medical center. 
The original data are given in Table 9.1 of Ryan and Joiner (1994). 
For each patient, serum-cholesterol levels are measured 2 and 4 days 
after the attack. For 19 patients, a measurement is also taken 14 days 
after attack. 

The data from the cholesterol study is included in S+MISSINGDATA 
as the built-in data set cholesterol. It consists of three variables, 
chol2, chol4, and chol14.
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Overview
> cholesterol

   chol2 chol4 chol14 
 1   270   218    156
 2   236   234     NA
 3   210   214    242
 4   142   116     NA
 5   280   200     NA
 6   272   276    256
 7   160   146    142
 8   220   182    216
 9   226   238    248
10   242   288     NA
11   186   190    168
12   266   236    236
13   206   244     NA
14   318   258    200
15   294   240    264
16   282   294     NA
17   234   220    264
18   224   200     NA
19   276   220    188
20   282   186    182
21   360   352    294
22   310   202    214
23   280   218     NA
24   278   248    198
25   288   278     NA
26   288   248    256
27   244   270    280
28   236   242    204

For additional details, see the online help file for cholesterol.

The goals of the study are to estimate three parameters:

• Mean cholesterol level at 14 days;

• Average decrease in cholesterol level from data 2 to day 14;

• Percentage decrease in cholesterol level from day 2 to day 14.

We accomplish these goals in this chapter using the EM algorithm, 
the DA algorithm, and multiple imputation. The latter two techniques 
provide confidence intervals for each of the estimated parameters.
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Chapter 9  Example 1: The Gaussian Model
EXPLORING PATTERNS OF MISSINGNESS

Summarizing 
and Plotting

In this section, we use the miss function and its associated methods to 
explore the cholesterol data. As discussed in Chapter 3, the miss 
function is designed to facilitate exploratory data analysis for data sets 
that include missing values. It creates an object of class "miss", which 
by default rearranges the rows and columns of the data according to 
the numbers and patterns of missing values.

To create a miss object from the cholesterol data, type:

> cholesterol.miss <- miss(cholesterol)
> cholesterol.miss

Summary of missing values
     3 variables, 28 observations, 2 patterns of missing 

values
     1 variables    (33%) have at least one missing value
     9 observations (32%) have at least one missing value
For more detailed information use summary(x)

Note that omitting cases with missing values would throw out nearly a 
third (32%) of the observations.

Use summary for more detailed information. Here is the annotated 
output from summary for the cholesterol.miss object:

> summary(cholesterol.miss)

Summary of missing values
     3 variables, 28 observations, 2 patterns of missing 

values
     1 variables    (33%) have at least one missing value
     9 observations (32%) have at least one missing value

Breakdown by variable
 V O   name Missing % missing 
 1 3 chol14       9        32
V = Variable number used below,  O = Original number (before

sorting)
No missing values for variables:
chol2 chol4
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Exploring Patterns of Missingness
The three variables in cholesterol are sorted by the number of 
missing values. The chol14 variable is the only one with missing 
values, and so it is the only one summarized in the Breakdown by 
variable section of the output. The chol14 variable is the first 
variable after reordering, and thus a 1 appears in the V column of the 
summary. It is the third variable in the original data set, so that a 3 
appears in the O column. It has 9 missing values, which is 32% of the 
data. 

Of the 28 rows in the original cholesterol data, there are two distinct 
patterns of missing values. These are shown in the next section of the 
output from the summary function:

Patterns of missing values (variables in columns, patterns
in rows)

Pattern Variables
        1
      1 .
      2 m

Observed values are displayed with a period and missing values with 
an m. The output indicates that the first pattern has no missing values 
while the second pattern has missing values only in variable 1. As we 
previously noted, the first variable after reordering is chol14. 

Each pattern detected by the miss function corresponds to one or 
more rows in the original data set. The correspondence between rows 
and patterns is shown in the next section of output from summary:

Pattern #Missing #Obs Observations 
      1        0    19  1 3 6:9 11:12 14:15 17 19:22 24 26:28
      2       1    9  2 4:5 10 13 16 18 23 25

Patterns of missing values (variables in columns, 
observations in rows)

Obs.    Variables
        1
      1 .
      2 m
      3 .
      4 m
      5 m
      6 .
      7 .
      8 .
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Chapter 9  Example 1: The Gaussian Model
      9 .
     10 m
     11 .
     12 .
     13 m
     14 .
     15 .
     16 m
     17 .
     18 m
     19 .
     20 .
     21 .
     22 .
     23 m
     24 .
     25 m
     26 .
     27 .
     28 .

You can view an image plot of the cholesterol.miss object by using 
the plot.miss function. Figure 9.1 displays the plot created by the 
following command:

> plot(cholesterol.miss)
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Exploring Patterns of Missingness
Figure 9.1:  Image plot of the cholesterol.miss object. 
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Preprocessing 
Data

In the next section, we fit models to the cholesterol data using both 
the EM and DA algorithms. To save computation resources when 
fitting these models, preprocess the cholesterol data by creating a 
preGauss object as follows: 

> cholesterol.s <- preGauss(cholesterol) 

For additional details on the preGauss function, see page 35.
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MODEL FITTING

Fitting a Model 
Using EM

To fit a Gaussian model to the cholesterol data using the EM 
algorithm, type:

> cholesterol.EM <- mdGauss(cholesterol.s, prior = "ml", 
+ na.proc = "em")

Iterations of EM:
Iteration   ParChange   
      1        2.2853
      2        0.3018
      3        0.1211
      4        0.0523
      5        0.0233
      6        0.0105
      7        0.0048
      8        0.0022
      9        0.0010
     10        0.0005

Note that the cholesterol.s object defined in the section 
Preprocessing Data on page 99 is used here to save computation 
resources. No prior is specified, and maximum likelihood estimates 
are therefore produced. Since no starting values are given, the default 
starting values are the mean and diagonal matrix of variances for the 
data set of completely observed cases.  

The EM algorithm converges by the tenth iteration. The maximum 
relative change in parameter values and likelihood values is listed 
above by iteration number in the ParChange column. 

The mdGauss function is a wrapper in which you specify the desired 
algorithm through the na.proc argument. Alternatively, you can call 
emGauss directly to produce the same model:

> cholesterol.EM <- emGauss(cholesterol.s, prior = "ml")

The paramIter component of the cholesterol.EM object is a matrix 
in which the rows are the parameter iterates for each iteration. The 
paramIter matrix is an object of class "Gauss", which enables 
S+MISSINGDATA to adapt to and format accordingly the different 
structures of the parameter estimates.
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Model Fitting
> cholesterol.EM$paramIter

========== iteration =  9 ================
Mean
    chol2    chol4   chol14
 253.9286 230.6429 222.2284
 
Covariance
          chol2    chol4   chol14
 chol2 2194.995 1454.617  835.233
 chol4 1454.617 2127.158 1514.498
chol14  835.233 1514.498 1950.798
========== iteration =  10 ================
Mean
    chol2    chol4   chol14
 253.9286 230.6429 222.2329
 
Covariance
           chol2    chol4    chol14
 chol2 2194.9949 1454.617  835.3333
 chol4 1454.6173 2127.158 1515.0270
chol14  835.3333 1515.027 1951.5629
==========================================

By default, only the last two iterates are saved for the EM algorithm. 
This can be modified through the argument last to emGauss.control. 
For example, to save the last four iterates, add the following to the 
argument list in the original call to emGauss:

control = emGauss.control(last= 4)

The algorithm component of cholesterol.EM is an object of class 
"em": 

> cholesterol.EM$algorithm 

final log-likelihood =  -307.9951
 
difference in the log-likelihood (or log posterior density)

=  5.1745e-06
 
maximum absolute relative change in parameter estimate on

last iteration =  0.0004649684
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Chapter 9  Example 1: The Gaussian Model
The rate of convergence for the EM algorithm is governed by the 
fraction of missing information. You can use the worstFraction 
function with the cholesterol.EM object to compute the worst 
fraction of missing information and its corresponding eigenvector. See 
Fraley (1999) for details on the algorithms implemented in 
worstFraction. 

> worstFraction(cholesterol.EM)

$direction:
Mean
 chol2 chol4     chol14
     0     0 -0.3081905
 
Covariance
       chol2 chol4    chol14
 chol2     0     0 0.0000000
 chol4     0     0 0.0000000
chol14     0     0 0.9050186
==========================================
 
$fraction:
[1] 0.4265396

Since there are no missing values in either chol2 and chol4, the 
parameters corresponding to  these variables converge in a single step 
and the fractions of missing information are zero.

To compute the worst fraction of missing information using the power 
method, type:

> worstFraction(cholesterol.EM, method = "power")

$direction:
 chol2 chol4     chol14 chol2.chol2 chol2.chol4 chol4.chol4
     0     0 -0.4331057           0           0           0

 chol2.chol14 chol4.chol14 chol14.chol14 
  0.002251207      0.90134  0.0007351246

$fraction:
[1] 0.4657516

For details on the power argument, see the online help file for 
worstFraction.Gauss.
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Model Fitting
Before we calculate the three parameters of interest for the cholesterol 
study, recall that they are stored in the paramIter component of 
cholesterol.EM, which is a matrix that contains one row for each 
iteration. Therefore, each set of parameter estimates is a vector. For a 
Gaussian model, the most natural form for the parameter estimates is 
a mean vector and a variance-covariance matrix. To obtain this, set 
the argument expand=TRUE in the paramIter function as follows:

> cholesterol.EM.ex <- paramIter(cholesterol.EM, 
+ expand = T)

Finally, calculate the parameters of interest with the commands 
below.

• Mean cholesterol level on day 14:

> cholesterol.EM.ex$mu[3]
   chol14 
 222.2329

• Average decrease in cholesterol level from day 2 to day 14:

> dec.2to14  <- cholesterol.EM.ex$mu[1] - 
+ cholesterol.EM.ex$mu[3]
> dec.2to14
    chol2 
 31.69567

• Percentage decrease in cholesterol level from day 2 to day 14:

> 100*dec.2to14/cholesterol.EM.ex$mu[1]
    chol2 
 12.48212

These estimates are summarized in Table 9.2 on page 120, along with 
those obtained using data augmentation and multiple imputation.

Fitting a Model 
Using DA

It is also possible to estimate the three parameters of interest in the 
cholesterol study via parameter simulation. To accomplish this, it is 
generally a good idea to start a DA algorithm near the center of the 
posterior obtained from running an EM algorithm. See the section 
Using the EM and DA Algorithms in Conjunction on page 25 for 
additional details.
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The following command starts from the maximum likelihood 
estimate computed in the previous section by the EM algorithm. It 
runs a single chain for 1100 iterations, and then discards the first 100:

> cholesterol.DA  <- daGauss(cholesterol.EM, prior = "non", 
+ control = list(save=101:1100))

The paramIter component of the cholesterol.DA object is similar to 
the one for the cholesterol.EM object, except that more iterates may 
be saved (as specified by the save argument to daGauss.control). 
The default is to save about one tenth of the total iterations.

The algorithm component of cholesterol.DA prints as follows:

> cholesterol.DA$algorithm 

seed =  13 46 10 7 30 0 6 9 59 60 1 1
parameter estimates saved for iterations:  101:1100
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Assessing Convergence
ASSESSING CONVERGENCE

Autocorrelation 
Plots

As discussed in the section Practical Considerations for Missing Data 
Problems on page 60, it may suffice to look at the following to assess 
convergence of the EM and DA model fitting algorithms:

1. Time series plots for each parameter (parameter iterates 
versus iteration number);

2. An autocorrelation plot for each parameter;

3. An autocorrelation plot of the worst linear function  .

We begin with the plot method for the missmodel class of objects. 
This method is not typically useful if the EM algorithm has been 
used. However, it can help diagnose convergence in the case of data 
augmentation. 

By default, the plot method produces time series plots of all 
variables. In the cholesterol example, there are nine parameters; 
since there are no missing data in the first two variables, however, the 
five parameters associated with those variables are not worth 
monitoring. Instead, set the argument select=T and choose the mean 
and variance of the third variable: 

> plot(cholesterol.DA, select = T) 

Figure 9.2 shows the resulting time series.
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Chapter 9  Example 1: The Gaussian Model
Figure 9.2:  Time series plots for parameters that are related to cholesterol measurements on day 14, the only 
variable in cholesterol with missing values.
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Next, plot the autocorrelation function for the same parameters.

> daAcfPlot(cholesterol.DA, select = T)

In addition, it is also reasonable to think that parameters of the linear 
regression of chol14 on both chol2 and chol4 may also have high 
fractions of missing information. See Figure 9.3 for the ACF plots of 
all of these parameters.
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Assessing Convergence
The ACF plots for the parameters of the linear regression are 
generated by writing several functions. For the intercept, define the 
following function:

fun30.12 <- function(x) 
x$mu[3] - x$sigma[3,1:2] %*% solve(x$sigma[1:2,1:2]) %*% 

x$mu[1:2]

For the slopes, define the next two functions:

fun31.12 <- function(x)
(x$sigma[3,1:2] %*% solve(x$sigma[1:2,1:2]))[1]

fun32.12 <- function(x)
(x$sigma[3,1:2] %*% solve(x$sigma[1:2,1:2]))[2]

Finally, define the following for the residual standard deviation:

fun33.12 <- function(x)
x$sigma[3,3] - x$sigma[3,1:2] %*% 

solve(x$sigma[1:2,1:2]) %*% x$sigma[1:2,3]

As we mention in the section Fitting a Model Using EM on page 100, 
you can use the paramIter function to obtain the parameters as a list 
of mean vectors and variance-covariance matrices:

> cholesterol.DA.exp <- paramIter(cholesterol.DA, 1:1000, 
+ expand = T)

We use the cholesterol.DA.exp object to product the ACF plots in 
Figure 9.3. An example of the code needed to produce the plot for the 
intercept is:

# ACF plot for intercept.
> acf.int <- acf(sapply(cholesterol.DA.exp, fun30.12),
+ lag.max = 100, plot= F) 
> acf.int$series <- "Intercept"
> acf.plot(acf.int)
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Chapter 9  Example 1: The Gaussian Model
Figure 9.3:  ACF plots for parameters that are related to cholesterol measurements on day 14. ACF plots for 
parameters of the linear regression of chol14 on both chol2 and chol4 are also displayed. These parameters are 
conjectured to have high fractions of missing information as well.
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The rate of convergence for the EM algorithm is governed by the 
fraction of missing information. Therefore, we plot the 
autocorrelation function of the worst linear function of the parameters 
as another visual tool for assessing convergence. 
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Assessing Convergence
See Figure 9.4 for the result of the following:

> wlf <- worstLinFun(cholesterol.DA, 
+ worstFraction(cholesterol.EM))
> wlf.acf <- acf(wlf, lag.max = 100, plot = F)
> wlf.acf$series <- "ACF of Worst Linear Function"
> acf.plot(wlf.acf) 

Figure 9.4:  ACF plot of the worst linear function of the parameters in the cholesterol models.
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Chapter 9  Example 1: The Gaussian Model
Conclusions In summary, the times series plots of this section show no unusual 
features. Similarly, the ACF plots indicate rapid convergence and 
negligible correlations by lag 20. Based on this evidence, it seems safe 
to conclude that the DA algorithm achieves stationarity by 20 
iterations. To be safe, discard the first 100 observations:

> cholesterol.DA$paramIter <- 
+ cholesterol.DA$paramIter[-c(1:100),] 
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Analysis Using Parameter Simulation
ANALYSIS USING PARAMETER SIMULATION

To draw inferences about the three parameters of interest in the 
cholesterol study, first simulate a chain of 5100 iterations and discard 
the first 100:

> cholesterol.DA2 <- daGauss(cholesterol.EM, prior = "non", 
+ control = list(save=101:5100))
> cholesterol.DA2.exp <- paramIter(cholesterol.DA2, 1:5000,
+ expand = T)

See Figure 9.5 for histograms of the parameters, which are generated 
as follows:

# Mean cholesterol level on day 14.
> mean.day14 <- sapply(cholesterol.DA2.exp, 
+ function(x) x$mu[3])
> hist(mean.day14, prob = T, nclass = 20, 
+ ylim = c(0.0, 0.045), main = "Mean of Day 14")

# Average decrease in cholesterol level from day 2 to 14.
> decrease <- sapply(cholesterol.DA2.exp,
+ function(x) x$mu[1] - x$mu[3])
> hist(decrease, prob = T, nclass = 20, 
+ ylim = c(0.0, 0.045), main = "Decrease")

# Percentage decrease in cholesterol level from day 2 to 
# day 14.
> percent.decrease <- sapply(cholesterol.DA2.exp,
+ function(x) 100 * (x$mu[1] - x$mu[3]) / x$mu[1])
> hist(percent.decrease, prob = T, nclass = 20, 
+ ylim = c(0.0, 0.11), main = "Percent Decrease")
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Figure 9.5:  Histograms of the three parameters of interest in the cholesterol study.
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Likelihood Ratio Test

The estimated mean is obtained as the mean of the empirical 
posterior distribution of the simulated parameters. Likewise, the 95% 
confidence intervals for the mean are the quantiles of this distribution.  
For example:

# Point estimate of the mean cholesterol level on day 14.
> mean(mean.day14)
[1] 222.0511

# 95% confidence intervals for the estimated mean.
> quantile(mean.day14, probs = c(0.025, 0.975))
     2.5%    97.5% 
 201.0462 242.2077
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Analysis Using Parameter Simulation
The estimates and confidence intervals are summarized below in 
Table 9.1. See Table 9.2 on page 120 to compare these results with 
those obtained using EM and multiple imputation. 
Table 9.1:  Estimates and confidence intervals given by parameter simulation.

Parameter Estimate Lower Confidence 
Bound

Upper Confidence 
Bound

mean 222.05 201.05 242.21

difference 31.87 9.01 54.23

percent 
decrease

12.48 3.78 20.55
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GENERATING MULTIPLE IMPUTATIONS THROUGH DA

Data augmentation algorithms can be used to generate multiple 
imputations. You may produce multiple imputations either by saving 
imputations from fixed intervals of one long chain or by saving the 
final imputations of several parallel chains. Gelman and Rubin (1992) 
recommend starting parallel chains with the initial values from a 
distribution that is overdispersed relative to the observed data 
posterior P θ Yobs[ ] . In practice, Schafer (1997) recommends using 

the bootstrap, where the bootstrap sample sizes n*  are smaller than 

the original sample size n  (n* n 2⁄= , for example).

The starting values to the impGauss function can be either a Gauss 
object or a list. The following illustrates using the bootstrap to create a 
Gauss object:

> start <- matrix(0, 5, 9)
> for (i in 1:5)
+ start[i,] <- paramIter(emGauss(cholesterol,    
+ subset = sample(1:28, 14, T), prior = "ml"))[1,]
> class(start) <- "Gauss"

Alternatively, create a list as follows: 

> start <- list()
> for (i in 1:5)
+ start[[i]] <- paramIter(emGauss(cholesterol, 
+ subset = sample(1:28, 14, T), prior = "ml"))

The diagnostics in the section Assessing Convergence on page 105 
indicate that the chain converges to stationarity after 20 iterations.  
However, computations are inexpensive with this small data set, so 
we run fifty iterations. In the unlikely event that stationarity is not 
achieved in fifty iterations, the overdispersed starting values help to 
reach conservative inferences. 

For example, generate five imputations from five parallel chains using 
the five starting values as follows:

> cholesterol.imp <- impGauss(cholesterol, prior = "non",
+ start = start, control = list(niter=50))
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Generating Multiple Imputations Through DA
To perform inference in this situation, we apply Rubin’s rule for 
inference using a normal approximation. Schafer (1997, page 196) 
derives the complete data point estimates and standard errors for 
each quantity given in the section The Cholesterol Data on page 94. 
The following is a function that calculate these estimates:

cholesterol.estimates <- function(x) {
tmp <- x[,3]
mu3 <- mean(tmp)
tmp <- x[,1] - x[,3]
delta13 <- mean(tmp)
tmp <- tmp/mean(x[,1])
tau13 <- 100*mean(tmp)
c(mean.day14 = mu3, decrease = delta13, 

percent.decrease=tau13)
}

Next is a function that calculates the standard errors:

cholesterol.se <- function(x) {
tmp <- x[,3]
mu3 <- mean(tmp)
sigma.mu3 <- sqrt(var(tmp)/28)
sigma3 <- var(tmp)
tmp <- x[,1] - x[,3]
delta13 <- mean(tmp)
sigma.delta13 <- sqrt(var(tmp)/28)
tmp <- tmp/mean(x[,1])
tau13 <- 100*mean(tmp)
tmp <- x[,1]
mu1 <- mean(tmp)
sigma1 <- var(tmp)
sigma13 <- var(tmp, x[,3])
sigma.tau13 <- sqrt((100^2/28)*((mu3^2/mu1^4)*sigma1 -

2*(mu3/mu1^3)*sigma13+(1/mu1^2)*sigma3))
c(sigma.mean.day14 = sigma.mu3, 

sigma.decrease = sigma.delta13, 
sigma.percent.decrease = sigma.tau13)

}

You calculate these quantities for each of the completed data sets with 
the following:

> m.cholesterol.estimates <- 
+ miEval(cholesterol.estimates(cholesterol.imp))

> m.cholesterol.se <- 
+ miEval(cholesterol.se(cholesterol.imp))
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To better display the complete point estimates and standard errors, 
use the miTrim function to convert both  m.cholesterol.estimates 
and m.cholesterol.se to miVariable objects:

> m.cholesterol.estimates <- 
+ miTrim(m.cholesterol.estimates)
> m.cholesterol.se <- miTrim(m.cholesterol.se)

The complete point estimates for each of the five multiply-imputed 
data sets are given by:

> m.cholesterol.estimates

 mean.day14 decrease percent.decrease 
         NA       NA               NA

miVariable object with 5 sets of multiple imputations 
          1         2         3         4         5 
1 224.59486 223.30495 213.21886 221.89287 221.25933
2  29.33371  30.62362  40.70971  32.03570  32.66924
3  11.55195  12.05994  16.03195  12.61603  12.86552

Similarly, the standard deviations are displayed by:

> m.cholesterol.se

 sigma.mean.day14 sigma.decrease sigma.percent.decrease 
               NA             NA                     NA

miVariable object with 5 sets of multiple imputations 
         1        2         3        4        5 
1  9.074410 8.205488 9.148277  8.159244 7.546552
2 10.635970 9.735713 9.981001 10.697924 9.418020
3  3.962884 3.584578 3.654663  3.927144 3.421878

Finally, consolidate inferences with the following commands: 

> chol.consolidate <- miMeanSE(m.cholesterol.estimates, 
+ m.cholesterol.se , df = Inf)
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Generating Multiple Imputations Through DA
> chol.consolidate

$est:
 mean.day14 decrease percent.decrease 
   219.9349 33.99365         13.38709

$std.err:
 sigma.mean.day14 sigma.decrease sigma.percent.decrease 
         8.950076       10.25067               3.782212

$df:
 sigma.mean.day14 sigma.decrease sigma.percent.decrease 
         150.7358       259.3694               199.8662

$m:
[1] 5

$r:
 mean.day14  decrease percent.decrease 
  0.1946008 0.1417942        0.1647799

$fminf:
 mean.day14  decrease percent.decrease 
  0.1737904 0.1308616        0.1499327

Two diagnostics given in this output are:

• r, the relative increase in variance due to nonresponse, and

• fminf, the fraction of missing information.

Point estimates are obtained by accessing the est component of 
chol.consolidate:

> chol.consolidate$est

mean.day14 decrease percent.decrease
   220.8542  33.0744         13.02508
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Chapter 9  Example 1: The Gaussian Model
Confidence intervals are obtained using t-intervals as follows:

# Lower confidence bounds.
> chol.consolidate$est -
+ qt(0.975, chol.consolidate$df) * 
+ chol.consolidate$std.err

 mean.day14 decrease percent.decrease
   201.3565 10.83281         4.711483

# Upper confidence bounds
> chol.consolidate$est +      
+ qt(0.975, chol.consolidate$df) * 
+ chol.consolidate$std.err

 mean.day14 decrease percent.decrease
   240.3519 55.31598         21.33867
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Omitting Cases with Missing Values
OMITTING CASES WITH MISSING VALUES

It is also interesting to calculate parameter estimates using only 
complete cases:

> cholesterol.omit <- mdGauss(cholesterol, 
+ na.proc = "omit")
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SUMMARY

Table 9.2 shows the estimates and confidence intervals obtained for 
each of the methods for handling missing data. In each cell, the order 
of the methods is first EM, then DA, and finally multiple imputation. 
The Estimate column also shows estimates obtained after omitting 
cases with missing values. 
Table 9.2:  Comparison of answers obtained using EM, DA, multiple imputation, 
and deleting cases with missing values.

Parameter Estimate Lower Confidence 
Bound

Upper Confidence 
Bound

mean 222.23

222.05

220.8542

221.47

NA

201.05

201.36

NA

242.21

240.35

decrease 31.70

31.87

33.07

38

NA

9.01

10.83

NA

54.23

55.32

percent 
decrease

12.48

12.48

13.03

14.65

NA

3.78

4.71

NA

20.55

21.34

Note that omitting cases with missing values leads to a drastically 
different estimate for the average decrease in cholesterol level from 
day 2 to day 14. Thus, there is at least circumstantial evidence that a 
complete case analysis is misleading. Figure 9.6 shows that the 
complete cases have a higher average cholesterol level than the 
incomplete cases, which helps to explain the difference. 
120



Summary
Figure 9.6:  The average cholesterol level at day 2 is lower for incomplete cases than for complete cases. This 
helps to explain the different parameter estimate obtained using complete case analysis versus using EM, DA, or 
multiple imputation.
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Chapter 10  Example 2: The Loglinear Model
OVERVIEW

This chapter provides detailed examples illustrating the loglinear 
model fitting process, in which all variables with missing values are 
categorical. Chapter 4 briefly describes both the saturated 
multinomial model and the loglinear model, as well as the functions 
in S+MISSINGDATA used to fit them. In this chapter, we illustrate the 
S+MISSINGDATA functions using the crime example from Schafer 
(1997). See Schafer’s book for details about this study and descriptions 
of the algorithms involved. 

The Crime 
Data

Schafer (1997, page 45) illustrates the loglinear model using a data set 
that represents 641 housing occupants. The original data were 
obtained through the National Crime Survey conducted by the U.S. 
Bureau of the Census. Housing occupants were intially asked whether 
they had been victimized by crimes committed in the previous six 
months, and then six months later they were asked the same question. 
A total of 641 occupants responded on at least one of the two 
occasions.

The data from the crime study is included in S+MISSINGDATA as the 
built-in data set crime. It consists of two dichotomous variables, 
Visit.1 and Visit.2, each taking on the values Crime-free or 
Victim. A third variable provides the number of housing occupants 
corresponding to each of the combinations:

> crime 

     Visit.1    Visit.2 count 
1 Crime-free Crime-free   392 
2     Victim Crime-free    76 
3         NA Crime-free    31 
4 Crime-free     Victim    55 
5     Victim     Victim    38 
6         NA     Victim     7 
7 Crime-free         NA    33 
8     Victim         NA     9 
9         NA         NA   115 

For additional details, see the online help file for crime.
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Overview
Note that this data set is in a grouped format. This saves space by 
representing the data as the unique combinations of values in Visit.1 
and Visit.2 with the corresponding frequencies in the count column. 
Equivalently, the data can be represented in an ungrouped format 
with the following command. This requires 756 rows instead of 9:

> crime.df <- crime[rep(1:9, crime$count), 1:2]

The goal of the study is to determine whether victimization status in 
the second period is independent of victimization status in the first 
period. In this chapter, we explore this question in three ways:

1. Large sample approximation to the distribution of the 
likelihood ratio test under the null hypothesis of 
independence. Because of the missing data, an EM algorithm 
is used to calculate the maximum likelihood parameter 
estimates.

2. Parameter simulation.

3. Multiple imputation.
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EXPLORING PATTERNS OF MISSINGNESS

Summarizing 
and Plotting

In this section, we use the miss function and its associated methods to 
explore the crime data. As discussed in Chapter 3, the miss function 
is designed to facilitate exploratory data analysis for data sets that 
include missing values. Patterns in missing data are reasonably easy to 
discern for data in a grouped format, such as crime. This is especially 
true when the data set includes a limited number of factors. 
Nevertheless, we illustrate the miss function using the ungrouped data 
set crime.df.

The miss function creates an object of class "miss", which by default 
rearranges the rows and columns of the data according to the 
numbers and patterns of missing values. To create a miss object from 
the crime.df data, type: 

> crime.miss <- miss(crime.df) 
> crime.miss

Summary of missing values
   2 variables, 756 observations, 4 patterns of missing 

values
   2 variables      (100%) have at least one missing value
   195 observations ( 26%) have at least one missing value
For more detailed information use summary(x)

The output indicates that both variables in crime.df have missing 
values. Note that omitting cases with missing values would throw out 
26% of the observations.

Use summary for more detailed information. Here is the annotated 
output from summary for the crime.miss object:

> summary(crime.miss)

Summary of missing values
   2 variables, 756 observations, 4 patterns of missing 

values
   2 variables      (100%) have at least one missing value
   195 observations ( 26%) have at least one missing value
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Exploring Patterns of Missingness
Breakdown by variable
 V O    name Missing % missing 
 1 1 Visit.1     153        20
 2 2 Visit.2     157        21
V = Variable number used below,  O = Original number (before 

sorting)

The two variables in crime.df are sorted by the number of missing 
values. The Visit.1 variable has 153 missing values while Visit.2 
has 157. Thus, the first row in the output corresponds to Visit.1. It is 
the first variable after reordering and is also the first variable in the 
original data set, and so a 1 appears in both the V and O columns of 
the summary. Likewise, the second row corresponds to Visit.2, 
which is the second variable both before and after the reordering. 

Of the 756 rows in the original crime.df data, there are four distinct 
patterns of missing values. These are shown in the next section of the 
output from the summary function:

Patterns of missing values (variables in columns, patterns
in rows) 

Pattern Variables 
        12 
      1 .. 
      2 .m 
      3 m. 
      4 mm 

Observed values are displayed with a period and missing values with 
an m. The output indicates that the first pattern has no missing values 
while the second pattern has missing values only in the first variable. 
As we previously noted, the first variable after reordering is Visit.1. 
Likewise, the third pattern detected has missing values only in the 
second variable (Visit.2), and the fourth pattern has missing values 
in both variables.

Each pattern detected by the miss function corresponds to one or 
more rows in the original data set. The correspondence between rows 
and patterns is shown in the next section of output from summary:

Pattern #missing #Obs  Observations 
      1        0  561  1:468 500:592 
      2        1   42  600:641 
      3        1   38  469:499 593:599 
      4        2  115  642:756 
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Chapter 10  Example 2: The Loglinear Model
The observations are contiguous because crime.df is created by 
stacking patterns in crime. 

Preprocessing 
Data

In the next section, we fit models to the crime data using both the EM 
and DA algorithms. To save computation resources when fitting these 
models, preprocess the crime data by creating a preLoglin object as 
follows: 

> crime.s <- preLoglin(crime, 
+ margins = count~Visit.1:Visit.2) 

The margins argument identifies the variables so that count is 
recognized as the response in this call to preLoglin. For additional 
details, see page 35 and the online help file for preLoglin.
128



Model Fitting
MODEL FITTING

Fitting a Model 
Using EM

To perform the likelihood ratio test of independence, the likelihood 
must be maximized twice: once for the saturated model and once 
under the null hypothesis of independence. Since there are missing 
values in the crime data set, an EM algorithm is used to maximize the 
likelihoods. The maximum likelihood estimates (MLEs) under 
independence are obtained as follows:

> crime.EM.ind <- mdLoglin(crime.s, 
+ margins = ~Visit.1+Visit.2, na.proc = "em", prior = 1) 

Iterations of ECM: 
1...2.498457, -589.665968278183 
2...0.6356901, -575.88481965762 
3...0.1355902, -575.224397116118 
4...0.02803836, -575.195583085395 
5...0.005763061, -575.194355312622 
6...0.00118325, -575.194303240237 

Note that the crime.s object defined in the section Preprocessing 
Data on page 128 is used here to save computation resources. The 
margins argument specifies the independence model. Since no 
starting values are given, the default values are taken from the 
uniform table; in this example, each of the four probabilities is equal 
to 0.25.

The EM algorithm converges by the sixth iteration. The iterations are 
listed above under the Iterations of ECM heading. The abbreviation 
ECM stands for “Expectation Conditional Maximization,” which is a 
type of EM algorithm. See Meng and Rubin (1992) for details. 

The mdLoglin function is a wrapper in which you specify the 
algorithm through the na.proc argument. Alternatively, you can call 
emLoglin directly to produce the same model:

> crime.EM.ind <- emLoglin(crime.s, 
+ margins = ~Visit.1+Visit.2, prior = 1) 
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Similarly, the MLEs for the saturated model are obtained with either 
of the following:

> crime.EM.sat <- mdLoglin(crime.s, 
+ margins = ~Visit.1:Visit.2, na.proc = "em", prior = 1) 

> crime.EM.sat <- emLoglin(crime.s, 
+ margins = ~Visit.1:Visit.2, prior = 1)

A hierarchical model is assumed, so the formula ~Visit.1:Visit.2 is 
equivalent to ~Visit.1*Visit.2 in the margins argument.

Asymptotic analysis

The following command calculates the likelihood ratio test statistic for 
testing independence:  

>  like.ratio.test <- 2*(
+ crime.EM.sat$algorithm$likelihood - 
+ crime.EM.ind$algorithm$likelihood) 

The asymptotic p -value  is given by:

> 1 - pchisq(like.ratio.test, 1) 
[1] 4.70321e-07 

There is thus strong evidence that victimization status on the two 
occasions is related.

Fitting a Model 
Using DA

It is also possible to explore via parameter simulation whether 
victimization status on the two visits is related; see Schafer (1997, page 
252). To accomplish this, it is generally a good idea to start a DA 
algorithm near the center of the posterior obtained from running an 
EM algorithm. See the section Using the EM and DA Algorithms in 
Conjunction on page 25 for additional details.

The following command fits a saturated model using EM under a 
noninformative prior: 

> crime.EM <- mdLoglin(crime.s, 
+ margins = ~Visit.1:Visit.2, 
+ na.proc = "em", prior = "n") 

Note that prior="n" is equivalent to prior="noninformative" since 
partial matching is used. Also equivalent is prior=0.5.
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Model Fitting
Next, start from crime.EM and run the DA algorithm for 5100 
iterations, saving all of them:  

> crime.DA <- mdLoglin(crime.EM, na.proc = "da", 
+ control = list(save=1:5100)) 

The paramIter component of the crime.EM object is a matrix in 
which the rows are the parameter iterates for each iteration. The 
paramIter matrix is an object of class "Loglin", which enables 
S+MISSINGDATA to adapt to and format accordingly the different 
structures of the parameter estimates. 

> crime.EM$paramIter 

  Visit.1=1;Visit.2=1 Visit.1=2;Visit.2=1 
5           0.6969570           0.1358427
6           0.6970886           0.1357966

  Visit.1=1;Visit.2=2 Visit.1=2;Visit.2=2 
5          0.09872477          0.06847549
6          0.09865219          0.06846263

By default, only the last two iterates are saved for the EM algorithm. 
This can be modified through the argument last to 
emLoglin.control.

The paramIter component of the crime.DA object is similar to the one 
for crime.EM, except that more iterates may be saved (as specified by 
the save argument to daLoglin.control). Here are the first 10 rows:

> crime.DA$paramIter[1:10,]

   Visit.1=1;Visit.2=1 Visit.1=2;Visit.2=1 
 1           0.6745408           0.1479869
 2           0.6784437           0.1372391
 3           0.6967126           0.1552910
 4           0.6997548           0.1312311
 5           0.6952653           0.1364643
 6           0.6921411           0.1398454
 7           0.6676453           0.1529987
 8           0.6944598           0.1230416
 9           0.6508019           0.1560291
10           0.6968313           0.1309274
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   Visit.1=1;Visit.2=2 Visit.1=2;Visit.2=2 
 1          0.08282638          0.09464592
 2          0.10567274          0.07864449
 3          0.07906126          0.06893515
 4          0.10795915          0.06105492
 5          0.09763649          0.07063395
 6          0.11058398          0.05742950
 7          0.11219294          0.06716300
 8          0.11210834          0.07039024
 9          0.12209065          0.07107828
10          0.08831767          0.08392358

The algorithm component of crime.EM is an object of class "em": 

> crime.EM$algorithm 

final likelihood =  -558.8221 
difference in the log-likelihood (or log posterior density) 
=  4.540166e-05 
maximum absolute relative change in parameter estimate on 
last iteration =  0.0007472389 

Likewise, the algorithm component of crime.DA is an object of class 
"da":

> crime.DA$algorithm 

seed =  21 14 49 32 43 1 32 22 36 23 28 3
parameter estimates saved for iterations:  1:5100
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Assessing Convergence
ASSESSING CONVERGENCE

Autocorrelation 
Plots

As discussed in the section Practical Considerations for Missing Data 
Problems on page 60, it may suffice to look at the following to assess 
convergence of the EM and DA model fitting algorithms:

1. Time series plots for each parameter (parameter iterates 
versus iteration number);

2. An autocorrelation plot for each parameter;

3. An autocorrelation plot of the worst linear function.

We begin with the plot method for a missmodel class of objects. This 
method is not typically useful if the EM algorithm has been used. 
However, it can help diagnose convergence in the case of data 
augmentation. 

By default, this plot method produces the time series plots of all 
variables: 

> plot(crime.DA) 

By setting the argument select=T, you may select specific variables to 
plot. 

Next, plot the autocorrelation function for each parameter:

> daAcfPlot(crime.DA)

Again, by setting the argument select=T, you may produce 
autocorrelation plots only for selected variables. Figure 10.1 shows 
the time series and autocorrelation plots for each parameter.
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Chapter 10  Example 2: The Loglinear Model
Figure 10.1:  Plots for the parameters in the crime model. The top row, produced by the plot method for 
missmodel objects, is a set of time series plots of each parameter versus iteration number. The bottom row, 
produced by the daAcfPlot function, is a set of ACF plots of each parameter. These suggest that convergence is 
reached quickly.
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Assessing Convergence
Fractions of 
Missing 
Information 

The rate of convergence for the EM algorithm is governed by the 
fraction of missing information. To aid in assessing convergence, we 
monitor a function with high rates of missing information, since 
convergence is slowest for this type of function. Schafer (1997, pages 
129–131) recommends monitoring the worst linear function of θ . To 
do this, we first use the worstFraction function with the crime.EM 
object to compute the worst fraction of missing information and its 
corresponding eigenvector. See Fraley (1999) for details on the 
algorithms implemented in worstFraction. 

> worst.est <- worstFraction(crime.EM, method = "power") 
> worst.est 

$direction: 
[1] -0.4616784  0.4846614  0.5137191 -0.5367021 
$fraction: 
[1] 0.2642576 

Next, calculate the worst linear function of the parameters by 
combining worst.est with the crime.DA object:

> wlf <- worstLinFun(crime.DA, worst.est) 

Finally, plot the autocorrelation function of wlf:

> wlf.acf <- acf(wlf, lag.max = 100, plot = F)
> wlf.acf$series <- "Worst Linear Function"
> acf.plot(wlf.acf)
135



Chapter 10  Example 2: The Loglinear Model
Figure 10.2:  ACF plot of the worst linear function of the parameters in the crime models, with 95% 
confidence bounds. The correlations for lags 4 and beyond are not significantly different than 0.
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Conclusions In summary, all of the diagnostics in this section indicate fast 
convergence. Moreover, the EM algorithm converged in 6 steps. To 
be safe, discard the first 100 observations:

> crime.DA$paramIter <- crime.DA$paramIter[-c(1:100), ] 
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Assessing Convergence
In the parameter simulation approach, test independence by looking 
at the distribution of the odds ratios. See Figure 10.3 for the result of 
the following commands:

> crime.omega <- apply(crime.DA$paramIter, 1,
+     function(x) x[1]*x[4]/(x[2]*x[3])) 
> hist(crime.omega) 

Figure 10.3:  Histogram of the simulated odds ratios. This distribution forms the basis of inference using 
parameter simulation.
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Chapter 10  Example 2: The Loglinear Model
The fraction of simulated odds ratios less than 1 gives an approximate 
p -value for testing independence versus the alternative hypothesis 
that households victimized in the first period were more likely to be 
victimized in the second period: 

> sum(crime.omega <= 1)/length(crime.omega) 
[1] 0 

This agreement with the asymptotic result is not surprising if we look 
at the distribution of the likelihood ratio test statistic that compares 
the MLE with the simulated values. Asymptotically, the posterior 
distribution is chi-square with 3 degrees of freedom. See Figure 10.4 

for the histogram with the χ3
2

 distribution overlaid.

The simulated posterior mean is a point estimate of the odds ratio: 

> mean(crime.omega) 
[1] 3.666283

This compares with the MLE of 3.566756 obtained using the 
estimates given in the section Fitting a Model Using EM on page 129 
to calculate the odds ratio.

The 95% confidence intervals for the odds ratio are given by:

> quantile(crime.omega, probs = c(0.025, 0.975)) 

     2.5%    97.5% 
 2.211379 5.692615 

See table Table 10.1 on page 143 to compare these results with those 
obtained by other methods.
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Assessing Convergence
Figure 10.4:  Histogram of the likelihood ratio test statistic that compares the MLE with the simulated values. 
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GENERATING MULTIPLE IMPUTATIONS THROUGH DA

Data augmentation algorithms can be used to generate multiple 
imputations. For example, to generate ten imputations from one long 
chain under a saturated model of the crime data, type:

> crime.imp.1chain <- impLoglin(crime.s, nimpute = 10,  
+ prior = "n", start = crime.EM$paramIter[2,], 
+ control = list(niter=100) 

Alternatively, type the following to generate 10 independent chains, 
each starting from the MLE:

> start.crime <- crime.EM$paramIter[rep(2,10), ] 
> crime.imp <- impLoglin(crime.s, prior = "n", 
+     start = start.crime, control = list(niter=100)) 

The result of impLoglin is an miList object if the original data is in 
grouped format; otherwise it is an miVariable object. The case of 
grouped data is a (rare) situation when the imputed data object is 
most naturally represented as an miList:

> crime.imp 

$I1:
       Visit.1      Visit.2 frequency
1 "Crime-free" "Crime-free" "529"
2 "    Victim" "Crime-free" "100"
3 "Crime-free" "    Victim" " 71"
4 "    Victim" "    Victim" " 56"
 
$I2:
       Visit.1      Visit.2 frequency
1 "Crime-free" "Crime-free" "525"
2 "    Victim" "Crime-free" " 96"
3 "Crime-free" "    Victim" " 76"
4 "    Victim" "    Victim" " 59"
.
.
.
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Generating Multiple Imputations Through DA
$I10:
       Visit.1      Visit.2 frequency
1 "Crime-free" "Crime-free" "517"
2 "    Victim" "Crime-free" "102"
3 "Crime-free" "    Victim" " 82"
4 "    Victim" "    Victim" " 55"
 
attr(, "call"):
impLoglin.preLoglin(object = crime.s, prior = "n", start = 
start.crime, control
         = list(niter = 100))
attr(, "seed"):
 [1] 33  2 58 26 51  3 47 25 42 12 28  1
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ANALYZING COMPLETED DATA SETS

The miApply function can be used to calculate contingency tables for 
each of the ten completed data sets as follows:

> crime.col2 <- miApply(crime.imp, function(data, formula)    
+ oldUnclass(crosstabs(formula, data)), 
+ frequency ~ Visit.1+Visit.2) 

Instead, you can use miEval as follows:

> crime.col <- miEval(oldUnclass(crosstabs(
+ frequency ~ Visit.1+Visit.2, data = crime.imp)), 
+ vnames = "crime.imp") 

Note

Any calculation on the result of crosstabs is another object of class "crosstabs", so that the 
elements of the calculation must be integers. In particular, the odds ratio calculation fails, which 
is why we must oldUnclass above.

Analysis Using 
Multiple 
Imputation

Several functions combine the separate complete data analyses to 
produce one result that accounts for missing data uncertainty. For the 
crime example, we test independence by:

• Combining odds ratios. Asymptotically, the log odds ratios 
are normally distributed. Following rules given by Rubin 
(1987), the multiple imputation inference is based on a t 
distribution.

• Combining likelihood ratio tests.

With complete data, the log odds ratio ωlog  is asymptotically 

normal with mean ωlog  and a variance estimated by 

1
x11
------- 1

x12
------- 1

x21
------- 1

x22
-------+ + + ,

where xij  is the count for which Visit.1=i and Visit.2=j. See 
Schafer (1997, section 6.4.2). 
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Analyzing Completed Data Sets
We calculate the log odds ratio and the variance for each completed 
data set as follows: 

> crime.logodd <- miEval(log(
+ crime.col[1,1]*crime.col[2,2]/
+ (crime.col[1,2]*crime.col[2 ,1]))) 
> crime.var <- miEval(sum(1/crime.col)) 

The following command gives quantities needed to calculate a point 
estimate, standard error, and the degrees of freedom for the t 
distribution: 

> crime.logodd.comb <- miMeanSE(crime.logodd, crime.var, 
+ df = Inf, sse = T) 

The point estimate is obtained by exponentiation: 

> exp(crime.logodd.comb$est) 
[1] 3.809245

The 95% confidence intervals are obtained with: 

> exp(crime.logodd.comb$est + c(-1,1) * 
+ qt(0.975, crime.logodd.comb$df) * 
+ crime.logodd.comb$std.err) 
[1] 2.317047 6.262431

Table 10.1 compares the inferences for the odds ratio obtained using 
the EM algorithm, DA algorithm, and multiple imputation. 
Table 10.1:  Comparison of inferences obtained for the odds ratio.

Method Estimate
Lower 

Confidence 
Bound

Upper 
Confidence 

Bound

EM 3.57 NA NA

DA 3.67 2.21 5.69

Multiple Imputation 3.81 2.32 6.26

Note that standard errors are not automatically produced by EM 
calculations, which do not involve second derivatives. Therefore, the 
standard errors and confidence bounds are not available without 
extra effort.
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Chapter 10  Example 2: The Loglinear Model
We can also test independence using the likelihood ratio test. The 
following simple function calculates the test: 

likratio.Loglin <- function(data, marginsHa, marginsH0, 
prior) { 

# "data" is a data frame and "frequency" is a column in 
# "data". This is the form of each component in the miList 
# object returned by impLoglin when the data is given in 
# grouped format 

missmodel.Ha <- Loglin(data, frequency = frequency, 
margins = marginsHa, prior = prior) 

missmodel.H0 <- Loglin(data, frequency = frequency, 
margins = marginsH0, prior = prior) 

2*(logpost.Loglin(missmodel.Ha) -
logpost.Loglin(missmodel.H0)) 

} 

The miLikelihoodTest function uses likratio.Loglin, both to 
calculate the likelihood ratio test for each completed data set and to 
combine the tests; see Li et al. (1991). 

> crime.lrt <- miLikelihoodTest(crime.imp, likratio.Loglin, 
1, marginsHa = ~Visit.1:Visit.2, 
marginsH0 = ~Visit.1+Visit.2, prior = 0.5) 

The p -value of the test for independence is: 

> 1 - pf(crime.lrt$Fstat, crime.lrt$df1, crime.lrt$df2) 
[1]  1.891866e-08

This confirms the likelihood ratio test result obtained using the EM in 
Fitting a Model Using EM on page 129.
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Chapter 11  Example 3: The Conditional Gaussian Model
OVERVIEW

This chapter provides detailed examples illustrating the conditional 
Gaussian model fitting process, in which the variables with missing 
values are either numeric or categorical. This model arises, for 
example, in analysis of covariance and logistic regression with 
continuous predictors. Chapter 4 briefly describes the conditional 
Gaussian model, the associated priors, and the functions in 
S+MISSINGDATA used to fit it. In this chapter, we illustrate the 
S+MISSINGDATA functions using the foreign language example from 
Schafer (1997). See Schafer (1997) for additional details and algorithm 
descriptions.  

The Foreign 
Language Data

Schafer (1997) illustrates the conditional Gaussian model using a data 
set of 279 students enrolled in foreign language courses at the  
Pennsylvania State University. The original data are given in 
Raymond and Roberts (1983). For each student, twelve variables 
were collected, including age and sex. Variables measuring academic 
achievement in foreign languages were also collected. One such 
variable, GRD, is the final grade in the foreign language course. Two 
instruments, the new Foreign Language Attitude Scale (FLAS) and 
the established Modern Language Aptitude Test (MLAT), are 
designed to predict success in studying foreign languages. The 
students’ scores on these standardized tests were also collected and 
recorded.

The data from the foreign language study is included in 
S+MISSINGDATA as the built-in data set language. It consists of 12 
variables, including GRD, FLAS, and MLAT:

> language

     AGE PRI    SEX FLAS MLAT SATV SATM ENG HGPA CGPA GRD 
 1 20-21   3   male   74   32  540  660  58 3.77 3.75   A
 2   <20   2   male   69   28  610  760  75 2.18 3.81   A
 3 20-21   0 female   81   28  610  560  61 3.19 3.73   A
 4   <20  4+ female   89   13  430  470  33 2.21 3.54   B
 5   <20   3   male   56   26  630  630  78 3.59 4.00  NA
 6 20-21   3 female   95   22  440  580  48 3.25 3.20   A
 7    NA  NA   male   71   NA   NA   NA  NA 2.46   NA  NA
 8   <20  4+ female   95   NA  560  540  55 2.00 2.77  NA
. . .
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Overview
For additional details, see the help file for language.  

The goal of the study is to address the following questions:

• Does the newly developed instrument, FLAS, help predict 
success in the study of foreign languages?  

• How does FLAS compare with a well established instrument 
like MLAT?

As Schafer (1997) shows, you may use the Gaussian model after 
recoding some of the factor variables to make the normality 
assumption more reasonable. To avoid possible loss of information 
due to recoding, you may also use the conditional Gaussian model. 

If there were no missing data, one way of answering the question 
would be to heuristically gauge the practical importance of the 
estimated effects by estimating partial correlations . In particular, how 
does the partial correlation of FLAS with GRD compare with that of 
MLAT? Since there are missing data, however, we show how to 
perform the analysis after first multiply imputing missing values 
under a conditional Gaussian model.
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Chapter 11  Example 3: The Conditional Gaussian Model
EXPLORING PATTERNS OF MISSINGNESS

Summarizing 
and Plotting

In this section, we use the miss function and its associated methods to 
explore the language data. As discussed in Chapter 3, the miss 
function is designed to facilitate exploratory data analysis for data sets 
that include missing values. It creates an object of class "miss", which 
by default rearranges the rows and columns of the data according to 
the numbers and patterns of missing values.

To create a miss obect from the language data, type:

> language.miss <- miss(language)
> language.miss

Summary of missing values
     10 variables, 279 observations, 18 patterns of missing 

values
      10 variables    (83%) have at least one missing value
     105 observations ( 38%) have at least one missing value
For more detailed information use summary(x)

Ten of the twelve variables have at least one missing value. Omitting 
cases with missing values would delete 38% of the observations.

Use summary for more detailed information. Here is the annotated 
output from summary for language.miss:

> summary(language.miss)

Summary of missing values
     10 variables, 279 observations, 18 patterns of missing 

values
      10 variables    (83%) have at least one missing value
     105 observations ( 38%) have at least one missing value

Breakdown by variable
  V  O name Missing % missing 
  1  9 HGPA       1         0
  2  3 SEX        1         0
  3  1 AGE       11         4
  4  2 PRI       11         4
  5  6 SATV      34        12
  6  7 SATM      34        12
  7 10 CGPA      34        12
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Exploring Patterns of Missingness
  8  8 ENG       37        13
  9 11 GRD       47        17
 10  5 MLAT      49        18
V = Variable number used below,  O = Original number (before 

sorting)
No missing values for variables:
FLAS LAN

The twelve variables in language are sorted by the number of missing 
values; neither FLAS nor LAN have any missing values. The HGPA 
variable has the least number (1) of missing values. Thus, it is the first 
variable after reordering and a 1 appears in the V column of the 
summary. It is the ninth variable in the original data set, so that a 9 
appears in the O column. Likewise, the MLAT variable has the most 
number (49) of missing values. It is the last variable after reordering 
and the fifth variable in the original data set. Thus, a 10 appears in the 
V column of the output and a 5 appears in the O column.

Of the 279 rows in the original language data, there are 18 distinct 
patterns of missing values. These are shown in the next section of the 
output from summary:

Patterns of missing values (variables in columns, patterns 
in rows)

Pattern Variables
                 1
        1234567890
      1 ..........
      2 .........m
      3 ........m.
      4 .......m..
      5 ........mm
      6 .......mm.
      7 ..mm......
      8 .m......m.
      9 ..mm.....m
     10 ..mm....m.
     11 ....mmmm..
     12 ..mm....mm
     13 ....mmmm.m
     14 ....mmmmm.
     15 m...mmmm..
     16 ....mmmmmm
     17 ..mmmmmm..
     18 ..mmmmmmmm
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Chapter 11  Example 3: The Conditional Gaussian Model
Observed values are displayed with a period and missing values with 
an m. The output indicates that the first pattern has no missing values 
while the second pattern has missing values only in variable 10. As we 
previously noted, the tenth variable after reordering is MLAT. 

Each pattern detected by the miss function corresponds to one or 
more rows in the original data set. The correspondence between rows 
and patterns is shown in the next section of the output from summary:

Pattern #Missing #Obs  Observations
      1        0  174 1:4 6 9 11 13:14 18:21 23:25 27:29 
                       31 34 36:41 43:45 47 51:52 54 58:62
                       65 67:68 71:72 74:77 79:80 83:86 
                       88:90 92:96 98 102:105 107:110 112
                       114:115 120 122 124:129 131:134 
                       138:141 143 146 148:151 153:154 
                       156:157 159:160 162:165 169:170 
                       172:175 177:178 180:181 183 186:187
                       190:191 193 195:198 201:208 210 212
                       215 217 219:221 223:224 227 230:233
                       235 238 240:242 244:245 247:249 
      1        0  174 252:254 256 258:259 261 264:266 271
                       273 275:278
      2        1   26 35 48 55 63:64 73 81:82 97 99 101 
                       116:117 119 142 147 161 166:168 222
                       225 250 262 270 274
      3        1   18 5 16 32:33 50 53 57 106 118 158 184
                       194 199 216 226 234 267 279
      4        1    1 30
      5        2   15 8 12 49 91 113 137 144 179 188 209
                       211 214 228 243 269
      6        2    2 10 260
      7        2    3 111 251 263
      8        2    1 218
      9        3    3 22 268 272
     10        3    1 189
     11        4   20 26 66 69:70 100 130 135:136 145 155
                   171 176 182 185 200 213 229 236:237 246
     12        4    1 78
     13        5    2 42 87
     14        5    7 17 46 56 192 239 255 257
     15        5    1 123
     16        6    1 152
     17        6    2 15 121
     18        8    1 7
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Exploring Patterns of Missingness
You can view an image plot of the language.miss object by using the 
plot.miss function. Figure 11.1 displays the plot created by the 
following command:

> plot(language.miss) 

Figure 11.1:  Image plot of the language.miss object.
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Preprocessing 
Data                                                                                                                           

In the next section, we fit models to the language data using both the 
EM and DA algorithms. To save computation resources during the 
model fitting process, preprocess the language data by creating a 
preCgm object as follows: 

> language.s <- preCgm(language) 

The arguments margins and gauss to preCgm identify the factor and 
numeric variables, respectively. Since language is a data frame and 
these arguments are not supplied in the above command, all factor 
variables are modeled by the loglinear part of the model and all 
numeric variables are modeled by the (conditional) Gaussian part. 
For additional details, see page 35 and the online help file for preCgm.
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MODEL FITTING

Specifying a 
Restricted 
Model

The categorical variables in the language data set, AGE, PRI, SEX, GRD, 
and LAN, have 5, 5, 2, 5, and 4 levels, respectively. Together, they 
specify a 5 dimensional contingency table with 
5 5× 2× 5× 4× 1000=  cells. In addition, there are 7 numeric 
variables in language. An unrestricted model therefore involves 
1000 1–( ) 1000 7×( ) 7 7 1+( ) 2⁄×( )+ + 8027=  free parameters. 

Clearly, an unrestricted model cannot be fit with 279 observations!

Instead, Schafer (1997, page 367) suggests a restricted model in which:

• The table formed by the factor variables is described by a 
loglinear model with all main effects and two-variable 
associations.

• The numeric variables are collectively described by a 
regression with main effects for each factor variable. The 
eight-column design matrix for this regression includes an 
intercept, dummy indicators for SEX and LAN, and linear 
contrasts for AGE, PRI, and GRD.

To compute this restricted model, first specify the formula for a 
loglinear model with all main effects and two-variable associations:

> margins.form <- ~ LAN + AGE + PRI + SEX + GRD +
+ LAN:AGE + LAN:PRI + LAN:SEX + LAN:GRD +
+ AGE:PRI + AGE:SEX + AGE:GRD +
+ PRI:SEX + PRI:GRD +
+ SEX:GRD

Setting the following option ensures that any factor variable 
appearing in a formula is represented by dummy variables:

> options(contrasts = c("contr.treatment", "contr.poly"))

 The linear contrast is specified by:

> lc <- c(-2,-1,0,1,2)

Finally, the formula that produces the appropriate design matrix is:

> design.form <- ~ LAN + SEX + C(AGE,lc,1) + C(PRI,lc,1)  + 
+ C(GRD,lc,1)
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Model Fitting
Note that LAN and SEX are coded by dummy variables while the other 
factor variables are represented by linear contrasts.

Fitting a Model 
Using EM

The command below fits the restricted conditional Gaussian model to 
the language data using the EM algorithm. To ensure a mode in the 
interior of the parameter space, Schafer (1997, page 369) 
recommends setting the Dirichlet prior hyperparameter to 1.05:

> language.EM <- emCgm(language.s,  margins = margins.form,
+ design = design.form,  prior = 1.05)

Steps of ECM: 
1...2...3...4...5...6...7...8...9...10...11...12...13...14
...15...16...17...18...19...20...21...22...23...24...25...
26...27...28...29...30...31...32...33...34...35...36...37
...38...39...40...41...42...43...44...45...46...47...48...
49...50...51...52...53...54...55...56...57...58...59...60
...61...62...63...64...65...66...

Note that the language.s object defined in the section Preprocessing 
Data on page 151 is used to save computation resources. As discussed 
by Schafer (1997, page 253), the 1.05 prior is an example of a 
flattening prior, which smooths estimates toward a uniform table. In 
this example, the equivalent of 0.05 prior observations is added to 
each cell. Since there are 1000 cells in the contingency table, this 
gives an effective prior sample size of 50, roughly 18% of the actual 
sample size.

The paramIter component of the language.EM object is a matrix in 
which the rows are the parameter iterates for each iteration. The 
paramIter matrix is an object of class "cgm", which enables 
S+MISSINGDATA to adapt to and format accordingly the different 
structures of the parameter estimates.

> language.EM$paramIter

========== iteration =  65 ================
means
numeric matrix: 7 rows, 1000 columns. 
     AGE=1;PRI=1;SEX=1;GRD=1;LAN=1 
FLAS                     71.694619
MLAT                     17.126537
SATV                    467.402216
SATM                    529.032427
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 ENG                     43.504382
HGPA                      1.516468
CGPA                      2.530749

     AGE=2;PRI=1;SEX=1;GRD=1;LAN=1 
FLAS                     70.311911
MLAT                     15.833215
SATV                    468.583594
SATM                    513.125791
 ENG                     41.335946
HGPA                      1.563725
CGPA                      2.417728
. . .

The algorithm component of language.EM is an object of class "em":

> language.EM$algorithm

final log-likelihood =  -6087.938 

difference in the log-likelihood (or log posterior density) 
=  4.773301e-08 

maximum absolute relative change in parameter estimate on 
last iteration =  0.0009985025 

Fitting a Model 
Using DA

In this section, we use the DA model fitting algorithm on the 
language data. As discussed in Schafer (1997, page 369), a flattening 
prior may be undesirable for models of the language data because the 
AGE and GRD variables have rare levels. Flattening priors can distort 
the marginal distributions for these variables, leading to too many 
rare levels in the imputed values. Instead, Schafer recommends using 
a data dependent prior that smooths toward a table of mutual 
independence but leaves the marginal distributions unchanged. The 
hyperparameters are scaled so that they add to 50, giving the same 
effective prior sample size as used in the previous section for the EM 
algorithm.

Create such a data dependent prior as follows:

> dataDepend <- dataDepPrior(language.s, nPriorObs = 50,
+ algorithm = "da")
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Model Fitting
The following command starts from the maximum likelihood 
estimate computed by the EM algorithm and runs the DA algorithm 
for 1000 iterations, discarding the first 99: 

> language.DA <- daCgm(language.EM, prior = dataDepend,
+ control = list(niter=1000, save=100:1000))
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ASSESSING CONVERGENCE 

Since there are 8028 parameters for the language data, it is 
unreasonable to monitor each of them individually with 
autocorrelation plots. Instead, we look at the worst linear function  of 
the parameters. The rate of convergence for the EM algorithm is 
governed by the fraction of missing information. To aid in assessing 
convergence, we monitor a function with high rates of missing 
information, since convergence is slowest for this type of function. 
Schafer (1997, pages 129–131) recommends monitoring the worst 
linear function of θ . 

Warning

When the posterior is non-normal, other functions may converge more slowly. Thus, do not 
blindly rely on the apparent stationarity of the worst linear function without enlisting other 
diagnostic techniques.

To compute the worst linear function, we first use the worstFraction 
function with the language.EM object to compute the worst fraction of 
missing information and its corresponding eigenvector. See Fraley 
(1999) for details on the algorithms implemented in worstFraction.

> worst.est <- worstFraction(language.EM, method = "power")
> worst.est$fraction
[1] 0.8278831

Next, calculate the worst linear function of the parameters by 
combining worst.est with the language.DA object:

> wlf <- worstLinFun(language.DA, worst.est)

Finally, calculate and plot the autocorrelation function of wlf:

> wlf.acf <- acf(wlf, lag.max = 250, plot = F)
> wlf.acf$series <- "Worst Linear Function"
> acf.plot(wlf.acf)
156



Assessing Convergence
Figure 11.2:  ACF plot of the worst linear function of the parameters in the language models. The 
autocorrelations seem to die out by iteration 50.
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MULTIPLE IMPUTATION

The ACF of the worst linear function in Figure 11.2 suggests 
convergence by 50 iterations. To be conservative, we save every 
250th imputation. The following command generates ten 
imputations, starting from the last parameter values in the 
language.DA object:

> language.imp <- impCgm(language.DA, nimpute = 10, 
+ control = list(niter=250))

To extract the second set of imputations, type:

> miSubscript(language.imp, 2)
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Analyzing Completed Data Sets
ANALYZING COMPLETED DATA SETS

One way to asses the practical importance of the language variables 
in predicting GRD is to estimate partial correlations. In linear 
regression, a squared partial correlation measures the proportion of 
the variance in the response variable explained by a predictor, after 
accounting for the effects of the other predictors. We can use this fact 
to compare the partial correlations of the FLAS and MLAT variables 
with GRD.  

A partial correlation r  may be calculated from the t -statistic T  used 
for testing the significance of a regression coefficient: 

r T2

T2 ν+
---------------±= ,     

where the sign is chosen to be the sign of T .  Moreover, r( )atan  is 

asymptotically Gaussian with a mean of ρ( )atan  and variance 

1 ν 1–( )⁄ .  We use this fact in the next section to apply Rubin’s rule 
and consolidate inferences.

The first step in estimating partial correlations is to fit a linear model 
to each of the ten completed data sets for language:

> m.lm.fit <- miEval(lm(as.numeric(GRD) ~ LAN + 
+ C(AGE, lc, 1) + C(PRI, lc, 1) + 
+ SEX + FLAS + MLAT + SATV + SATM + ENG + HGPA + CGPA, 
+ data = language.imp))
mi objects: language.imp 

To apply Rubin’s rule, we must calculate the estimate and its standard 
error for each completed data set. First, calculate the transformed 
partial correlation for each of the data sets:

> m.atanPartCorr <- miEval({
+ tstat <- summary(m.lm.fit)$coef[,"t value"];
+ partCorr <- sign(tstat)*sqrt((tstat*tstat)/
+ ((tstat*tstat) + 267));
+ atan(partCorr)
+ })
mi variables: tstat partCorr m.lm.fit 
159



Chapter 11  Example 3: The Conditional Gaussian Model
The degrees of freedom for each t -statistic is equal to n p– :

> dim(language)[1] - dim(language)[2]
[1] 267

Therefore, the standard error is equal to 

1
υ 1–
------------ 1

n p– 1–
--------------------- 1

266
---------= = .

The following commands create an impute object that represents this 
standard error for each of the ten completed data sets:

> se <- sqrt(1/266)
> se.list <- vector("list", 10)
> for(i in 1:10)
+ se.list[[i]] <- rep(se,14)
> m.se <- miList(se.list, paste("I", 1:10, sep=""))
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Consolidating Inferences
CONSOLIDATING INFERENCES

The following command calculates the consolidated estimate of the 
transformed partial correlation:

> partCorr <- miMeanSE(m.atanPartCorr, m.se, df = Inf, 
+ n = 279)

Transform back to get the point estimates for the correlations:

> tan(partCorr$est)

  (Intercept)      LAN2     LAN3        LAN4        C(AGE, lc, 1)   
 -0.007382197 -0.08169879 0.05172681 -0.03863925     0.1044772      
 
C(PRI, lc, 1)     SEX      FLAS         MLAT        SATV       SATM 
0.235524      0.03341574 0.2696982 0.1473144 -0.04067603 0.03491293 
 
ENG          HGPA      CGPA
-0.03602713 0.4290499 0.1888691

The estimated fractions of missing information are:

> partCorr$fminf

(Intercept)    LAN2       LAN3     LAN4      C(AGE, lc, 1) 
   0.5309861 0.1211011 0.07448829 0.8683221  0.3792738     
 
C(PRI, lc, 1)       SEX      FLAS      MLAT      SATV      
0.1410323       0.2163655 0.3212395 0.4995211 0.2361616 
 
 SATM      ENG       HGPA      CGPA
0.2208094 0.404194 0.1395629 0.5229428
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The 95% confidence intervals using a t distribution are given as 
follows.

# Lower confidence bound.
> tan(partCorr$est + qt(0.025, partCorr$df) * 
+ partCorr$std.err)

 (Intercept)       LAN2        LAN3       LAN4 C(AGE, lc, 1)   
  -0.1863897 -0.2128767 -0.07338188 -0.4002118    -0.0490225   
 
C(PRI, lc, 1)  SEX     FLAS        MLAT       SATV       SATM  
0.1019368 -0.1028575 0.117741 -0.02479043 -0.1802482 -0.1017438 
 
ENG         HGPA       CGPA
-0.1947592 0.2828887 0.01132832

# Upper confidence bound.
> tan(partCorr$est + qt(0.975, partCorr$df) * 
+ partCorr$std.err)

 (Intercept)       LAN2     LAN3    LAN4     C(AGE, lc, 1) 
   0.1711535 0.04674426 0.1784716 0.3131192     0.2630067     
 
C(PRI, lc, 1)     SEX      FLAS      MLAT       SATV      SATM       
0.3775806      0.17094   0.4342266 0.3284068 0.09733176 
0.1728846 

ENG        HGPA      CGPA
0.1209123 0.592527 0.3787023
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Conclusions
CONCLUSIONS

As Schafer (1997, page 372) indicates, the assumptions underlying the 
regression model and the normal approximation to the transformed 
partial  correlation do not hold, so the estimated partial correlation 
coefficients must be interpreted loosely. Yet these estimates indicate 
that the FLAS variable has the highest partial correlation with GRD 
except for HGPA. In particular, its partial correlation is higher than that 
of the well established instrument MLAT. 
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