
Analyzing Data with
 Missing Values in
 TIBCO Spotfire S+® 8.2

November 2010

TIBCO Software Inc.

Proprietary
Notice

TIBCO Software Inc. owns both this software program and its
documentation. Both the program and documentation are
copyrighted with all rights reserved by TIBCO Software Inc. .

The correct bibliographical reference for this document is:

Schimert, J., Schafer, J.L., Hesterberg, T., Fraley, C., & Clarkson,
D.B., Analyzing Data with Missing Values in Spotfire S+ .
TIBCO Software Inc.

Printed in the United States.

Copyright Notice Copyright © 2000-2010, TIBCO Software Inc. All rights reserved.

Trademarks S-PLUS and Spotfire S+ are registered trademarks. StatServer,
S-PLUS Analytic Server, S+SDK, S+SPATIALSTATS, S+DOX,
S+GARCH, and S+WAVELETS are trademarks of TIBCO Software
Inc. S and New S are trademarks of Lucent Technologies, Inc.;
Intel is a registered trademark, and Pentium a trademark, of Intel
Corporation; Microsoft, Windows, MS-DOS, and Excel are
registered trademarks, and Windows NT is a trademark of
Microsoft Corporation. Other brand and product names referred
to are trademarks or registered trademarks of their respective
owners.

Acknowledgments The Insightful development team for the S+MISSINGDATA library
was Jim Schimert, Douglas B. Clarkson, Chris Fraley, and Tim
Hesterberg. The Research and Development of the S+MISSINGDATA
library was partially supported by Small Business Innovative
Research (SBIR) grants 1R43RR0925401, R44CA65147-02,
R44CA65147-03.

This work is strongly influenced by Professor Joseph Schafer, who
originally devised the iterative simulation algorithms, implemented
the EM and simulation algorithms, provided us code, and served as
consultant and subcontractor on this project. His book (Schafer, 1997)
should be viewed as an essential companion to this software and
manual.

Consultants included Gary Donaldson, Donald Rubin, and Alan
Zaslavsky. Thanks to Shan Jin for testing, Ken Baldwin for
documentation support, and Stephen Kaluzny for help with builds.
iii

Chapter
iv

CONTENTS

Chapter 1 Introduction 1

Overview 2

Imputing Missing Data with S+MISSINGDATA 5

S+MISSINGDATA Features 8

Using S+MISSINGDATA 9

Using This Manual 11

Chapter 2 Background 13

Overview 14

Taxonomy of Missing Data Methods 15

Imputation 17

Model Fitting Algorithms 20

Multiple Imputation Using DA 23

Using the EM and DA Algorithms in Conjunction 25

Chapter 3 Exploring and Preprocessing 27

Overview 28

Exploring Patterns of Missingness 29

Preprocessing Data 35

Chapter 4 Fitting a Missing Data Model 37

Overview 38

Missing Data Models 39

S-PLUS Implementation 48
v

Contents
Chapter 5 Convergence of Data Augmentation
Algorithms 55

Overview 56

Parameter Simulation 57

Multiple Imputation 58

Practical Considerations for Missing Data Problems 60

Chapter 6 Imputation 63

Overview 64

Imputing Data 65

The Class of impute Objects 68

Chapter 7 Analyzing Completed Data Sets 73

Overview 74

Analysis Functions 75

Chapter 8 Consolidating Analyses 81

Overview 82

Simple Statistics 83

Inferences 84

Chapter 9 Example 1: The Gaussian Model 93

Overview 94

Exploring Patterns of Missingness 96

Model Fitting 100

Assessing Convergence 105

Analysis Using Parameter Simulation 111

Generating Multiple Imputations Through DA 114

Omitting Cases with Missing Values 119

Summary 120
vi

Contents
Chapter 10 Example 2: The Loglinear Model 123

Overview 124

Exploring Patterns of Missingness 126

Model Fitting 129

Assessing Convergence 133

Generating Multiple Imputations Through DA 140

Analyzing Completed Data Sets 142

Chapter 11 Example 3: The Conditional
Gaussian Model 145

Overview 146

Exploring Patterns of Missingness 148

Model Fitting 152

Assessing Convergence 156

Multiple Imputation 158

Analyzing Completed Data Sets 159

Consolidating Inferences 161

Conclusions 163

Bibliography 165
vii

Contents
viii

INTRODUCTION 1
Overview 2

Model-Based Approaches 3
Model-Based Multiple Imputation 3

Imputing Missing Data with S+MISSINGDATA 5
Workflow 7

S+MISSINGDATA Features 8

Using S+MISSINGDATA 9
Starting and Quitting S+MISSINGDATA 9
Organizing Your Working Data 9
Getting Help 10

Using This Manual 11
Intended Audience 11
Organization 11
Typographic Conventions 12
1

Chapter 1 Introduction

g
as

e
OVERVIEW

Missing data cripple most routines in statistical packages that typically
expect a complete data set (a data set with no missing values). The
common practice is to artificially create a complete data set as
follows:

• Throw away cases with missing values, or

• Impute (estimate and fill in missing data using some ad hoc
method).

The analyst then treats the altered data set as if

• The deleted cases had never been observed, or

• The imputed values had always been observed.

These and other ad hoc methods can lead to misleading inferences
because they either throw away or distort information in the data.
More principled methods require methodology and computational
methods that can be expensive to implement.

The Spotfire S+ library S+MISSINGDATA extends the statistical modelin
capabilities of Spotfire S+ to support model–based missing data methods
outlined in Little and Rubin (1987). These may be applied more or
less routinely to handle a wide variety of missing data problems. The
models are fit using a variety of computational tools including:

1. Expectation-Maximization (EM) algorithm (Dempster, Laird,
and Rubin (1977)) and extensions (see Rubin (1992) for a
review).

2. Data Augmentation (DA) algorithms (Tanner and Wong
(1987), Schafer (1991), Schafer (1997)). These are Monte Carlo
Markov Chain methods (Gelfand and Smith (1990), Gelman
and Rubin(1992), Geyer (1992), Smith and Roberts (1993),
Tierney (1991)). One important property is that these DA
algorithms also produce proper multiple imputations (Rubin
(1987)), which are discussed at length below.

This chapter briefly discusses model–based methods, including
multiple imputation. It explains how this software for missing data
adds to the collection of Spotfire S+ modeling functions and expands th
Spotfire S+ modeling paradigm to incorporate multiple imputation. It
2

Overview
explains the steps you will take in using this software to perform
statistical analysis on data with missing values, and organizes the
functions and objects by these steps.

Model-Based
Approaches

Compared with more ad hoc methods of handling missing data,
model–based methods have two advantages: you can display and
evaluate model assumptions, and you can estimate the variance of the
parameter estimates.

One model–based approach assumes a distribution for the complete
data (the missing and observed data together). Intuitively, this model
describes the relationships among the variables, and when combined
with observed data, can be used to “fill the holes” in the data.

The S+MISSINGDATA library implements a parametric approach
instead. The approach assumes a multivariate parametric model with
parameter θ for the complete data, possibly with a prior distribution
for θ (Little and Rubin (1987) and Schafer (1997)). S+MISSINGDATA
implements three models for independent, identically distributed (iid)
observations: the Gaussian model for numeric variables, the loglinear
model for factor variables, and the conditional Gaussian model for
both numeric and factor variables. In some situations, you may want
to fit these specific models to your data. In such cases,
S+MISSINGDATA provides tools to fit model parameters and perform
inference. More commonly, you will want to perform other analyses
but must first deal with the missing data. In such cases, you can
proceed using multiple imputation.

Model-Based
Multiple
Imputation

In model-based multiple imputation , a missing data model (as described
in the previous section) is used as an imputation model to create M
complete data sets. An analysis model is then used to perform M
statistical analyses on the complete data sets. The analysis model may
require fewer assumptions than the imputation model, or even be
entirely different (see Meng (1994) for a discussion of congeniality).
The resultant M analyses are then combined to produce one overall
inference.
3

Chapter 1 Introduction
For example, to perform a regression analysis on data containing
missing values, you can use the following procedure:

1. Multiply impute missing data under a Gaussian imputation
model.

2. Perform a regression analysis on each of the completed data
sets.

3. Appropriately combine the results.

Multiple imputation is fairly robust to imputation model mis-
specification, especially with small fractions of missingness. This is
because the imputation model is applied only to handle the missing
part of the data (Ezzati-Rice et al. (1995), Rubin and Schenker (1986),
Schafer (1997)).
4

Imputing Missing Data with S+MISSINGDATA

IMPUTING MISSING DATA WITH S+MISSINGDATA

Normally, Spotfire S+ model fitting functions combine the model
formula and data to produce a fitted model object, as shown in
Figure 1.1. You can then manipulate the fitted model object with
inference and diagnostic procedures. For example, you can print,
summarize, or plot the model.

Data Frame
Object

Model
Spec.

Fitted Model
Object

Fit Model
Options &
Parameters

Figure 1.1: Spotfire S+ modeling functions combine data and models to produce a fitted
model object.

S+MISSINGDATA extends the statistical modeling capabilities of
Spotfire S+ to support a model–based approach to multiple imputation.
Multiple imputation can be viewed as a front end procedure resulting
in a multi-stage process, as illustrated in Figure 1.2.
5

Chapter 1 Introduction
Data Frame
Object (*)

Analysis Model
Spec. (*)

Multiple Fitted
Model(s) Object

Fit Model(s)
Options &
Parameters

Impute

Imputed
Data Frame

Imputation
Model Spec.

Figure 1.2: The role of multiple imputation objects and functions in Spotfire S+.
The asterisk (*) indicates components that are the same as in Figure 1.1.

Multiple imputation allows you to reach valid inferences by applying
familiar analysis techniques and suitably combining the results. Figure
1.2 illustrates this by showing two stages of modeling:

1. Multiply impute missing data using a missing data model.

2. Analyze the resulting complete data sets with respect to an
analysis model.

Dealing with the missing data is mostly confined to the imputation
phase. Multiple imputation creates M data sets in complete
rectangular form that the analysis procedures can accept. The objects
that input and output to the analysis functions thus represent M
complete data sets. Several S+MISSINGDATA functions manipulate
these objects to obtain one inference that incorporates uncertainty
due to missing values.
6

Imputing Missing Data with S+MISSINGDATA
Workflow The workflow for using S+MISSINGDATA can be broken down into
distinct stages:

• Explore. Look for and understand patterns in the missing
data.

• Preprocess. Process the data to create an object that contains
information needed by the model fitting algorithms. By
creating this object once, calculation can be saved if the
model fitting functions are used several times.

• Fit. Fit a missing data model.

For multiple imputation, the additional steps are:

• Impute. Create M complete data sets, starting the imputation
algorithm from the parameters of the fitted missing data
model.

• Analyze. Analyze the completed data sets with respect to a
standard analysis model to produce M fitted analysis objects.

• Consolidate. Combine the M fitted analysis objects to obtain
a single inference that incorporates uncertainty due to missing
values.
7

Chapter 1 Introduction
S+MISSINGDATA FEATURES

Table 1.1 organizes the objects and functions available in
S+MISSINGDATA by the activities specified in the workflow on page
7.

Table 1.1: Objects and functions in the S+MISSINGDATA library, organized by activites in the workflow.

Activity Objects Functions

Explore miss miss

print.miss

summary.miss

plot.miss

Preprocess preGauss

preLoglin

preCgm

preGauss

preLoglin

preCgm

Fit missmodel mdGauss

mdLoglin

mdCgm

(and associated functions)

Impute miVariable, or a data frame
consisiting of columns with
class "miVariable"

impGauss

impLoglin

impCgm

Analyze miVariable

miList

miApply

miEval

Consolidate miVariable

miList

miMeanSE

miFTest

miChiSquareTest

miLikelihoodTest
8

Using S+MISSINGDATA

A
+
e

USING S+MISSINGDATA

If you are familiar with Spotfire S+, getting started with S+MISSINGDAT
is simple. If you have not used Spotfire S+ before, consult the Spotfire S
User’s Guide ; we recommend that you learn more about Spotfire S+ befor
proceeding with S+MISSINGDATA.

Starting and
Quitting
S+MISSINGDATA

To start S+MISSINGDATA, you must first start Spotfire S+ . See the
Spotfire S+ User’s Guide for detailed instructions on starting Spotfire S+.

To add the S+MISSINGDATA functions to your Spotfire S+ session, type
the following at the Spotfire S+ command line:

 > library(missing)

In Spotfire S+ for Windows, you can also select File � Load Library
from the main menu to add S+MISSINGDATA to your session.

If you plan to use S+MISSINGDATA extensively, you may want to
customize your Spotfire S+ start-up routine to automatically attach the
S+MISSINGDATA library. You can do this by adding the line
library(missing) to your .First function. If you do not already
have a .First function, you can create one from the Spotfire S+
command line by typing:

 > .First <- function() { library(missing) }

Organizing
Your Working
Data

To help you organize the data you analyze with S+MISSINGDATA,
you can create separate directories for individual projects. In this
section, we briefly describe how to create project directories in both
UNIX and Windows. For a detailed discussion, see the Spotfire S+ User’s
Guide .
9

Chapter 1 Introduction

e

gs

n

p
UNIX

To create a specific project directory in Spotfire S+ for UNIX, use the
CHAPTER utility. To then work in a particular project, simply start
Spotfire S+ from that project’s directory. For example, to create and use
the directory missingdir for an S+MISSINGDATA project, type the
following commands from the UNIX prompt:

mkdir dir
cd dir
Splus CHAPTER
Splus

In these commands, Splus should be replaced with whatever you
type to start Spotfire S+ on your system.

Windows

To create a specific project directory in Spotfire S+ for Windows, use th
Open Spotfire S+ Project dialog. If this dialog does not automatically
appear when you start Spotfire S+ , choose Options � General Settin
from the main menu, click the Startup tab, and check the Prompt
for project folder box. The next time you launch Spotfire S+, the Ope
Spotfire S+ Project dialog appears, in which you can specify a project
folder for the duration of your session. If the folder you select does
not already exist, Spotfire S+ creates and initializes it for you.

Getting Help S+MISSINGDATA provides help files for virtually all functions
included in the library. For example, you can obtain help on the
function impGauss by typing the following at the Spotfire S+ command
line:

> help(impGauss)

Alternatively, you can use the ? function:

> ?impGauss

In Spotfire S+ for Windows, you can also select Help � Available Hel
� missing after loading S+MISSINGDATA into your session. Note
that some functions intended for internal use do not have help files.
10

Using This Manual
USING THIS MANUAL

This manual describes how to use the S+MISSINGDATA library and
includes detailed descriptions of the principal S+MISSINGDATA
functions and objects.

Intended
Audience

Like the S+MISSINGDATA library, this book is intended for
statisticians, clinical researchers, and other analysts involved in
analyzing data with missing values. This book is not meant to be a
text book in missing data methods; we refer you to the Bibliography
for recommended reading in this area. Schafer (1997) should be
viewed as an essential companion to this software and manual.

For users familiar with Spotfire S+, this manual contains all the
information most users need to begin making productive use of
S+MISSINGDATA. Users who are not familiar with Spotfire S+ should
read their Spotfire S+ User’s Guide, which provides complete procedures
for basic Spotfire S+ operations, including graphics manipulation,
customization, and data input and output. Other useful information
can be found in the Spotfire S+ Guide to Statistics. This manual describes
how to analyze data using a variety of statistical and mathematical
techniques, including classical statistical inference, time series
analysis, linear regression, ANOVA models, generalized linear and
generalized additive models, loess models, nonlinear regression, and
regression and classification trees.

Organization The main body of this book is divided into 11 chapters that guide you
step-by-step through the S+MISSINGDATA library.

• Chapter 1 (this chapter) introduces you to S+MISSINGDATA,
lists its features, and tells you how to use this manual.

• Chapter 2 briefly gives background information, which may
be skimmed at first and revisited as needed.

• Chapters 3 to 8 describe each step in the workflow given on
page 7.

• Chapters 9 to 11 provide examples using the functions and
objects in S+MISSINGDATA.
11

Chapter 1 Introduction

Typographic
Conventions

This book uses the following typographic conventions:

• The italic font is used for emphasis, new terminology, and
user-supplied variables in UNIX, DOS, and Spotfire S+
commands.

• The bold font is used for UNIX and DOS commands and
filenames. For example:

setenv S_PRINT_ORIENTATION portrait
SET SHOME=C:\Spotfire S+

The bold font is also used for components of the Spotfire S+
graphical user interface, such as menus, dialogs, and fields.

• The typewriter font is used for Spotfire S+ code, output, and
examples. For example:

> miss(myData)

Displayed Spotfire S+ commands are shown with the default
Spotfire S+ prompt > and commands that require more than one
line of input are displayed with the Spotfire S+ continuation
prompt +:

> miss(
+ myData)
12

BACKGROUND 2
Overview 14

Taxonomy of Missing Data Methods 15
Omit Cases with Missing Values 15
Imputation 15
Weighting 15
Model–Based Approaches 16

Imputation 17
Single Imputation 17
Multiple Imputation 17

Model Fitting Algorithms 20
Expectation-Maximization (EM) 20
Data Augmentation (DA) 21

Multiple Imputation Using DA 23

Using the EM and DA Algorithms in Conjunction 25
13

Chapter 2 Background
OVERVIEW

This chapter discusses background information regarding model–
based missing data methods. You may want to skim this chapter at
first and return to it when needed as you read the rest of the manual.

To put model–based methods into context, we briefly describe
common approaches to handling missing data, with additional details
on imputation. Two algorithms, expectation-maximization (EM) and
data augmentation (DA), are described for fitting missing data models.

The DA algorithm may be used to produce either multiple
imputations or multiple sets of parameter estimates. The average of
the parameter estimates may be used as a point estimate; their
variability indicates the additional uncertainty due to missing data.
Whether you use DA to produce multiple imputations or parameter
estimates, assessing convergence is an important practical problem.
To address this problem, we discuss simple diagnostic procedures that
may be enough to assess convergence in the missing data models
described here.

Finally, we describe how the EM and DA algorithms complement
each other in analysis.
14

Taxonomy of Missing Data Methods
TAXONOMY OF MISSING DATA METHODS

To put model–based methods into context, it is instructive to first
consider a taxonomy of methods for missing data (Little and Rubin
(1987)).

Note

The methods discussed here are not mutually exclusive. For example, S+MISSINGDATA provides
a model–based approach to multiple imputation.

Omit Cases
with Missing
Values

Omitting cases with missing values is easy to do and may be
satisfactory with small amounts of missing data. However, it can lead
to serious biases. This approach is usually not very efficient.

Imputation With imputation methods, you estimate and fill in missing values,
then analyze the resulting complete data set by standard methods. To
obtain valid inferences, the standard analyses must be modified to
account for the differing status of the observed and imputed values.

Single imputation replaces each missing value by a single imputed
value. Multiple imputation replaces each missing value by a vector of
M 2≥ imputed values, and thereby shares the advantages of single
imputation while overcoming its disadvantages. We discuss this in
more detail in the section Imputation on page 17.

Weighting Weighting is used mostly for unit missingness , in which the values for
all variables in a case are missing. Respondents and non-respondents
are grouped together into a relatively small number of classes based
on other variables recorded for both respondents and non-
respondents. This arises, for example, in survey design variables. The
non-respondents are assigned weights of zero, and the weights of the
remaining cases are proportionately inflated so that the total weight of
the cases within cells is preserved.
15

Chapter 2 Background
Model–Based
Approaches

In a model–based approach, you define a model for the missing data
and base inferences on the likelihood or posterior distribution under
that model. Parameters are estimated by procedures such as
maximum likelihood or iterative simulation.
16

Imputation
IMPUTATION

One advantage of imputation over the other methods described in the
previous section is that, once the missing values have been imputed,
standard analysis methods can be applied to the complete data.
Imputation is also advantageous in contexts where the data producer
(collector) and consumer (data analyst) are different individuals:

• The producer may have access to information and resources
for creating imputations that are not available to the
consumer;

• The created set of “official” imputations tends to increase the
comparability of analyses of the same data set;

• The possibly substantial effort required to create sensible
imputations need be carried out only once.

Single
Imputation

Single imputation replaces each missing value in a data set by a single
imputed value. While this is a straightforward approach to filling in
missing data, it does not provide valid inferences that adjust for
observed differences between respondents and non-respondents. In
addition, single imputation does not provide standard errors that
reflect the reduced sample size, nor does it display sensitivity of
inferences to various plausible models for nonresponse.

Multiple
Imputation

Multiple imputation replaces each missing value in a data set by a
vector of M 2≥ imputed values. It shares the advantages of single
imputation while overcoming its disadvantages. If the M imputations
are taken from the same model, the resulting M complete data
analyses may be combined to create an inference that reflects
sampling variability due to the missing values. If the multiple
imputations are from more than one missing data model, uncertainty
about the correct model is shown by the variation in inferences across
the models.
17

Chapter 2 Background
The following are desirable properties for general-purpose
imputations (Heitjan and Little (1991)):

• Imputations of missing values should condition on the values
of observed variables for that case;

• Imputations of missing values should account for the
multivariate nature of the non-response (that is, values are
missing on more than one variable) with a general pattern of
missing data;

• Imputations should not distort marginal distributions and
associations between observed and imputed variables. To
achieve this, they should be stochastic and represent values
from the predictive distribution of the missing variables,
rather than the means.

Commonly used variable–by–variable methods do not meet these
requirements (Schafer (1997)). For example, replacing the missing
values for a variable by the mean of that variable preserves the
sample means, but biases the estimated variances and covariances
toward zero. Using predicted values from regression models based on
other variables tends to bias the observed correlations away from
zero. With complex patterns of missing data, it is nearly impossible to
achieve good properties using ad hoc techniques.

Proper multiple imputation reflects evidence about the missing data
from all available sources. This is most directly motivated from the
Bayesian perspective (Little and Rubin (1987), Schafer et al. (1993)).
Let Y Yobs Ymis,()= denote the complete data, with Yobs and Ymis
denoting the observed and missing portions of the data, respectively.
Proper multiple imputations reflect evidence about Ymis from: Yobs ,

the complete–data model, and the prior distribution for θ (Schafer
(1997)).

For each model considered, the M imputations of Ymis can be most
easily conceptualized as M independent draws from the posterior
predictive distribution of Ymis given the observed data:

P Ymis Yobs() P Ymis Yobs θ,()P θ Yobs,() θd∫= .
18

Imputation
In this equation, P θ Yobs() is the posterior density of the parameters

given the observed data. Directly simulating Ymis from P Ymis Yobs()

is typically difficult. In the section Multiple Imputation Using DA on
page 23, we discuss Schafer’s iterative simulation approach that
produces multiple imputations (Schafer (1991), Schafer (1997)).
Schafer’s algorithms are general–purpose, and can be routinely
applied to produce proper multiple imputations in a multivariate
setting.

Multiple imputation results in M complete data sets, each of which are
analyzed by complete data methods. Results of the M analyses may
be combined to yield a single overall inference (Li et al. (1991), Li,
Raghunathan, and Rubin (1991), Meng and Rubin (1992)). In
addition, exploratory analyses such as graphical displays of the M
completed data sets help to informally assess how interesting features
of the data are affected by missing data uncertainty. Typically, if the
fractions of missing information are moderate, M 3= or M 5= is
adequate.
19

Chapter 2 Background

MODEL FITTING ALGORITHMS

In S+MISSINGDATA, you can fit models to your data with missing
values using a variety of computational tools. Sometimes the goal is to
estimate the parameters of the models themselves, rather than to
create multiple imputations. In such cases, the following algorithms
are used:

• The expectation-maximization (EM) algorithm (Dempster,
Laird, and Rubin (1977)) and extensions (see Rubin (1992) for
a review) may be used to maximize either the likelihood
function or posterior distribution.

• The data augmentation (DA) algorithm may be used to draw a
sample of parameters from the posterior distribution from
which further inference is achieved. (References include
Tanner and Wong (1987), Schafer (1991), Schafer (1997). DA
algorithms are Monte Carlo Markov Chain methods, so see
also Gelfand and Smith (1990), Gelman and Rubin (1992),
Geyer (1992), Smith and Roberts (1992), Tierney (1991)).

The EM and DA algorithms can also be used in a complementary
fashion to create multiple imputations.

In this chapter, we briefly describe the EM and DA algorithms and
then discuss how they are used to create multiple imputations. If you
are interested in the specifics of the algorithms for particular models,
you must work them out on your own. For details, see Little and
Rubin (1987) and Schafer (1997); Fraley (1998) describes the Spotfire S+
implementation of algorithms for the Gaussian model.

Expectation-
Maximization
(EM)

The EM algorithm (Dempster, Laird, and Rubin (1977)) is a
likelihood-based approach to handling missing data. Let
Y Yobs Ymis,()= be the complete data. Maximizing l θ Y() , the log-
likelihood of the complete data, may be complicated because of the
missing data. Instead, suppose that the best current estimate of the

parameters is θ t()
. We can create (E step) and maximize (M step) with

respect to θ as follows:

Q θ θ t()() l θ Y()f Ymis Yobs θ t()
,() Ymisd∫= .
20

Model Fitting Algorithms
This procedure is iterated until convergence; one of the optimality
characteristics of the EM algorithm is that the likelihood increases at
each iteration.

For the complete exponential family of distributions, EM iteratively
calculates the expected values of the sufficient statistics, then performs
the usual maximization for complete data. This is close to the intuitive
practice of iteratively imputing missing values, then performing a
complete data analysis.

Data
Augmentation
(DA)

Data augmentation algorithms are Monte Carlo Markov Chain
(MCMC) methods. These methods are similar to Monte Carlo
methods, which estimate features of an unknown distribution π x() by
either sampling from that distribution or suitably reweighting samples
drawn from some other appropriately chosen distribution. For
general and high dimensional distributions, however, Monte Carlo
methods are difficult if not impossible to perform. MCMC methods
overcome this limitation by constructing a Markov chain with an
equilibrium equal to π x() and a state space that is easy to sample
from. If the chain is run for a long time, simulated values of the chain
can be used to summarize features of π x() , often through familiar
exploratory data analysis tools like the histogram.

Several algorithms have been proposed for constructing chains with
specified equilibrium distributions. Some of these algorithms include
the Gibbs sampler (Geman and Geman (1984), Ripley (1977), Ripley
(1979), Gelfand and Smith (1990), Zeger and Karim (1991)), the data
augmentation methods of Tanner and Wong (1987), and sequential
imputation (Kong and Wong (1991)). The Gibbs sampler leads to a
relatively straightforward implementation, even in situations that are
intractable for other approaches. Gibbs sampling succeeds because it
reduces the problem to a simpler sequence of problems, each of
which deals with one unknown quantity at a time. Each unknown
quantity is then sampled from its full conditional distribution.

In missing data problems, both the parameters θ and the missing
data Ymis are unknown. Because the joint posterior distribution of θ

and Ymis is typically intractable, we can simulate the posterior
iteratively. The algorithm described below (Schafer (1991), Schafer
(1997)) is a special case of both the Gibbs sampler and the data
augmentation methods of Tanner and Wong (1987).
21

Chapter 2 Background
The posterior distribution is simulated by alternately drawing random
values of the missing data and parameters as follows. At iteration t ,
perform the following steps:

• Imputation step (I-step). Given the current value θ t()
 of the

parameter, draw Ymis
t 1+()

 from its conditional predictive

distribution P Y[mis Yobs θ t()], .

• Posterior step (P-step). Given Ymis
t 1+()

, draw θ t 1+()
 from its

complete data posterior P θ[Yobs Ymis
t 1+()], .

With a sample of independent, identically distributed, incomplete
multivariate data, the following is true:

P Y[mis Yobs θ], P y[i mis() yi obs() θ],

i 1=

n

∏= .

Here, yi mis() and yi obs() are the missing and observed parts of the

i th row of data, respectively. Thus, in the I-step above, the missing
data are imputed independently for each row.
22

Multiple Imputation Using DA
MULTIPLE IMPUTATION USING DA

Repeating the I-step and P-step described on page 22 using a starting

value θ 0()
 gives the following stochastic sequences:

• The sequence θ(t() Ymis
t()

,) t 1 2 …, ,=;{ } has a stationary

distribution of P θ Ymis,[Yobs] .

• The subsequence θ t() t 1 2 …, ,=;{ } has a stationary

distribution of P θ[Yobs] .

• The subsequence Ymis
t() t 1 2 …, ,=;{ } has a stationary

distribution of P Ymis[Yobs] .

To produce multiple imputations using data augmentation, you must
first ensure that the sequence of parameters and imputations has
converged to stationarity. That is, the imputations must be
approximately independent draws from P Ymis[Yobs] . If

convergence is reached by k iterations, then θ s()
 and Ymis

s()
 are

approximately independent of θ s k+()
 and Ymis

s k+()
 for all s .

Schafer (1997) argues that either

θ t() P θ[Yobs]∼

or

 Ymis
t() P Ymis[Yobs]∼

implies that

 θ(t s+() Ymis
t s+()

,) P θ Ymis,[Yobs]∼

for all s 0> . Therefore, to assess convergence in distribution of the
sequence, it is sufficient to assess the convergence of either sub-
sequence. In practice, however, it is usually easier to monitor
23

Chapter 2 Background
convergence using the parameter subsequence rather than the
imputed data subsequence, since parameters are typically of lower
dimension than imputations.

Once stationarity is reached, a set of parameter values can be
combined with the data to produce a set of Bayesianly proper
M M 1>() imputations. That is, the imputations are approximately
independent realizations of P Ymis Yobs[] , the posterior predictive

distribution of the missing data under some complete-data model and
prior. Data augmentation simulates values of Ymis that have

P Ymis Yobs[] as their stationary distribution.

In practice, M imputations are produced either with one long chain or
several parallel chains. Imputations are produced with one long chain
by repeating the following steps M times:

1. Run the DA algorithm for k steps.

2. Use the parameter estimates at the last step to impute one set
of data.

3. Use the parameter estimates at the last step to start the next
run.

Imputations are produced with parallel chains by performing these
steps:

1. Supply M sets of parameters to start M separate chains of
length k .

2. Save the results of the final I-step in each chain to achieve M
imputations.
24

Using the EM and DA Algorithms in Conjunction
USING THE EM AND DA ALGORITHMS IN CONJUNCTION

It is more difficult to monitor convergence of an empirical
distribution to an unknown limiting distribution (as in DA) than to
monitor the convergence of a sequence of iterates to an unknown
maximizing value (as in EM). But since the rate of convergence of
both algorithms is governed by the fraction of missing information,
Schafer (private communication) has suggested that the number of
iterations needed for EM to converge gives a conservative estimate of
the number of iterations needed for DA. This suggests that the EM
and DA algorithms can be used in a complementary fashion to create
multiple imputations, as follows:

1. Use EM to obtain the maximum likelihood estimate (MLE)
and the value of the maximized log-likelihood. Note the
number of iterations required to converge. Estimate the
“worst fraction of missing information” from the EM iterates,
which is an eigenvalue and its corresponding eigenvector
(Fraley (1999), Schafer (1997)). If convergence is slow and the
fraction of missing information is very high, either adopt a
more parsimonious model, apply an informative prior
distribution, or try to find overdispersed starting values.
Otherwise, proceed to Step 2.

2. Perform an experimental run of DA. Start with the MLE
obtained in Step 1 and run a single chain for at least ten times
the number of steps needed for EM to converge. Save the
sequence of parameter estimates produced at each iteration.

3. Assess convergence (see Chapter 5).

4. Create M imputations, either by continuing the DA run and
saving every k th imputation (where k is large enough to make
the sample values approximately independent), or by starting
from M overdispersed starting values and iterating until
convergence.
25

Chapter 2 Background
26

EXPLORING AND
PREPROCESSING 3

Overview 28

Exploring Patterns of Missingness 29
Initial Explorations 29
The miss Function 31

Preprocessing Data 35
27

Chapter 3 Exploring and Preprocessing
OVERVIEW

Most data analyses begin by exploring the data, often graphically.
When there are missing values in the data, additional tools are
necessary to analyze patterns of missingness. In particular, the EM
and DA algorithms require initial analysis of the patterns in missing
data. To accomplish this, S+MISSINGDATA includes functions that
preprocess the data. If you perform this preprocessing once at the
beginning of an analysis, it need not be repeated every time you
apply EM or DA. As described in Chapter 2, the EM and DA
algorithms are often used in a complementary fashion and called
several times, so preprocessing can save considerable resources over
the course of a large analysis.

In this chapter, we discuss graphical and numerical techniques for
discovering patterns in missing data, some of which are implemented
in the miss function and its methods. In the final section of this
chapter, we discuss model-specific preprocessing functions that
compute and return information required by the EM and DA fitting
algorithms.
28

Exploring Patterns of Missingness

r
EXPLORING PATTERNS OF MISSINGNESS

There are often patterns to missing values in data. For example, if a
patient in a clinical trial misses a follow-up visit, then all data for that
follow-up is missing. Similarly, if participants in a marketing survey
are randomly given one of two questionnaires containing some
overlapping and some disjoint questions, then the results for each
participant shows missing values for one of two groups of questions.

It is important to discover patterns in missing data when performing
calculations and analysis. For instance, if missingness patterns are
monotone (that is, there is an ordering of the variables such that an
observation which is missing in one variable is also missing in all later
variables), then efficient algorithms can be used for EM estimation as
well as for DA (Schafer (1997)). Whether data are monotone (or
nearly so) can be discovered by sorting rows and columns by the
number of missing values.

Initial
Explorations

A variety of Spotfire S+ functions can be used to explore the variables o
cases in your data set that have missing values. Existing Spotfire S+
functions include is.na and which.na; both functions indicate which
values are missing. Newer functions in the S+MISSINGDATA library
include anyMissing and numberMissing. We demonstrate all four of
these functions using the built-in health data set, which is available as
part of S+MISSINGDATA.

For a single variable, using the functions is straightforward:

> is.na(health$Hyp)
[1] T F F T F T F F F T T T F F F T F F F F T F F F F

> which.na(health$Hyp)
[1] 1 4 6 10 11 12 16 21

> anyMissing(health$Hyp)
[1] T

> numberMissing(health$Hyp)
[1] 8
29

Chapter 3 Exploring and Preprocessing
You can also use these functions to explore the variables in a
multivariate data set all at once. To do this, combine the output with
Spotfire S+ functions such as apply, colSums, and rowSums:

Apply anyMissing to each of the columns in health.
Variables 2:4 in health have missing values.
> apply(health, 2, anyMissing)

 Age Hyp BMI Chl
 F T T T

Apply which.na to each of the columns in health.
This lists the row numbers of the missing values in
each column.
> apply(health, 2, which.na)

$Age:
numeric(0)

$Hyp:
[1] 1 4 6 10 11 12 16 21

$BMI:
[1] 1 3 4 6 10 11 12 16 21

$Chl:
 [1] 1 4 10 11 12 15 16 20 21 24

The number of missing values by column is given by either of the
following commands:

> colSums(is.na(health))

 Age Hyp BMI Chl
 0 8 9 10

> apply(health, 2, numberMissing)

 Age Hyp BMI Chl
 0 8 9 10
30

Exploring Patterns of Missingness
The number of missing values by row is given by:

> rowSums(is.na(health))

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 3 0 1 3 0 2 0 0 0 3 3 3 0 0 1 3 0 0 0 1 3 0

 23 24 25
 0 1 0

The percent missing by column is given by:

> round(100 * colMeans(is.na(health)))

 Age Hyp BMI Chl
 0 32 36 40

Finally, you can compute the correlations of missingness with:

> round(cor(is.na(health)), 2)

 Age Hyp BMI Chl
Age NA NA NA NA
Hyp NA 1.00 0.91 0.67
BMI NA 0.91 1.00 0.58
Chl NA 0.67 0.58 1.00

The miss
Function

The miss function facilitates the discovery of patterns in missing data
by grouping together similar variables and observations. The output
of the miss function is an object of class "miss". You can use the
print, summary, and plot methods to display the information in a
miss object.

For example, create a miss object for the built-in health data set and
then print it:

> M <- miss(health)
> M

Summary of missing values
 4 variables, 25 observations, 5 patterns of missing
 values
 3 variables (75%) have at least one missing value
 12 observations (48%) have at least one missing value
For more detailed information use summary(x).
31

Chapter 3 Exploring and Preprocessing
By default, miss rearranges the rows and columns of the data
according to the numbers and patterns of missing values. It then
summarizes the patterns it finds. Optionally, the indicators of missing
values can be printed in the original row order and modified column
order. The formatted display can be bypassed using the Spotfire S+
function print.default.

As the above output suggests, use summary for more information:

> summary(M)

Summary of missing values
 4 variables, 25 observations, 5 patterns of missing
 values
 3 variables (75%) have at least one missing value
 12 observations (48%) have at least one missing value

Breakdown by variable
 V O name Missing % missing
 1 2 Hyp 8 32
 2 3 BMI 9 36
 3 4 Chl 10 40
V = Variable number used below, O = Original number (before
sorting)
No missing values for variables:
Age

Patterns of missing values (variables in columns, patterns
in rows)
Pattern Variables
 123
 1 ...
 2 ..m
 3 .m.
 4 mm.
 5 mmm

Pattern #Missing #Obs Observations
 1 0 13 2 5 7:9 13:14 17:19 22:23 25
 2 1 3 15 20 24
 3 1 1 3
 4 2 1 6
 5 3 7 1 4 10:12 16 21
32

Exploring Patterns of Missingness
Patterns of missing values (variables in columns,
observations in rows)
Obs. Variables
 123
 1 mmm
 2 ...
 3 .m.
. . .

See Figure 3.1 for the plots that result from the following commands:

This plot sorts observations to show common patterns.
> plot(M)
This plot sorts observations as in the original data.
> plot(M, sort.obs = F)

Figure 3.1: Plots of the miss object for the health data set.

Output of plot.miss

25

20

15

10

5

1

O
b

se
rv

a
tio

n
s

(r
e

o
rd

e
re

d
)

AgeHypBMI Chl

Original order

25

20

15

10

5

1

O
b

se
rv

a
tio

n
s

AgeHypBMI Chl
33

Chapter 3 Exploring and Preprocessing
If your data set has a missing value code other than NA, you should
change it to NA before calling miss. For example, the following
command changes all missing values in the vector x as from -9 to NA.

> x[x == -9] <- NA
34

Preprocessing Data
PREPROCESSING DATA

Preprocessing functions in S+MISSINGDATA process a data set to create
an object that contains the information needed for the EM and DA
model fitting algorithms. Note that the preprocessing functions are
model-specific; see Chapter 4 for detailed descriptions of the models
mentioned here.

• To fit a Gaussian imputation model, use the preGauss function
to preprocess the data. This returns an object of class
"preGauss". For example, the following preprocesses the
built-in cholesterol data:

> cholesterol.pre <- preGauss(cholesterol)

• To fit a loglinear imputation model, use the preLoglin
function to preprocess the data. This returns an object of class
"preLoglin". For example, the following preprocesses the
built-in crime data:

> crime.pre <- preLoglin(crime,
+ margins = count ~ Visit.1 : Visit.2)

• To fit a conditional Gaussian imputation model, use the
preCgm function to preprocess the data. This returns an object
of class "preCgm". For example, the following preprocesses the
built-in language data:

> language.pre <- preCgm(language)

For additional details about the preGauss, preLoglin, and preCgm
functions, see their on-line help files.

Calling preprocessing functions manually before fitting a missing data
model is optional. If preprocessing is not performed once in advance,
it is performed automatically as needed. However, this may cause the
same processing to be repeated at different stages of your analysis,
which consumes your machine’s resources unneccessarily.
35

Chapter 3 Exploring and Preprocessing
36

FITTING A MISSING DATA
MODEL 4

Overview 38

Missing Data Models 39
The Gaussian Model 39
The Loglinear Model 41
The Conditional Gaussian Model 44

S-PLUS Implementation 48
Fitting a Gaussian Model 49
Fitting a Loglinear Model 51
Fitting a Conditional Gaussian Model 54
37

Chapter 4 Fitting a Missing Data Model
OVERVIEW

Once you’ve explored the patterns of missingness in your data and
preprocessed it for the fitting algorithms, the next step is to fit a
model. The model you fit is the distribution assumed for the complete
data (the missing and observed data together).

S+MISSINGDATA implements three models for independent,
identically distributed (iid) observations: the Gaussian model for
numeric variables, the loglinear model for factor variables, and the
conditional Gaussian model for both numeric and factor variables.
This chapter describes these three models and their associated priors,
and then shows how to fit the models using functions in
S+MISSINGDATA.
38

Missing Data Models
MISSING DATA MODELS

The Gaussian
Model

The Gaussian model handles missing data when all the variables are
numeric.

Model

Let Y1 … Yp, , be numeric variables in which values are recorded for

n cases, so that the complete data form an n p× data frame Y . The
cases are assumed to be independent and identically distributed
multivariate Gaussians with mean μ and covariance Σ .

Prior distribution

In complete data problems, using a normal inverted-Wishart prior
distribution leads to a conjugate analysis. The posterior distribution is
again normal inverted-Wishart with updated parameters involving the
data and prior parameters. In the presence of missing data, though,
this family is not conjugate in general. However, using this family of
distributions is computationally convenient for the EM and DA
model fitting algorithms. This is because both algorithms depend on
the complete data problem being tractable; see the section S-PLUS
Implementation on page 48. Further details may be found in Schafer
(1997).

A normal inverted-Wishart prior distribution means the following.
Given Σ , the mean μ is assumed to have a conditional Gaussian
distribution:

μ Σ N μ0 τ 1– Σ,()∼

with known and fixed hyperparameters μ0 and τ 0> . In addition, Σ
is assumed to have an inverted-Wishart distribution:

Σ W 1– m Λ,()∼

with fixed hyperparameters m p≥ and Λ 0> . Schafer (1997)
discusses choosing between noninformative , informative , and ridge prior
hyperparameters.
39

Chapter 4 Fitting a Missing Data Model
• A noninformative prior is used when little is known about the
parameters. This improper prior is the limiting form of the

normal inverted-Wishart as τ 0→ , m 1–→ , and Λ 1– 0→ :

π μ Σ,() Σ p 1+() 2⁄()–∝ .

Note that μ does not appear on the right side of this equation;
its distribution is assumed to be uniform.

• With an informative prior, you choose reasonable values for
the hyperparameters by interpreting them as a summary of
the information provided by an imaginary set of data. The
value μ0 is the best guess as to what μ is, τ is the number of

imaginary prior observations on which μ0 is based, and

m 1– Λ 1– is the best guess for Σ . The parameter m is the
number of imaginary prior degrees of freedom on which

m 1– Λ 1– is based.

• A ridge prior is useful for stabilizing the inference about μ
when the sample covariance matrix is singular or nearly so,
and little is known a priori about μ or Σ . This can happen, for
example, when the data are sparse.

A ridge prior is the limiting form of the normal inverted-
Wishart distribution when τ 0→ . Take m ε 0>= and

Λ 1– ε Ψ⋅= , where Ψ is a covariance matrix. For complete

data, the estimate for Σ is a weighted average of Ψ and the
sample covariance S . When S is nearly singular, set

Ψ diag S()= , the matrix with sample variances along the
diagonal and zeroes elsewhere. This helps to smooth the
calculated variances towards the observed data variances and
the correlations towards zero; the smoothing results in
something closer to an independence model. The relative
sizes of ε and the sample size n determine the degree of
smoothing.
40

Missing Data Models
When there are missing data, S is not available. However, set
Ψ Diag V()= in this case, where V is a matrix with diagonal
elements that are the sample variances of the observed values
for each variable.

The Loglinear
Model

The loglinear model handles missing data when all the variables are
categorical, or of class "factor".

Models

Let W1 W2 … Wq, , , be factor variables with values recorded for n

cases, so that the complete data form an n q× data frame W . If the
cases are independent and identically distributed, the information in
W is equivalent to a contingency table with D cells, where D is the
number of level combinations:

D dj
j 1=

q

∏= .

Here, dj is the number of levels for the variable Wj . Some cells in the
contingency table are empty because of logical constraints; these are
known as structural zeroes .

If the sample size is assumed fixed, the set of D cell frequencies (or
counts) has a multinomial distribution. The parameters of the
distribution are the D probabilities that a case falls into each of the D
cells of the contingency table. If there are no restrictions on the
parameters other than that they are true probabilities, then the model
is said to be saturated . In many realistic examples, however, the
amount of data is insufficient to model such arbitrarily complex
associations among the variables.

Loglinear models are a flexible class of models for specifying possible
dependencies among variables. The cell probabilities are
parameterized as the product of effects for each variable and the
associations among variables. The log of the probabilities is therefore
linear. Eliminating terms from this decomposition imposes equality
constraints on odds ratios in the contingency table. See Bishop,
Fienberg, and Holland (1975) or Agresti (1990) for details.
41

Chapter 4 Fitting a Missing Data Model
The implementation of these models in S+MISSINGDATA assumes
hierarchical loglinear models. That is, it is assumed that no high-order
interaction is present unless all main effects and lower-order
interactions involving the same variables are also present.

Other situations

If the levels of the factors in your data are ordered, you may either:

• Pretend that they are approximately normally distributed, or

• Disregard the order. If the immediate goal is to create
plausible multiple imputations of missing data, then applying
a loglinear model may be reasonable in this case (Schafer,
1997, page 240).

The multinomial model can also be applied in some non-multinomial
situations:

• If the distribution of one or more categorical variables is fixed
by design, the cell frequencies follow a product-multinomial
model. This arises, for example, in variables used to define
strata in sample surveys. The multinomial model may still be
valid in this situation if the missing values are confined to
variables that are not fixed.

• If the total sample size n is random, the multinomial
likelihood may lead to valid conditional inferences. This
occurs, for example, in Poisson sampling.

Prior distribution

With complete data, using a Dirichlet prior distribution for the
saturated model leads to a conjugate analysis. The posterior
distribution is again Dirichlet with updated parameters involving the
data and prior parameters.

For the loglinear model, Schafer (1997) adopts the constrained Dirichlet
as the prior distribution. This has the same functional form as the
Dirichlet but requires the parameters to satisfy constraints imposed by
a loglinear model. The advantage of this prior is that it forms a
conjugate class: the posterior distribution is another constrained
Dirichlet with updated parameters. Note, however, that the
constrained Dirichlet prior assumes that the given loglinear model is
true. This can be assessed by performing goodness-of-fit tests against
more general alternative models.
42

Missing Data Models
The parameters are updated in a way that suggests thinking of the
prior parameters as imaginary prior counts in the cells of the
contingency table. Schafer (1997) gives the form of a Dirichlet
distribution and discusses noninformative , flattening , and data-dependent
values for the hyperparameters.

• As with Gaussian models, noninformative priors are used when
little is known about the parameters. Taking all
hyperparameters equal to a common value is a sensible
approach when little information is available a priori . Schafer
(1997, page 252) argues that any common value between 0
and 1 is potentially noninformative. For the EM algorithm,
the uniform prior sets all hyperparameters equal to 1 and
leads to a maximum likelihood estimate. Therefore, this is
adopted as the default noninformative prior for the EM
algorithms. For DA algorithms, the default noninformative
prior is arbitrarily established as the Jeffreys prior, in which all
hyperparameters are equal to 1 2⁄ .

• The flattening prior is related to the noninformative prior, in
that all hyperparameters are set to a common value. The
effect is to smooth estimates toward a uniform table in which
all cell probabilities are equal. For mode-finding algorithms
such as EM, a prior with common value greater than 1 is
flattening; for DA, a common value that is greater than 0 is
flattening. However, Schafer (1997, page 253) warns that for
nonlinear parameters, common prior values close to 0 can
cause problems.

A flattening prior is often useful when the contingency table is
sparse. In such cases, model parameters may be inestimable
or lie on the boundary of the parameter space. A flattening
prior can help ensure that the mode is unique and lies in the
interior of the parameter space. Since a uniform table implies
no relationship between variables, smoothing toward a
uniform table is conservative; it does not increase the chance
of concluding relationships among variables when they do not
exist.

Since flattening priors are used in sparse data situations, care
must be taken not to inadvertently smooth the data too much.
More specifically, sparse data situations imply that the sample
size n is small relative to the number of cells D . If we think of
43

Chapter 4 Fitting a Missing Data Model
the hyperparameters as imaginary prior counts, even small
values can result in an effective prior sample size that is
greater than the actual sample size.

• A data-dependent prior is used to smooth estimates toward a
model of mutual independence among the variables, leaving
the marginal distributions unaffected (Fienberg and Holland,
1970, 1973). This is calculated as follows. For each factor Yk ,

estimate the probabilities P̂ Yk ik=() of the levels ik from the

completely observed data for that factor. If cell d has the level

combination y1 y2 … yp, , ,() , estimate the cell d probability

by

θd
ˆ P̂ Yk yk=()

k 1=

p

∏= .

The number of prior observations allocated to cell d is then

given by n0Θ
ˆ

d , where n0 is the desired total number of prior

observations. For the DA algorithm, this is the data-

dependent prior for cell d : αd n0θ̂d= . For EM, add 1 to this

quantity.

In applying any of these priors, Schafer (1997) recommends
conducting a sensitivity analysis by applying several priors to see if
and how the choice of prior affects inferences. When the goal is to
help cure inestimable parameters or estimates on the boundary,
Schafer (1997) warns against compromising the integrity of the
observed data by adding more prior information than prior beliefs
support. Instead, he recommends simplifying the model by
eliminating variables or imposing loglinear constraints.

The
Conditional
Gaussian
Model

The conditional Gaussian model (CGM) handles missing data when
some of the variables are factors and others are numeric. This arises,
for example, in the analysis of covariance and logistic regression with
continuous predictors.
44

Missing Data Models
Model

Let W1 W2 … Wp, , , be factor variables and let Z1 Z2 … Zq, , , be

numeric variables in which values are recorded for n cases. Thus, the
complete data form an n p q+()× data frame Y W Z(,)= . The rows
are assumed to be:

• Independent and identically distributed, and

• Distributed according to a general location model (Olkin and
Tate, 1961), or more descriptively as a conditional Gaussian
model.

The conditional Gaussian model is best described in terms of the
marginal distribution of W and the conditional distribution of Z
given W , as follows. The information in W is equivalent to a
contingency table with D cells, where D is the number of level
combinations:

D dj
j 1=

p

∏= .

Here, dj is the number of levels for the factor variable Wj . If the

sample size is assumed fixed, the set of D cell frequencies (or counts)
has a multinomial distribution. The parameters of the distribution are
the D probabilities that a case falls into each of the D cells of the
contingency table.

Given W , the conditional distribution of Z is Gaussian. Each case
falls into one of the D cells of the contingency table defined by W .
The distribution of the continuous variables for the cases that fall into
cell d is conditionally Gaussian with mean μd and covariance Σ .

Note that the means vary from cell to cell, but the covariance matrix
is common to all cells. For a single binary factor variable, the CGM is
the model that underlies classical discriminant analysis.

Restricted models

The number of parameters in the unrestricted conditional Gaussian
model is:

D 1–() Dq q q 1+() 2⁄+ + .
45

Chapter 4 Fitting a Missing Data Model

.

In this equation, D is the number of cells in the contingency table
defined by W and q is the number of numeric variables in Z . Note
that D affects not only the number of cell parameters but also the
number of mean parameters Dq . The value of D increases quickly
with both the number of factor variables and the number of levels in
each factor variable. The unrestricted CGM is feasible only when the
sample size n is large relative to D . When data are sparse relative to
the size of the model, more cells are likely to be empty and the
parameters related to the empty cells are inestimable.

The number of parameters can be reduced by restricting the
parameter sets in two possible ways:

• Loglinear constraints on the cell probabilities, and

• Multivariate analysis of variance (MANOVA) for the numeric
variables Z with effects defined by the factor variables W .

Loglinear constraints are discussed in the section The Loglinear
Model on page 41. They are specified in Spotfire S+ functions for the
CGM identically to the way they are specified in the loglinear model
fitting function. See the section Spotfire S+ Implementation on page 48

The remainder of this discussion focuses on the MANOVA model for
the numeric variables Z . First, note that the model for Z given W
may be written as a standard multivariate regression:

Z Uμ ε+= ,

where U is an n D× matrix. Each row of U is a dummy variable
indicating which cell the case falls into: if case i falls into cell d , the

i th row of U is 1 in position d and 0 elsewhere. The matrix μ is

D q× and has rows that are the means of the cells. The error ε is an
n q× matrix whose rows have independent Gaussian distributions

with mean 0 and covariance Σ .

The means μ vary freely among the cells. A restricted model is

obtained by parametrizing μ in terms of a smaller number of

regression coefficients β :

μ Aβ= .
46

Missing Data Models

Here, A is a fixed matrix of dimension D r× and β is r q× . The
multivariate regression model now becomes:

Z UAβ ε+=

Taking A to be the D D× identity matrix gives the unrestricted
model as a special case.

You can create A as you would a design matrix for a factorial
ANOVA (Schafer 1997, page 343). The rows of A correspond to
possible level combinations of the factor variables. Columns
represent the main effects and possibly interactions. Creating a design
matrix is simplified in Spotfire S+ by using formulas and specifying
contrasts, as shown in the section Specifying a Restricted Model on
page 152.

Prior distribution

The likelihood factors as a product of a multinomial distribution
involving W and a conditional Gaussian distribution for Z given W .
By applying independent prior distributions for the parameters of
each distribution, the parameter sets remain independent in the
posterior distribution.

In principal, the same prior distributions discussed in the sections The
Gaussian Model on page 39 and The Loglinear Model on page 41 can
be used. In practice, however, it may be difficult to quantify prior
knowledge about the Gaussian model parameters. A noninformative
prior for these parameters is the only option allowed in the Spotfire S+
functions for fitting a CGM.

In sparse data situations, the posterior distribution may be improper
or the Gaussian parameters from certain cells may be poorly
estimated. Rather than trying to stabilize the inferences through
informative priors, Schafer (1997; pages 341, 348) recommends
restricting the model. In case of problems, simplify the model by
using a design matrix that has fewer columns.

For the multinomial portion of the model, apply a Dirichlet prior
distribution. See the section The Loglinear Model on page 41 for
details.
47

Chapter 4 Fitting a Missing Data Model
Spotfire S+ IMPLEMENTATION

This section describes the functions in S+MISSINGDATA that fit the
models introduced in the section Missing Data Models on page 39.
Table 4.1 lists the available fitting functions for each model.

Table 4.1: The model fitting functions available in S+MISSINGDATA.

Model Functions Description

Gaussian mdGauss

emGauss

daGauss

The mdGauss function estimates the parameters of a
Gaussian model, with or without missing values in the
data.

The emGauss and daGauss functions fit the model using the
EM and DA algorithms, respectively.

Loglinear mdLoglin

emLoglin

daLoglin

The mdLoglin function estimates the parameters of a
loglinear model, with or without missing values in the
data.

The emLoglin and daLoglin functions fit the model using
the EM and DA algorithms, respectively.

Conditional Gaussian mdCgm

emCgm

daCgm

The mdCgm function estimates the parameters of a
conditional Gaussian model, with or without missing
values in the data.

The emCgm and daCgm functions fit the model using the EM
and DA algorithms, respectively.

The output of all model fitting functions is an object of class
"missmodel". This is a list with two components, paramIter and
algorithm.

• The paramIter component contains parameter iterates.
Depending on the model used, the paramIter component is
an object of class "Gauss", "Loglin", or "Cgm". A paramIter
object is a matrix in which the i th row is the set of parameters
produced by the i th iteration of the algorithm. In the DA
algorithm, this sequence is used to assess convergence and
produce point estimates, standard errors, confidence intervals,
and other inferential quantities.
48

Spotfire S+ Implementation
• The algorithm component contains information about the
fitting algorithm that produced the iterates in paramIter.
Depending on the algorithm used, the algorithm component
is an object of class "em" or "da". An algorithm object
describes aspects of the algorithm such as the number of
iterations and the value of the objective function (log-
likelihood or posterior) at the termination of the algorithm.

All model fitting functions take data as input in the form of a matrix,
data frame, preproccessed object (see the section Preprocessing Data
on page 35), or another missmodel object.

Fitting a
Gaussian
Model

The main wrapper function for the Gaussian model is mdGauss. It
estimates the parameters of a Gaussian model, with or without
missing values in the data. Missing data options are specified through
the argument na.proc; Table 4.2 lists the possible values for this
argument.
Table 4.2: Possible values for the na.proc argument to the mdGauss function.

Value of na.proc Description

"fail" Prints an error message stating that there are
missing values and stops the program.

"omit" Creates a rectangular data set by eliminating any
cases with at least one missing value, and then
estimates parameters using this reduced, complete
data set.

"em" Estimates the parameters using the EM algorithm.

"da" Estimates the parameters using the DA algorithm.

S+MISSINGDATA also includes the lower level functions emGauss and
daGauss, which fit a Gaussian model using a specific algorithm. The
emGauss function implements EM while daGauss implements DA.
The main wrapper function calls either emGauss or daGauss, but you
may also call them directly; emGauss is equivalent to calling mdGauss
with na.proc="em", and daGauss is equivalent to calling mdGauss with
na.proc="da".
49

Chapter 4 Fitting a Missing Data Model
All three functions for fitting the Gaussian model have a prior
argument that specifies the hyperparameters of the normal inverted-
Wishart distribution. The following are possible values for prior:

• One of the character strings "ml", "noninformative", or
"ridge". When prior="ml", no prior is specified and
maximum likelihood estimates are produced. Specifying
prior="ridge" sets the scale hyperparameter of the inverted-
Wishart distribution to a diagonal matrix of observed
variances with degrees of freedom equal to 1.

To specify a different scale hyperparameter or different
degrees of freedom, use the function dataDepPrior (for “data-
dependent prior”). This is a generic function with methods for
preGauss and preLoglin objects (see page 35).

• Output from the function priorGauss, which allows you to
explicitly supply the hyperparameters. The priorGauss
function has the arguments tau, mean, df, and scale. See the
on-line help file for more details.

The default value for prior is the noninformative prior. When you
give a missmodel object to one of the model fitting functions, the prior
used to produce that object is applied instead of the default, unless
prior is explicitly set.

Control parameters that influence behavior of the EM or DA
algorithms are specified through the control argument, which is
governed by algorithm-specific functions. Convergence criteria for
EM are specified through the emGauss.control function, while
criteria for DA are specified through daGauss.control. For example,
convergence occurs in one of three ways for emGauss.control:

• The maximum relative change in the estimates is less than the
first element in the tolerance argument. The default value of
tolerance[1] is 0.001.

• The relative change in the log–likelihood is less than the
second element in the tolerance argument. By default, this
criterion is not used.

• A maximum number of iterations is reached, as determined
by the maxit argument. The default value is Inf.
50

Spotfire S+ Implementation
These values can be specified directly as a list to the control
argument of mdGauss. For example, to change the maxit criterion to
2000 and accept the default values of the other control parameters,
use either of the following in a call to mdGauss:

control = emGauss.control(maxit = 2000)

control = list(maxit= 2000)

Fitting a
Loglinear
Model

The model fitting functions for a loglinear model are analogous to
those described for the Gaussian model in the previous section. The
wrapper function mdLoglin estimates the parameters of the loglinear
model, with or without missing values in the data. Missing data
options are specified through the argument na.proc, which has the
values described in Table 4.2. The lower level functions emLoglin and
daLoglin fit the model using the EM and DA algorithms,
respectively; they are equivalent to calling mdLoglin with
na.proc="em" and na.proc="da".

The functions mdLoglin, emLoglin, and daLoglin all accept the
argument prior, which specifies the hyperparameters of the Dirichlet
distribution. The following are possible values for prior:

• One of the character strings "ml", "noninformative", or
"data.dependent". When prior="ml", no prior is specified
and maximum likelihood estimates are produced. Specifying
prior="data.dependent" calls the function dataDepPrior,
which is a generic function with methods for preLoglin and
preGauss objects (see page 35). For preLoglin objects, you
must supply the argument nPriorObs, which is the total
number of prior observations; this is referred to as n0 in the

section The Loglinear Model on page 41.

• The output object from the function priorLoglin.

• A vector that explicitly defines the Dirichlet hyperparameters.
The length of the vector equals the number of distinct
combinations of the variables’ factor levels. The ordering is
such that the first variable varies the fastest, then the second
variable, and so on. Structural zeroes must be coded as
missing values (NAs). If a single numeric value is given to
prior, its value is replicated for all cells in the contingency
table.
51

Chapter 4 Fitting a Missing Data Model
The default value for prior is the noninformative prior. When you
give a missmodel object to one of the model fitting functions, the prior
used to produce that object is applied instead of the default, unless
prior is explicitly set.

Table 4.3 summarizes values of the cell hyperparameters for different
priors. For the data-dependent prior, n0 is the total number of prior

observations and θ̂d is the cell probability estimated under
independence using the observed data.
Table 4.3: Values of the cell hyperparameters for different priors.

Prior EM Algorithm DA Algorithm

maximum likelihood c 1= c 0=

noninformative c 1= c 1 2⁄=

data-dependent αd 1 n0θ̂d+= αd n0θ̂d=

flattening c 1> c 0>

Control parameters that influence behavior of the EM or DA
algorithms are specified through the control argument, which is
governed by algorithm-specific functions. Convergence criteria for
EM are specified through the emLoglin.control function, while
criteria for DA are specified through daLoglin.control. For example,
the arguments to daLoglin.control include:

• niter, which sets the number of iterations. The default value
is 1.

• seed, which sets the seed required by the random number
generator used by the algorithm. The default is .Random.seed.

• save, which specifies the parameter iterates to return as a row
in the paramIter component of the missmodel object. You can
choose, for example, to throw away some of the early iterates.
52

Spotfire S+ Implementation
Another possibility is to thin the iterates by saving only a
subsequence of them. The default behavior throws away the
first 10 percent of the iterates.

• monotone, a logical value that determines whether a monotone
algorithm is used. A monotone algorithm potentially saves a
computation resources and is appropriate when the
missingness pattern is (nearly) monotone. By default,
monotone=FALSE.

• trace, a logical value that determines whether information is
printed during the course of the algorithm. By default,
trace=FALSE.

These values can be specified directly as a list to the control
argument of mdLoglin. For example, to change the monotone criterion
to TRUE and accept the default values of the other control parameters,
use either of the following in a call to mdLoglin:

control = daLoglin.control(monotone = T)

control = list(monotone = T)

The loglinear model fitting functions also accept the argument
margins, which specifies loglinear constraints (if any). The margins
argument refers to the marginal totals to be fit, and can be specified in
one of three ways:

• A list of integers representing the variables. For example,
margins=list(1:2, 3:4) fits the 1,2 margin (summing over
variables 3 and 4) and the 3,4 margin in a four way table. This
fits main effects for each variable and the two-way interactions
between variables 1 and 2, and 3 and 4.

• A list of the names of the variables. For example,
margins=list(c("V1","V2"), c("V3","V4")) also fits the 1,2
margin and the 3,4 margin in a four way table, if the variable
names are "V1","V2", "V3", and "V4".

• An S-PLUS formula. For example, margins=~V1:V2 + V3:V4
specifies the same model described in the previous two cases.
The argument frequency to mdLoglin may be included as the
dependent variable in the formula, as in frequency~V1:V2 +
V3:V4.
53

Chapter 4 Fitting a Missing Data Model
If margins is not specified, a saturated model is fit if the data object is
a matrix, data frame, or preLoglin object. If the data is a missmodel
object, margins defaults to the margins used to fit the missmodel
object.

Fitting a
Conditional
Gaussian
Model

The model fitting functions for a conditional Gaussian model are
entirely analogous to those described for the Gaussian and loglinear
models of the previous sections. The wrapper function mdCgm
estimates the parameters of the conditional Gaussian model, with or
without missing values in the data. Missing data options are specified
through the argument na.proc, which has the values described in
Table 4.2. The lower level functions emCgm and daCgm fit the model
using the EM and DA algorithms, respectively; they are equivalent to
calling mdCgm with na.proc="em" and na.proc="da". Control
parameters for the fitting algorithms are specified through the
control argument to mdCgm. See the on-line help files for
emCgm.control and daCgm.control for details.

Several arguments to these fitting functions behave the same as those
for the loglinear model. For details, see the on-line help for mdCgm,
emCgm, and daCgm.
54

CONVERGENCE OF DATA
AUGMENTATION
ALGORITHMS 5

Overview 56

Parameter Simulation 57

Multiple Imputation 58

Practical Considerations for Missing Data Problems 60
Starting Values 60
S-PLUS Functions 61
55

Chapter 5 Convergence of Data Augmentation Algorithms
OVERVIEW

The goal of Monte Carlo Markov Chain (MCMC) methods is to
sample values from a convergent Markov chain in which the limiting
distribution is the true joint posterior of quantities of interest. In
practice, you need to determine when the algorithm has converged.
That is, you must determine when the samples are representative of
the stationary distribution of the Markov chain can be used to
estimate characteristics of the distribution of interest.

Theoretical convergence rates involve laborious and sophisticated
mathematics that must be repeated for each model. In addition, the
bounds of such rates can be so loose as to be impractical. Instead,
S+MISSINGDATA uses statistical analysis, called convergence diagnostics,
on the generated samples to assess convergence. The diagnostics for
assessing convergence vary according to the method of inference
being used.

This chapter discusses diagnostics used for both parameter simulation
and multiple imputation. In conclusion, we discuss practical
considerations for missing data problems, including starting values
and the implementation of convergence diagnostics in
S+MISSINGDATA.
56

Parameter Simulation
PARAMETER SIMULATION

In parameter simulation, the goal is to accurately estimate
characteristics of the posterior distribution P θ Yobs[] , such as its
moments and quantiles. Convergence is given by the law of large
numbers and occurs when the sample summaries are sufficiently
close to the posterior quantities they estimate.

To reduce bias due to starting values, samples within an initial burn-in
period are thrown away. The length of this period varies according to
how fast the algorithm converges to the parameters of the target
distribution.

To estimate a quantity g g θ()= of interest such as a point estimate,
standard error, interval estimate, or p-value, collect iterates

gk 1+ gk 2+ … gk n+, , , .

Here, k is the burn-in period and n is the Monte Carlo sample size. If

k is large enough to ensure stationarity and n k⁄ is large enough for
the law of large numbers to apply, then the sample quantities estimate
the corresponding posterior quantities (for example, the posterior
mean E g Yobs[]). The burn-in period k should be chosen large

enough to make gk
 practically independent of g0

. To determine k ,
Schafer (1997) recommends looking at time series and autocorrelation

function plots of gt{ } .

After convergence, the following should apply:

• Time series plots should not show a trend, nor should iterates
k steps apart have more than negligible correlation. See
Schafer (1997), page 121 for examples.

• Autocorrelation function (ACF) plots should die out. The
sample ACFs should fall within approximate 0.05-level
critical values for testing that the ACFs are zero. See Schafer
(1997), page 122 for examples.
57

Chapter 5 Convergence of Data Augmentation Algorithms
MULTIPLE IMPUTATION

In multiple imputation, the goal is to generate Bayesianly proper
multiple imputations. These are independent realizations of
P Ymis Yobs[] , the posterior predictive distribution of the missing data

under some complete-data model and prior.

The DA algorithm simulates values of Ymis that have P Ymis Yobs[] as

their stationary distribution. In practice, M imputations are produced
either with one long chain or several chains. The working notions of
convergence differ depending on whether one or several chains are
used, as we discuss below. In both cases, however, the main problem
is to approximate the burn-in period k . As in parameter simulation,
samples within an initial burn-in period are discarded to reduce bias
due to starting values.

Note

As discussed in the section Multiple Imputation Using DA on page 23, it is easier to monitor
convergence using the parameter sequence rather than the imputed data sequence.

• Single chain. Here, imputations are obtained by
subsampling the long chain, taking every k th iterate, for
example. The value k must be large enough so that the
dependence between imputations is negligible. To determine
k , Schafer (1997) recommends looking at time series and ACF
plots of scalar functions of θ , the distribution parameter of
interest.

• Several chains. Here, imputations are obtained by
simulating M independent chains of length k and keeping the
last values of Ymis from each chain. The value k must be
large enough so that the imputations are independent of the
starting values and starting distribution.

For the M chains, at each step t there are M replicate values of
the distribution parameter θ . Denote these by θ *:t() . If
stationarity has been achieved by step t , then θ *:t() is an iid
58

Multiple Imputation
sample from P θ Yobs[] . To determine k , Schafer (1997)
recommends monitoring summaries of the distribution of
θ *:t() . Some scalar functions of θ to consider are sample
moments, quantiles, and density estimates. Presumably, these
do not change after stationarity is achieved, although if M is
small there is likely to be sampling variability.
59

Chapter 5 Convergence of Data Augmentation Algorithms
PRACTICAL CONSIDERATIONS FOR MISSING DATA
PROBLEMS

So far, we have discussed assessing convergence of the DA algorithm
in general. Our main goal is to provide tools that work quickly and
reliably for the current methods and models used to handle missing
data. To quote Schafer (1997) (page 120):

In typical missing-data scenarios addressed by this book, fractions of
missing information are moderate and data augmentation algorithms tend
to converge quickly. Pathological behavior such as slow convergence or
nonexistence of a stationary distribution usually means that the model is
too complicated (i.e. has too many parameters) to be supported by the
observed data, and the problem should probably be reformulated. For our
purposes, the most sensible diagnostics are those that can be implemented
quickly and easily, providing an informal but reliable assessment of
whether the situation is normal or pathological.

Since the rate of convergence of both the EM and DA algorithms is
governed by the fraction of missing information, Schafer (private
communication) suggests that the number of iterations needed for
EM to converge gives a conservative estimate of the number of
iterations needed for DA. Therefore, for missing data applications, it
may suffice to use ten times the number of iterations needed for EM
to converge and then look at:

1. Time series plots for each parameter (parameter iterates
versus iteration number);

2. An autocorrelation plot for each parameter;

3. An autocorrelation plot of the worst linear function , discussed
below.

Starting Values The rate of convergence to stationarity for DA partly depends on the
starting values or starting distribution. Schafer (1997) recommends
using starting values that are near the center of the posterior. For
example, use a maximum likelihood estimate or posterior mode
obtained from running an EM algorithm.

To facilitate this, objects of class "missmodel" returned by the EM
fitting functions emGauss, emLoglin, and emCgm may be used as input
to a DA algorithm. For example, the missmodel object returned by
60

Practical Considerations for Missing Data Problems
emLoglin can be used as data input to daLoglin. Similarly, objects of
class "missmodel" returned by the wrapper functions mdGauss,
mdLoglin, and mdCgm can be given back to the wrapper functions as
input. For example, the object created by calling mdLoglin with
na.proc="em" can be used as input to mdLoglin again, this time
specifying the DA algorithm instead of EM.

For multiple chains, Gelman and Rubin (1992) recommend starting
values that are overdispersed (exhibit greater variability) relative to
P θ Yobs,[] . This results in a conservative estimate of the number of
iterations needed to achieve stationarity. It also reduces the chance of
being misled if the posterior is so oddly shaped that single runs tend
to get stuck in small regions.

In practice, Schafer (1997) recommends using the bootstrap method
to obtain an overdispersed starting distribution. For example, repeat
the following M times:

1. Draw with replacement n* rows from Yobs to obtain a

bootstrap sample Yobs
b

.

2. Calculate θb
ˆ θ̂ Yobs

b()= .

If we take n* to be smaller than n , say n* n
2
---= , then θ̂b tends to be

overdispersed relative to P θ Yobs,[] . Care is required, however, since
a reduced data set size may lead to problems such as colinearity.

S-PLUS
Functions

Several S+MISSINGDATA functions help diagnose convergence of a
DA chain. The tsplot and generic plot functions produce univariate
time series plots of the parameter iterates. Similarly, acf and
daAcfPlot calculate and plot autocorrelation function plots of the
parameter iterates. The daAcfPlot function is a simpler version of
acf; it avoids the default title and does not calculate cross-
correlations.

It can also be useful to plot functions of the parameter iterates. The
function worstLinFun calculates the worst linear function of the
parameters , which is the inner product of the parameter iterates with
the eigenvector returned by worstFraction. Intuitively, this function
61

Chapter 5 Convergence of Data Augmentation Algorithms
has a high rate of missing information and is useful to monitor
because the rate of convergence to stationarity depends partly on the
fraction of missing information.
62

IMPUTATION 6
Overview 64

Imputing Data 65
The Gaussian Model 65
The Loglinear Model 66
The Conditional Gaussian Model 67

The Class of impute Objects 68
Extracting Imputations 69
Replacing Imputations 70
Manipulating impute Objects 70
63

Chapter 6 Imputation
OVERVIEW

As discussed in Chapter 2, the DA algorithm can be used to produce
multiple imputations under one of the models discussed in Chapter 4:
Gaussian, loglinear, and conditional Gaussian. Applied within the
framework of multiple imputation, these models are more widely
applicable than would appear at first glance. This is because multiple
imputation is fairly robust to model misspecification, especially with
small fractions of missing information (Ezzati-Rice et al. (1995), Rubin
and Schenker (1986), Schafer (1997)). Multiple imputation under
these models thus applies more or less routinely to a wide variety of
missing data problems.

This chapter discusses the functions and objects in S+MISSINGDATA
that support multiple imputation. The main functions discussed are
impGauss, impLoglin, and impCgm, corresponding to each of the
models from Chapter 4. All three imputation functions return objects
of class "impute", which are designed to store multiple imputations
efficiently with the original data. The impute objects work with a
variety of utility functions available in S+MISSINGDATA.

In principal, you can generate multiple imputations by using
nonparametric procedures, or by using parametric models that are
different than the ones provided in S+MISSINGDATA. As long as your
custom procedures and models return an object of class "impute",
you may use the capabilities described in the next two chapters to
perform multiple complete data analyses and consolidate results.
64

Imputing Data
IMPUTING DATA

The following functions for imputing data are available in
S+MISSINGDATA:

• The impGauss function produces multiple imputations under
the Gaussian model.

• The impLoglin function produces multiple imputations under
the loglinear model.

• The impCgm function produces multiple imputations under the
conditional Gaussian model.

These functions are generic with methods for preGauss, preLoglin,
and preCgm objects, respectively; see the section Preprocessing Data
on page 35 for descriptions of these objects. The impGauss,
impLoglin, and impCgm functions also have methods for the missmodel
objects described in Chapter 4, as well as default methods for
matrices and data frames.

All three functions for imputing data return an object of class
"impute", which by default is a data frame with columns of class
"miVariable". See the section The Class of impute Objects on page
68 for details on miVariable. Alternatively, you can set the argument
return.type="matrix" in a call to impGauss, impLoglin, or impCgm. In
this case, an miVariable version of a matrix is returned instead of a
data frame. The form of the return object usually depends on the
whether the original data is a data frame or matrix. Preserving the
form of the original data in the impute object makes the commands
for subsequent complete data analyses parallel to those used when the
data has no missing values.

The form of the starting values, given by the argument start in the
impGauss, impLoglin, and impCgm functions, determines how many
chains are run. The possible values for start are model-specific, as
we discuss below.

The Gaussian
Model

For one long chain, the start argument of the impGauss function is a
list with two components: a vector that gives the mean and a matrix
that gives the covariance matrix.
65

Chapter 6 Imputation
For multiple chains, start may take several forms:

• A list of lists. The inner lists must all have a vector component
containing the mean and a matrix component containing the
covariance. Each list of parameters starts a separate chain.

• An object of class "Gauss", which is the paramIter
component of a missmodel object created by one of the
functions mdGauss, emGauss, or daGauss. A Gauss object is a
matrix in which each row contains one set of parameter
estimates; each row then starts a separate chain. Typically, a
Gauss object contains a limited set of iterations, obtained
either through subsetting or by specifying the save argument
to emGauss.control or daGauss.control.

• A list of Gauss objects. In this case, the last row of each Gauss
object starts a separate chain.

The Loglinear
Model

For one long chain, the start argument of the impLoglin function is a
vector of cell probabilities. The length of start equals the number of
distinct combinations of levels in the factor variables. The ordering is
such that the first variable varies the fastest, then the second variable,
and so on. Starting values should be zero for cells that are structural
zeros. For one long chain, you must also supply the argument
nimpute, which gives the number of imputations.

For multiple chains, start may take several forms:

• A list with vector components that contain cell probabilities.
Each component starts a separate chain.

• An object of class "Loglin", which is the paramIter
component of a missmodel object created by one of the
functions mdLoglin, emLoglin, or daLoglin. A Loglin object is
a matrix in which each row contains one set of cell
probabilities; each row then starts a separate chain. Typically,
a Loglin object contains a limited set of iterations, obtained
either through subsetting or by specifying the save argument
to emLoglin.control or daLoglin.control.

• A list of Loglin objects. In this case, the last row of each
Loglin object starts a separate chain.
66

Imputing Data
The
Conditional
Gaussian
Model

For one long chain, the start argument of the impCgm function is a list
with the following components:

• mu, which is matrix of cell means. Each column in the matrix
represents one numeric variable and each row represents a
cell. The ordering of the rows is equivalent to the ordering in
the pi component.

• sigma, which is a variance-covariance matrix of the numeric
variables.

• pi, which is vector of cell probabilities. The length of pi
equals the number of distinct combinations of the factor
variable levels. The ordering is such that the first variable
varies the fastest, then the second variable, and so on. Starting
values should be zero for cells that are structural zeros.

For multiple chains, the start argument may take several forms:

• A list of lists. The inner lists must all have a vector component
containing the mean, a matrix component containing the
covariance, and a vector component containing the cell
probabilities. Each list of parameters starts a separate chain.

• An object of class "Cgm", which is the paramIter component
of a missmodel object created by one of the functions mdCgm,
emCgm, or daCgm. A Cgm object is a matrix in which each row
contains one set of parameter estimates; each row then starts a
separate chain. Typically, a Cgm object contains a limited set of
iterations, obtained either through subsetting or by specifying
the save argument to emCgm.control or daCgm.control.

• A list of Cgm objects. In this case, the last row of each Cgm
object starts a separate chain.
67

Chapter 6 Imputation

s

s
THE CLASS OF IMPUTE OBJECTS

Calculating and storing multiple imputations involves two types of
impute objects: miVariable and miList. An miVariable object has
three slots:

• The Data slot contains the original data object, including
missing values.

• The whichNA slot is a numeric vector that indicates which
positions in the data are missing. The order of whichNA
matches the order of the rows in the Imputations slot.

If the original data object is a vector, matrix, or array, whichNA
is a vector with each position represented as a single integer.
Note that positions are not represented by matrix subscripts.
For example, for a matrix with 10 rows and 2 columns that
has missing values in positions [2,1] and [3,2], the whichNA
slot contains the values 2 and 13. See the Spotfire S+ Programmer’
Guide for details on vector subscripts of matrices and arrays.

• The Imputations slot is a data frame that contains the actual
imputations. There are as many rows in Imputations as the
length of whichNA, and it has M columns. Each column is a
variable with the same class and many of the same attributes
as the original object.

An miList object is a list of length M with the SV3 class "miList" (see
the Spotfire S+ Programmer’s Guide for a general discussion on SV3 versu
SV4 classes). It has one component for each set of imputations. Each
component contains a complete data object , which is either complete
data obtained by filling in missing values using a set of imputations, or
the results of an analysis using a single set of complete data.
Components of an miList object typically have the same structure;
for example, they might all be lm objects.

Any impute object must have names for the imputations. These are
the names of the components of the miList list or the column names
of the Imputations slot in an miVariable.

Any miVariable object can be converted to a corresponding miList
object, though this may result in loss of information. For example, for
a categorical variable in which all of the M random imputations are
the same for one data value, it is not possible to determine from an
68

The Class of impute Objects
miList that the data value was originally missing. The converse is not
always true, however. Only an miList object with components that
have the same length, names, attributes, and atomic mode may be
converted to an miVariable object. The generic function
miVariablePossible determines whether an object can be converted
to an miVariable; you may write your own methods for this function.

Generally, miVariable objects should be used for data and miList
objects for the results of analyses. Results of analyses that can be
treated as data, such as a vector of residuals from a regression, are
usually created and stored as miList objects. However, it is possible
to convert them to miVariable objects.

Both miList and miVariable objects may be components of a list. In
particular, variables in a data frame may be miVariable objects.
These types of objects may be contained in an attribute, though this
has not been well tested and is not currently recommended. These
objects can also be contained in a slot if the definition for the class
allows this.

Extracting
Imputations

Extracting complete-data objects from an impute object is handled by
the miSubscript function. This operation is similar to regular S-PLUS
subscripting. In fact, it is implemented using subscripting for miList
objects. For example, the command

> miSubscript(x,3) <- miSubscript(y,3)

is equivalent to

> x[[3]] <- y[[3]]

when x and y are both miList objects.

Extraction for miVariable objects involves replacing missing values
in the Data slot by a set of imputations, then returning the Data slot as
the complete-data object. The miSubscript function performs these
steps. For example, suppose crime.imp is an miVariable object. To
extract the second set of completed data for crime.imp, type:

> y <- miSubscript(crime.imp, 2)

Extraction for lists (or objects with slots) containing miList and
miVariable objects proceeds recursively. Each miList or miVariable
component is replaced with the corresponding extracted complete-
data object, then the whole list (or object with slots) is returned.
69

Chapter 6 Imputation
Replacing
Imputations

The reverse of extraction involves replacing complete-data objects in
an impute object. This begins by converting the new object to an
miList object, if it was not one already. This holds for ordinary and
miVariable objects, as well as for lists or objects with slots containing
impute objects. The appropriate component of the miList is then
replaced. For example, if x is an impute object, then

> miSubscript(x,2) <- value

converts x to an miList and then replaces the second component.

An ordinary object with no imputations must first be converted to an
miList object by replicating the object into each component of a new
miList object. This is usually accomplished by calling the as.miList
function. For example,

> x <- as.miList(x,
+ Names = paste("Imputation", 1:5, sep=""))
> miSubscript(x,2) <- value

connverts x to an miList with 5 imputations, then replaces the
second.

Manipulating
impute Objects

The miList and miVariable objects can be created using the miList
and miVariable functions, respectively.

To determine the number, names, or existence of imputations, use
miReps, miNames, and is.mi functions, respectively. These functions
operate recursively, searching for imputations in any list component
or slot of an object. The is.miVariable and is.miList existence
functions are also useful. The latter has an optional argument
recursive; if recursive=TRUE, the is.miList function searches for
miList objects recursively.

To convert between the two types of impute objects, use the
as.miList and as.miVariable functions. In the latter case, the
original object is returned if it is not possible to convert it to an
miVariable object.

Use miTrim to simplify an impute object. This replaces miList with
miVariable objects wherever possible, and replaces both with
ordinary objects if all imputations are identical. The miTrim function
also restructures recursive objects so that the imputations are stored at
the lowest levels. For example, an miList containing ordinary lists
70

The Class of impute Objects
can be converted to a list of miList objects, provided that this does
not result in an object that has a class and contains impute objects
where they are not allowed for that particular class.

The miPrint function may be used to print an miVariable or a data
frame containing one or more miVariable columns. This provides a
formatted printout that shows the imputations more clearly than
would otherwise occur with regular printing.
71

Chapter 6 Imputation
72

ANALYZING COMPLETED
DATA SETS 7

Overview 74

Analysis Functions 75
The miEval Function 75
The miApply Function 76
Additional Arguments 77
Compatibility of miEval and miApply 77
73

Chapter 7 Analyzing Completed Data Sets
OVERVIEW

The process of statistical analysis may involve creating graphics,
fitting models, investigating diagnostics, and comparing results. If you
use multiple imputation to handle missing values, you still perform a
similar sequence of analysis steps. However, you need to perform the
steps on several data sets, each of which is completed by filling in the
missing values using one set of imputations. Each completed data set
gives a different result; the results must then be collected as described
in this chapter and combined as described in the next chapter.

The S+MISSINGDATA library provides two functions to facilitate the
process of performing analyses and collecting results:

• The miApply function is analogous to S-PLUS functions such as
apply and sapply. It is useful when the complete data analysis
can be expressed as a function applied to one set of data.

• The miEval function is analogous to the S-PLUS function eval.
If the complete data analysis involves more than one set of
data or requires an S-PLUS expression, then miEval is the
function to use.

In this chapter, we discuss miApply and miEval in detail. Both
functions usually produce miList objects in which each component is
the result of one complete data analysis.
74

Analysis Functions
ANALYSIS FUNCTIONS

The miEval
Function

The miEval function evaluates a user-supplied expression. Suppose,
for example, that the commands for complete data are:

> mean(x, trim = 0.2)
> any(x + y > z)

For multiply imputed data, the commands are:

> miEval(mean(x, trim = 0.2))
> miEval(any(x + y > z))

or

> miEval({
+ print(mean(x, trim = 0.2))
+ any(x + y > z)
+ })

Similarly, the assignment

> meanx <- mean(x, trim = 0.2)

corresponds to either

> meanx <- miEval(mean(x, trim = 0.2))

or

> miEval(meanx <- mean(x, trim = 0.2))

However, the latter command is less efficient.

The miEval function handles simple expressions internally and passes
control to a more complicated version of the function if any
assignments are detected in the expression. It handles nearly arbitrary
S-PLUS expressions, including loops, function calls, and assignments.
It does not support S-PLUS expressions that include the following
functions, though in some cases they work:

assign, get, <<-, rm, remove, eval, attach, detach
75

Chapter 7 Analyzing Completed Data Sets
The miEval function does not provide support for functions that
access data directly, without being passed through the argument list.
This becomes a problem when, for example, the function is called by
another function. However, miEval has an advantage in this situation:
the given expression is evaluated in the calling frame, so that data that
would be visible if the expression was evaluated outside of miEval is
also visible inside of miEval. If the data is an impute object, the
appropriate set of imputations is not extracted. The expression given
to miEval can include explicit assignments to frame 1 to handle these
situations.

The miApply
Function

An alternative to miEval is miApply, which is a member of the apply
family of functions. In the simplest call, you provide an impute object,
a function, and any additional arguments to be passed to the function;
the additional arguments should not contain imputations.

For example, if a complete data set is named x, the following
computes its mean:

> meanx <- mean(x, trim = 0.2)

For an impute object x, the corresponding call is:

> meanx <- miApply(x, mean, trim = 0.2)

In some analyses, the impute object is not the first argument to a
function. This occurs when you pass an impute object as the data
argument to S-PLUS modeling functions (lm(y~x, data=myData), for
example). In these cases, miApply can be used in one of two ways.

1. Provide all arguments to the function by name, including
formula:

> miApply(myData, lm, formula = y~x)

2. Use a wrapper function:

> miApply(myData, function(data) lm(y~x, data))

Note that miApply cannot be used for expressions; you must use a
wrapper function instead. For example, the expression x+y/z
becomes the following:

> miApply(list(x=x, y=y, z=z),
+ function(l) l$x + l$y / l$z))
76

Analysis Functions
You must also use a wrapper function when calling functions that
require multiple impute objects. For example, the command

> anova(fit1, fit2)

corresponds to the following:

> miApply(list(fit1=fit1, fit2=fit2),
+ function(X) anova(X$fit1, X$fit2))

Additional
Arguments

Both miEval and miApply have an optional logical argument
simplify. If simplify=TRUE and all imputations (components) of the
result are identical, then the returned miList is simplified to an
ordinary object with a single component.

The miEval function has an optional argument vnames, which is a
vector of names for all impute objects used, including assigned objects
that will become impute objects. For example, the command

> miEval(lm(y~x, data=myData), vnames = "myData")

specifies that only myData (and not y or x) is an impute object. In this
simple example, it is not strictly necessary to specify vnames because
miEval contains code to handle modeling functions like lm. If the
expression passed to miEval is a call to a function for which one
argument is a formula and another has the name data, then variable
names in the formula are assumed to refer to columns in the data and
not impute objects. This intelligence is limited, however. For example,
in the command

> miEval(coef(lm(y~x, data=myData)), vnames = "myData")

it is necessary to specify vnames because the expression is a call to
coef, which does not have a formula or a data argument. In general,
it is safest to always supply vnames when calling functions that handle
their arguments symbolically.

Other optional arguments are described in the help files for the
miEval and miApply functions.

Compatibility
of miEval and
miApply

In most cases, the objects produced by miEval and miApply (when
called with analogous expressions) are compatible. When the
expressions contain modeling functions such as lm or glm, however,
the objects produced by miEval and miApply are slightly different.
77

Chapter 7 Analyzing Completed Data Sets
This is because modeling functions return objects that contain call
attributes. We recommend using miEval in these cases because some
subsequent analyses will be easier.

For example, suppose m.kyphosis is a data frame similar to the built-
in data set kyphosis, but containing variables with multiple
imputations. A glm analysis can be performed using either of the
following commands:

> m.fit1 <- miApply(m.kyphosis, function(xx)
+ glm(Kyphosis ~ Age + Start + Number,
+ family = binomial, data = xx))

> m.fit2 <- miEval(glm(Kyphosis ~ Age + Start + Number,
+ family = binomial, data = m.kyphosis))

Both m.fit1 and m.fit2 are miList objects with components that are
glm objects. The call attributes for the first components of each are,
respectively:

glm(Kyphosis ~ Age + Start + Number, family = binomial,
data = xx)

glm(Kyphosis ~ Age + Start + Number, family = binomial,
data = miSubscript(m.kyphosis, 1))

Note the differences in the data arguments. The expression
miSubscript(m.kyphosis, 1) is valid outside miEval, while xx is
simply a dummy name. In fact, the data expression in the call
attribute for m.fit2 actually produces the completed data set used in
calculating the first component of m.fit2.

Objects produced by miEval can be used by miApply, but the
converse is not always true. Indeed, results from miApply cannot
always be used easily by miApply. For example, both of the following
commands work as expected:

> miApply(m.fit2, predict, type = "terms")
> miEval(predict(m.fit2, type = "terms"))

However, the same commands using m.fit1 fail because the data
cannot be found. Instead, you must do one of the following:

> miApply(m.fit1, predict, type = "terms",
+ X.frame1 = list(xx=m.kyphosis))
78

Analysis Functions
> miEval({
+ assign("xx", m.kyphosis, frame = 1)
+ predict(m.fit1, type = "terms")
+ })

This ensures that the appropriate data sets are assigned to frame 1
where they are sure to be found. The first completed data set from
m.kyphosis is assigned to frame 1 with the name xx before the first
analysis is run, then the second completed data set is assigned there,
and so on. Note that replacing the dummy name xx with m.kyphosis
when creating m.fit1 would be dangerous, because some code would
not know whether to use the original m.kyphosis (which contains
multiple imputations) or its completed data sets with the same names.
Results could be transparently incorrect.
79

Chapter 7 Analyzing Completed Data Sets
80

CONSOLIDATING ANALYSES 8
Overview 82

Simple Statistics 83

Inferences 84
Normal and Students-t Inferences 84
Chi-Square and F Inferences 86
Likelihood Ratio Inferences 90
81

Chapter 8 Consolidating Analyses
OVERVIEW

The final step in an analysis of multiple imputations is consolidating
results from all imputations to produce a single result. If the result
from a single set of imputations is an estimate with no associated
standard error or other inferences, then you can use the miMean
function, which computes the average result across imputations.
Likewise, the miVar function computes the variance across
imputations.

More interesting is the case where you need to combine not only
estimates but also standard errors or other inferences. The final result
must encompass both the uncertainty associated with individual
estimates, such as standard errors for linear regression coefficients, as
well as the additional uncertainty due to missing data. The miMeanSE
function combines point and variance estimates that are used for
inference assuming asymptotic normality (Rubin (1987), Chapter 3)
or Students-t (Barnard and Rubin (1999); Hesterberg (1998)). The
functions miChiSquareTest, miFTest, and miLikelihoodTest combine

inferences based on χ2 (Li et al. (1991)), F (Hesterberg (1998); Li,
Ragunathan, and Rubin (1991)), and likelihood ratio statistics,
respectively.
82

Simple Statistics
SIMPLE STATISTICS

S+MISSINGDATA includes two functions for calculating simple
statistics across imputation sets. The miMean function calculates the
mean across imputation sets and the miVar function calculates the
variances:

> miMean(m.coef)
> miVar(m.coef)

Both functions return vectors, matrices, or arrays, depending on the
shape of the original data. For positions without missing data, the
variances across imputations are zero.
83

Chapter 8 Consolidating Analyses
INFERENCES

Normal and
Students-t
Inferences

Many inferences are based on estimates, standard errors, and
approximate normality. The miMeanSE function consolidates both
estimates and their standard deviations or standard errors by
averaging the estimates and obtaining adjusted standard errors. The
rules implemented in miMeanSE are based on those described in Rubin
(1987) for combining normal-based inferences, and in Barnard and
Rubin (1999) and Hesterberg (1998) for combining Students-t
inferences. In this section, we describe the computations underlying
miMeanSE.

Let θ be a scalar parameter and θ̂ its estimate with standard

deviation σ
θ̂

. Normal-based confidence intervals with no missing

data are of the form θ̂ zα 2⁄ σ
θ̂

± , where zα 2⁄ is a quantile of the

normal distribution. With multiple imputations, denote the estimates

and standard errors as θ̂m and σm , for m 1 2 … M, , ,= . The

consolidated estimate is obtained by averaging the individual
estimates:

θ 1
M
----- θ̂m∑= .

The within-imputation variance averages the estimated complete data
variances:

σ
2 1

M
----- σ̂m

2
∑= .

The between-imputation variance is the variance of the complete data
point estimates:

B 1
M 1–
-------------- θ̂m θ–()

2
∑= .

Finally, the consolidated variance combines the within and between
variances:

σ̂θ
2

σ
2

1 M 1–
+()B+= .
84

Inferences
Inferences are then based on Students-t quantiles θ tν α 2⁄, σ̂θ± ,

where the degrees of freedom ν reflect the uncertainty in estimating
the standard error.

For small sample sizes, where Students-t distributions are used for
inferences in the absence of missing data, estimates and standard
errors are consolidated as above except that estimated standard errors

Ŝθ are used in place of standard deviations. Degrees of freedom

combine the degrees of freedom for Ŝθ as an estimate of σθ and the

additional uncertainty due to multiple imputations. The final degrees
of freedom is not greater than what is obtained in the absence of
missing data.

As input, miMeanSE accepts the estimates, standard errors, and degrees
of freedom computed for each completed data set. Other possible
arguments include the degrees of freedom and the sample size. The
degrees of freedom should not normally vary across imputations, as
this may indicate violations of assumptions. To obtain normal-based
inference, let the degrees of freedom be infinite (df=Inf).

For example:

> m.sumfit <- miApply(m.fit, summary)
> miMeanSE(m.coef,
+ se = miEval(m.sumfit$coef[,2]),
+ df = miEval(m.fit$df, simplify=T),
+ n = nrow(m.data))

This returns a list containing the consolidated estimates, standard
errors, and degrees of freedom. In addition, it returns the relative
increase in variance due to nonresponse and the estimated fraction of
missing information due to nonresponse.

The miMeanSE function also accepts variance-covariance matrices in
place of standard errors. In this situation, it produces adjusted
variance-covariance matrices using methods described in Hesterberg
(1998). The results differ from those obtained using methods in Rubin
(1987) and Schafer (1997). In particular, the square roots of the
diagonal elements of the resulting variance-covariance matrix are the
same as the standard errors produced above, and results are more
stable with small numbers of imputations.
85

Chapter 8 Consolidating Analyses
An example command is:

> miMeanSE(m.coef),
+ cov = miEval(sumfit$cov.unscaled * sumfit$sigma^2),
+ df = miEval(m.fit$df, simplify=T),
+ n = nrow(m.data))

The miMeanSE function handles certain standard data structures
automatically. For example, since m.fit is an miList with
components that are lm objects, miMeanSE automatically extracts the
regression coefficients and their variance-covariance matrices and
consolidates them. The above example could have been written more
simply as:

> miMeanSE(fit)

This allows you to call miMeanSE without first calculating sumfit and
extracting the coefficients, degrees of freedom, and covariance
matrices.

Chi-Square and
F Inferences

When complete data inferences are based on χ2 or F statistics, there
are two cases to consider:

• The estimates and variance-covariance estimates are available
from each set of imputations; or

• Only the χ2 or F statistics are available.

In the first case, consolidate the estimates and variance-covariance
matrices using miMeanSE and calculate an F statistic using the formula:

θ θ0–()
T
Σ
ˆ 1–

θ θ0–() df1()⁄ .

Here, θ is the consolidated estimate, θ0 is the null hypothesis value
(or the consolidated version of the estimates obtained under a

composite null hypothesis), Σ
ˆ

 is the consolidated variance-covariance

matrix, and df1 is the numerator degrees of freedom. The
denominator degrees of freedom are obtained from the output of

miMeanSE. Note that even if complete-data inferences are based on χ2
statistics, the consolidated inferences are based on F statistics because
of uncertainty in the variance-covariance estimate.
86

Inferences
For example, suppose we test whether a factor variable with 6 levels is
significant in a linear model. This test involves an F test with 5
degrees of freedom (5 contrasts). The null hypothesis is that the
coefficients for the 5 contrasts are all zero. First, create an miVariable
object from the built-in data set fuel.frame:

Set the seed for reproducibility.
> set.seed(0)
> m.fuel.frame <- fuel.frame

Create missing values in m.fuel.frame.
> for(j in c(1:3,5))
+ m.fuel.frame[[j]][sample(1:60, 2*j)] <- NA
> m.fuel.frame <- RandomImpute(m.fuel.frame)
> m.fuel.frame[[4]] <- 100/m.fuel.frame[[3]]

Next, fit the linear model:

> m.fit <- miEval(lm(Fuel ~ Weight + Disp. + Type,
+ data = m.fuel.frame))

The goal is to test whether the categorical variable Type is significant.
The null hypothesis is that all coefficients for the Type variable are
zero.

The following commands calculate consolidated estimates and
variance-covariance matrices for m.fit:

> m.C <- miMeanSE(m.fit)
> coefType <- m.C$est[4:8]
> covType <- m.C$cov[4:8, 4:8]
> m.F <- coefType %*% solve(covType, coefType)/5

The denominator degrees of freedom vary across dimensions:

> m.C$df[4:8])

 Type1 Type2 Type3 Type4 Type5
 35.56862 16.85757 28.7291 45.00113 5.512315

Therefore, calculate the p-value conservatively using the smallest
degrees of freedom:

> 1-pf(m.F, 5, min(m.C$df[4:8]))
[1] 0.3541523
87

Chapter 8 Consolidating Analyses
When only the χ2 or F statistics are available, the functions in
S+MISSINGDATA follow Schafer (1997, page 115) and Li et al. (1991),
with natural extensions to F statistics. The functions miChiSquareTest

and miFTest accept as input the scalar χ2 or F statistics calculated on
each completed data set and the degrees of freedom for the tests.
They return the consolidated F statistic, numerator and denominator
degrees of freedom, estimated average relative increase in variance
due to nonresponse, and approximate p-value corresponding to the F
statistic. The p-value should be used for screening only; the actual
p-value may be larger or smaller by a factor of two.

For example, we might use the F statistics computed by the anova
function to compare linear models with and without a factor variable.
To continue the preceding example:

> m.fit2 <- miEval(lm(Fuel ~ Weight + Disp.,
+ data = m.fuel.frame))
> m.anov <- miEval(anova(m.fit2, m.fit))
> miFTest(x = miEval(m.anov$"F Value"[2]),
+ df1 = miEval(m.anov$Df[2]),
+ df2 = miEval(m.anov$"Resid. Df"[2]))

$Fstatistic:
[1] 0.2926602

$df1:
[1] 5

$df2:
[1] 5.758413

$r:
[1] 0.3130781

$p:
[1] 0.9001019

Both procedures fail to reject the null hypothesis that all coefficients
for the Type variable are zero. However, note that the p -value
obtained by combining F statistics is larger than the p -value based on
averaging parameter estimates (obtained earlier). The p -value here is
based on a less powerful test.
88

Inferences
To see why, consider a similar problem. Suppose that X1 X2 …Xn, ,

are iid N μ 1,() random variables. The null hypothesis H0 is that

μ 0= ; the alternative hypothesis H1 is that μ 0≠ .

• Case 1: The X values are observed. In this case, the test uses

the consolidated estimate X of μ .

• Case 2: Only Yi Xi
2

= is observed (these are equivalent to

χ2
 test statistics). In this case, the test uses the statistic Yi∑ .

Both procedures give exact tests, where the probability of Type I
error is exactly equal to α . However, any single set of data can reach
different conclusions. The first procedure, which averages individual
parameter estimates, is more powerful.

The next example consolidates chi-square statistics from a loglinear
analysis of a contingency table. First, create an impute object from
the built-in data set barley:

Set the seed for reproducibility.
> set.seed(0)
> m.barley.exposed <- barley.exposed

Create 10 random missing values.
> w <- sample(1:120, 10)
> m.barley.exposed[w] <- NA
> imputes <- matrix(rpois(40, barley.exposed[w]+0.1), 10)
> m.barley.exposed <- miVariable(m.barley.exposed,
+ data.frame(imputes))

Fit a loglinear model to each completed data set:

> ml <- miApply(m.barley.exposed, loglin,
+ margin = list(1:2, c(1,3)))

Finally, consolidate the chi-square statistics:

> miChiSquareTest(miApply(ml, "[[", "pearson"),
+ df = miApply(ml, "[[", "df"))
89

Chapter 8 Consolidating Analyses
Likelihood
Ratio
Inferences

The final consolidation function that we discuss in this chapter,
miLikelihoodTest, combines likelihood ratio inferences. There are
two ways to call this function. The first is

miLikelihoodTest(m.data, FUN, df1, estimates, estimates0,
...)

Here, m.data is an miVariable object, and estimates and estimates0
are the maximum likelihood parameter estimates under the
alternative and null hypotheses, respectively. The df1 argument is the
degrees of freedom for the test, FUN is a function that calculates the
likelihood ratio statistic (twice the likelihood ratio) for the data
between estimates and estimates0, and ... are additional
arguments to FUN.

For example, the following commands illustrate miLikelihoodTest
when the parameters are the mean and variance of a normal
distribution. The null hypothesis is that the mean is zero:

> x <- rnorm(20)
> x[2:5] <- NA
> x <- miVariable(x, Imputations =
+ split(sample(x[-(2:5)], 12, replace=T), rep(1:3,4)))

> estimates <- miEval(c(mean(x), mean((x-mean(x))^2)))
> estimates0 <- miEval(c(0, mean(x^2)))
> f1 <- function(dat, e1, e0, ...) {
+ n <- length(dat)
+ 2*((-n*log(e1[2])/2 - sum((dat-e1[1])^2)/(2*e1[2])) -
+ (-n*log(e0[2])/2 - sum((dat-e0[1])^2)/(2*e0[2])))
+ }

> miLikelihoodTest(x, f1, 1, estimates, estimates0)

The parameter estimates are assumed to be approximately normally
distributed and the estimates are averaged in the course of
computations. This is not always appropriate. Indeed, if the
parameter space is nonconvex, the average of the parameter
estimates may lie outside of it. In any case, the procedure is not
invariant under transformations of the parameters.

The second way to call miLikelihoodTest is:

miLikelihoodTest(data, FUN, df1, ...)
90

Inferences
Here, the df1 and ... arguments are defined as before, but FUN is a
function that calculates parameter estimates internally for both the
alternative and null hypotheses and returns the likelihood ratio
statistic. Furthermore, the data argument must be such that the
completed data sets can be combined into a single large data set using
rbind, and FUN must be able to take this large data set as input and
compute likelihood ratios. The log-likelihood statistic for the large
data set formed by stacking M copies of a single data set should be M
times the statistic obtained for the single data set. The procedure
followed in this case is invariant under transformations of the
parameters.

For example:

> f2 <- function(dat, ...) {
+ n <- length(dat)
+ mu0 <- 0
+ mu1 <- mean(dat)
+ var0 <- mean(dat^2)
+ var1 <- mean((dat-mu1)^2)
+ 2*((-n*log(var1)/2 - sum((dat-mu1)^2)/(2*var1)) -
+ (-n*log(var0)/2 - sum((dat-mu0)^2)/(2*var0)))
+ }

> miLikelihoodTest(x, f2, 1)

In either case, the function returns the likelihood ratio F statistic,
numerator and denominator degrees of freedom, and an estimate of
the average increase in variance due to missing data.
91

Chapter 8 Consolidating Analyses
92

EXAMPLE 1: THE GAUSSIAN
MODEL 9

Overview 94
The Cholesterol Data 94

Exploring Patterns of Missingness 96
Summarizing and Plotting 96
Preprocessing Data 99

Model Fitting 100
Fitting a Model Using EM 100
Fitting a Model Using DA 103

Assessing Convergence 105
Autocorrelation Plots 105
Fractions of Missing Information 108
Conclusions 110

Analysis Using Parameter Simulation 111

Generating Multiple Imputations Through DA 114

Omitting Cases with Missing Values 119

Summary 120
93

Chapter 9 Example 1: The Gaussian Model
OVERVIEW

This chapter provides detailed examples illustrating the Gaussian
model fitting process, in which all variables with missing values are
numeric. Chapter 4 briefly describes the Gaussian model, the
associated priors, and the functions in S+MISSINGDATA used to fit it.
In this chapter, we illustrate the S+MISSINGDATA functions using the
cholesterol example from Schafer (1997). Note that the algorithms in
S+MISSINGDATA differ from those in Schafer’s book, which involve
sweep operators; details are in Fraley (1998).

Multivariate normality is often assumed in analyzing continuous data.
It is therefore natural to treat missing data using the same
assumptions. The Gaussian model handles missing data even when
data sets deviate from normality, however. Some reasons are:

• Transformations of the variables may make normality more
tenable.

• If some variables are clearly non-normal but complete, the
Gaussian model can be used if the incomplete variables may
be modeled as conditionally Gaussian, given a linear function
of the complete variables. In this case, inferences must be
made about the parameters of the conditional distribution
only.

• When used as a model for multiple imputation, the Gaussian
model is applied only to the missing part of the data. Multiple
imputation inferences are robust to assumptions on the
imputation model as long as the fraction of missing
information is small.

The
Cholesterol
Data

Schafer (1997) illustrates the Gaussian model using a data set of 28
patients treated for heart attacks at a Pennsylvania medical center.
The original data are given in Table 9.1 of Ryan and Joiner (1994).
For each patient, serum-cholesterol levels are measured 2 and 4 days
after the attack. For 19 patients, a measurement is also taken 14 days
after attack.

The data from the cholesterol study is included in S+MISSINGDATA
as the built-in data set cholesterol. It consists of three variables,
chol2, chol4, and chol14.
94

Overview
> cholesterol

 chol2 chol4 chol14
 1 270 218 156
 2 236 234 NA
 3 210 214 242
 4 142 116 NA
 5 280 200 NA
 6 272 276 256
 7 160 146 142
 8 220 182 216
 9 226 238 248
10 242 288 NA
11 186 190 168
12 266 236 236
13 206 244 NA
14 318 258 200
15 294 240 264
16 282 294 NA
17 234 220 264
18 224 200 NA
19 276 220 188
20 282 186 182
21 360 352 294
22 310 202 214
23 280 218 NA
24 278 248 198
25 288 278 NA
26 288 248 256
27 244 270 280
28 236 242 204

For additional details, see the online help file for cholesterol.

The goals of the study are to estimate three parameters:

• Mean cholesterol level at 14 days;

• Average decrease in cholesterol level from data 2 to day 14;

• Percentage decrease in cholesterol level from day 2 to day 14.

We accomplish these goals in this chapter using the EM algorithm,
the DA algorithm, and multiple imputation. The latter two techniques
provide confidence intervals for each of the estimated parameters.
95

Chapter 9 Example 1: The Gaussian Model
EXPLORING PATTERNS OF MISSINGNESS

Summarizing
and Plotting

In this section, we use the miss function and its associated methods to
explore the cholesterol data. As discussed in Chapter 3, the miss
function is designed to facilitate exploratory data analysis for data sets
that include missing values. It creates an object of class "miss", which
by default rearranges the rows and columns of the data according to
the numbers and patterns of missing values.

To create a miss object from the cholesterol data, type:

> cholesterol.miss <- miss(cholesterol)
> cholesterol.miss

Summary of missing values
 3 variables, 28 observations, 2 patterns of missing

values
 1 variables (33%) have at least one missing value
 9 observations (32%) have at least one missing value
For more detailed information use summary(x)

Note that omitting cases with missing values would throw out nearly a
third (32%) of the observations.

Use summary for more detailed information. Here is the annotated
output from summary for the cholesterol.miss object:

> summary(cholesterol.miss)

Summary of missing values
 3 variables, 28 observations, 2 patterns of missing

values
 1 variables (33%) have at least one missing value
 9 observations (32%) have at least one missing value

Breakdown by variable
 V O name Missing % missing
 1 3 chol14 9 32
V = Variable number used below, O = Original number (before

sorting)
No missing values for variables:
chol2 chol4
96

Exploring Patterns of Missingness
The three variables in cholesterol are sorted by the number of
missing values. The chol14 variable is the only one with missing
values, and so it is the only one summarized in the Breakdown by
variable section of the output. The chol14 variable is the first
variable after reordering, and thus a 1 appears in the V column of the
summary. It is the third variable in the original data set, so that a 3
appears in the O column. It has 9 missing values, which is 32% of the
data.

Of the 28 rows in the original cholesterol data, there are two distinct
patterns of missing values. These are shown in the next section of the
output from the summary function:

Patterns of missing values (variables in columns, patterns
in rows)

Pattern Variables
 1
 1 .
 2 m

Observed values are displayed with a period and missing values with
an m. The output indicates that the first pattern has no missing values
while the second pattern has missing values only in variable 1. As we
previously noted, the first variable after reordering is chol14.

Each pattern detected by the miss function corresponds to one or
more rows in the original data set. The correspondence between rows
and patterns is shown in the next section of output from summary:

Pattern #Missing #Obs Observations
 1 0 19 1 3 6:9 11:12 14:15 17 19:22 24 26:28
 2 1 9 2 4:5 10 13 16 18 23 25

Patterns of missing values (variables in columns,
observations in rows)

Obs. Variables
 1
 1 .
 2 m
 3 .
 4 m
 5 m
 6 .
 7 .
 8 .
97

Chapter 9 Example 1: The Gaussian Model
 9 .
 10 m
 11 .
 12 .
 13 m
 14 .
 15 .
 16 m
 17 .
 18 m
 19 .
 20 .
 21 .
 22 .
 23 m
 24 .
 25 m
 26 .
 27 .
 28 .

You can view an image plot of the cholesterol.miss object by using
the plot.miss function. Figure 9.1 displays the plot created by the
following command:

> plot(cholesterol.miss)
98

Exploring Patterns of Missingness
Figure 9.1: Image plot of the cholesterol.miss object.

25

20

15

10

5

1

O
bs

er
va

tio
ns

 (
re

or
de

re
d)

chol2 chol4 chol14

Preprocessing
Data

In the next section, we fit models to the cholesterol data using both
the EM and DA algorithms. To save computation resources when
fitting these models, preprocess the cholesterol data by creating a
preGauss object as follows:

> cholesterol.s <- preGauss(cholesterol)

For additional details on the preGauss function, see page 35.
99

Chapter 9 Example 1: The Gaussian Model
MODEL FITTING

Fitting a Model
Using EM

To fit a Gaussian model to the cholesterol data using the EM
algorithm, type:

> cholesterol.EM <- mdGauss(cholesterol.s, prior = "ml",
+ na.proc = "em")

Iterations of EM:
Iteration ParChange
 1 2.2853
 2 0.3018
 3 0.1211
 4 0.0523
 5 0.0233
 6 0.0105
 7 0.0048
 8 0.0022
 9 0.0010
 10 0.0005

Note that the cholesterol.s object defined in the section
Preprocessing Data on page 99 is used here to save computation
resources. No prior is specified, and maximum likelihood estimates
are therefore produced. Since no starting values are given, the default
starting values are the mean and diagonal matrix of variances for the
data set of completely observed cases.

The EM algorithm converges by the tenth iteration. The maximum
relative change in parameter values and likelihood values is listed
above by iteration number in the ParChange column.

The mdGauss function is a wrapper in which you specify the desired
algorithm through the na.proc argument. Alternatively, you can call
emGauss directly to produce the same model:

> cholesterol.EM <- emGauss(cholesterol.s, prior = "ml")

The paramIter component of the cholesterol.EM object is a matrix
in which the rows are the parameter iterates for each iteration. The
paramIter matrix is an object of class "Gauss", which enables
S+MISSINGDATA to adapt to and format accordingly the different
structures of the parameter estimates.
100

Model Fitting
> cholesterol.EM$paramIter

========== iteration = 9 ================
Mean
 chol2 chol4 chol14
 253.9286 230.6429 222.2284

Covariance
 chol2 chol4 chol14
 chol2 2194.995 1454.617 835.233
 chol4 1454.617 2127.158 1514.498
chol14 835.233 1514.498 1950.798
========== iteration = 10 ================
Mean
 chol2 chol4 chol14
 253.9286 230.6429 222.2329

Covariance
 chol2 chol4 chol14
 chol2 2194.9949 1454.617 835.3333
 chol4 1454.6173 2127.158 1515.0270
chol14 835.3333 1515.027 1951.5629
==

By default, only the last two iterates are saved for the EM algorithm.
This can be modified through the argument last to emGauss.control.
For example, to save the last four iterates, add the following to the
argument list in the original call to emGauss:

control = emGauss.control(last= 4)

The algorithm component of cholesterol.EM is an object of class
"em":

> cholesterol.EM$algorithm

final log-likelihood = -307.9951

difference in the log-likelihood (or log posterior density)

= 5.1745e-06

maximum absolute relative change in parameter estimate on

last iteration = 0.0004649684
101

Chapter 9 Example 1: The Gaussian Model
The rate of convergence for the EM algorithm is governed by the
fraction of missing information. You can use the worstFraction
function with the cholesterol.EM object to compute the worst
fraction of missing information and its corresponding eigenvector. See
Fraley (1999) for details on the algorithms implemented in
worstFraction.

> worstFraction(cholesterol.EM)

$direction:
Mean
 chol2 chol4 chol14
 0 0 -0.3081905

Covariance
 chol2 chol4 chol14
 chol2 0 0 0.0000000
 chol4 0 0 0.0000000
chol14 0 0 0.9050186
==

$fraction:
[1] 0.4265396

Since there are no missing values in either chol2 and chol4, the
parameters corresponding to these variables converge in a single step
and the fractions of missing information are zero.

To compute the worst fraction of missing information using the power
method, type:

> worstFraction(cholesterol.EM, method = "power")

$direction:
 chol2 chol4 chol14 chol2.chol2 chol2.chol4 chol4.chol4
 0 0 -0.4331057 0 0 0

 chol2.chol14 chol4.chol14 chol14.chol14
 0.002251207 0.90134 0.0007351246

$fraction:
[1] 0.4657516

For details on the power argument, see the online help file for
worstFraction.Gauss.
102

Model Fitting
Before we calculate the three parameters of interest for the cholesterol
study, recall that they are stored in the paramIter component of
cholesterol.EM, which is a matrix that contains one row for each
iteration. Therefore, each set of parameter estimates is a vector. For a
Gaussian model, the most natural form for the parameter estimates is
a mean vector and a variance-covariance matrix. To obtain this, set
the argument expand=TRUE in the paramIter function as follows:

> cholesterol.EM.ex <- paramIter(cholesterol.EM,
+ expand = T)

Finally, calculate the parameters of interest with the commands
below.

• Mean cholesterol level on day 14:

> cholesterol.EM.ex$mu[3]
 chol14
 222.2329

• Average decrease in cholesterol level from day 2 to day 14:

> dec.2to14 <- cholesterol.EM.ex$mu[1] -
+ cholesterol.EM.ex$mu[3]
> dec.2to14
 chol2
 31.69567

• Percentage decrease in cholesterol level from day 2 to day 14:

> 100*dec.2to14/cholesterol.EM.ex$mu[1]
 chol2
 12.48212

These estimates are summarized in Table 9.2 on page 120, along with
those obtained using data augmentation and multiple imputation.

Fitting a Model
Using DA

It is also possible to estimate the three parameters of interest in the
cholesterol study via parameter simulation. To accomplish this, it is
generally a good idea to start a DA algorithm near the center of the
posterior obtained from running an EM algorithm. See the section
Using the EM and DA Algorithms in Conjunction on page 25 for
additional details.
103

Chapter 9 Example 1: The Gaussian Model
The following command starts from the maximum likelihood
estimate computed in the previous section by the EM algorithm. It
runs a single chain for 1100 iterations, and then discards the first 100:

> cholesterol.DA <- daGauss(cholesterol.EM, prior = "non",
+ control = list(save=101:1100))

The paramIter component of the cholesterol.DA object is similar to
the one for the cholesterol.EM object, except that more iterates may
be saved (as specified by the save argument to daGauss.control).
The default is to save about one tenth of the total iterations.

The algorithm component of cholesterol.DA prints as follows:

> cholesterol.DA$algorithm

seed = 13 46 10 7 30 0 6 9 59 60 1 1
parameter estimates saved for iterations: 101:1100
104

Assessing Convergence
ASSESSING CONVERGENCE

Autocorrelation
Plots

As discussed in the section Practical Considerations for Missing Data
Problems on page 60, it may suffice to look at the following to assess
convergence of the EM and DA model fitting algorithms:

1. Time series plots for each parameter (parameter iterates
versus iteration number);

2. An autocorrelation plot for each parameter;

3. An autocorrelation plot of the worst linear function .

We begin with the plot method for the missmodel class of objects.
This method is not typically useful if the EM algorithm has been
used. However, it can help diagnose convergence in the case of data
augmentation.

By default, the plot method produces time series plots of all
variables. In the cholesterol example, there are nine parameters;
since there are no missing data in the first two variables, however, the
five parameters associated with those variables are not worth
monitoring. Instead, set the argument select=T and choose the mean
and variance of the third variable:

> plot(cholesterol.DA, select = T)

Figure 9.2 shows the resulting time series.
105

Chapter 9 Example 1: The Gaussian Model
Figure 9.2: Time series plots for parameters that are related to cholesterol measurements on day 14, the only
variable in cholesterol with missing values.

Iteration Number

ch
ol

14

200 600 1000

19
0

21
0

23
0

25
0

Iteration Number

ch
ol

14
.c

ho
l1

4

200 600 1000

20
30

40
50

60

Next, plot the autocorrelation function for the same parameters.

> daAcfPlot(cholesterol.DA, select = T)

In addition, it is also reasonable to think that parameters of the linear
regression of chol14 on both chol2 and chol4 may also have high
fractions of missing information. See Figure 9.3 for the ACF plots of
all of these parameters.
106

Assessing Convergence
The ACF plots for the parameters of the linear regression are
generated by writing several functions. For the intercept, define the
following function:

fun30.12 <- function(x)
x$mu[3] - x$sigma[3,1:2] %*% solve(x$sigma[1:2,1:2]) %*%

x$mu[1:2]

For the slopes, define the next two functions:

fun31.12 <- function(x)
(x$sigma[3,1:2] %*% solve(x$sigma[1:2,1:2]))[1]

fun32.12 <- function(x)
(x$sigma[3,1:2] %*% solve(x$sigma[1:2,1:2]))[2]

Finally, define the following for the residual standard deviation:

fun33.12 <- function(x)
x$sigma[3,3] - x$sigma[3,1:2] %*%

solve(x$sigma[1:2,1:2]) %*% x$sigma[1:2,3]

As we mention in the section Fitting a Model Using EM on page 100,
you can use the paramIter function to obtain the parameters as a list
of mean vectors and variance-covariance matrices:

> cholesterol.DA.exp <- paramIter(cholesterol.DA, 1:1000,
+ expand = T)

We use the cholesterol.DA.exp object to product the ACF plots in
Figure 9.3. An example of the code needed to produce the plot for the
intercept is:

ACF plot for intercept.
> acf.int <- acf(sapply(cholesterol.DA.exp, fun30.12),
+ lag.max = 100, plot= F)
> acf.int$series <- "Intercept"
> acf.plot(acf.int)
107

Chapter 9 Example 1: The Gaussian Model
Figure 9.3: ACF plots for parameters that are related to cholesterol measurements on day 14. ACF plots for
parameters of the linear regression of chol14 on both chol2 and chol4 are also displayed. These parameters are
conjectured to have high fractions of missing information as well.

Lag

A
C

F

0 20 40 60 80 100

0.
0

0.
4

0.
8

 Series : Day 14 Mean

Lag

A
C

F

0 20 40 60 80 100

0.
0

0.
4

0.
8

 Series : Day 14 S.D.

Lag

A
C

F

0 20 40 60 80 100

0.
0

0.
4

0.
8

 Series : Intercept

Lag

A
C

F

0 20 40 60 80 100

0.
0

0.
4

0.
8

 Series : Slope 1

Lag

A
C

F

0 20 40 60 80 100

0.
0

0.
4

0.
8

 Series : Slope 2

Lag

A
C

F

0 20 40 60 80 100

0.
0

0.
4

0.
8

 Series : Residual S.D

Fractions of
Missing
Information

The rate of convergence for the EM algorithm is governed by the
fraction of missing information. Therefore, we plot the
autocorrelation function of the worst linear function of the parameters
as another visual tool for assessing convergence.
108

Assessing Convergence
See Figure 9.4 for the result of the following:

> wlf <- worstLinFun(cholesterol.DA,
+ worstFraction(cholesterol.EM))
> wlf.acf <- acf(wlf, lag.max = 100, plot = F)
> wlf.acf$series <- "ACF of Worst Linear Function"
> acf.plot(wlf.acf)

Figure 9.4: ACF plot of the worst linear function of the parameters in the cholesterol models.

Lag

A
C

F

0 20 40 60 80 100

0.
0

0.
4

0.
8

 Series : Worst Linear Function
109

Chapter 9 Example 1: The Gaussian Model
Conclusions In summary, the times series plots of this section show no unusual
features. Similarly, the ACF plots indicate rapid convergence and
negligible correlations by lag 20. Based on this evidence, it seems safe
to conclude that the DA algorithm achieves stationarity by 20
iterations. To be safe, discard the first 100 observations:

> cholesterol.DA$paramIter <-
+ cholesterol.DA$paramIter[-c(1:100),]
110

Analysis Using Parameter Simulation
ANALYSIS USING PARAMETER SIMULATION

To draw inferences about the three parameters of interest in the
cholesterol study, first simulate a chain of 5100 iterations and discard
the first 100:

> cholesterol.DA2 <- daGauss(cholesterol.EM, prior = "non",
+ control = list(save=101:5100))
> cholesterol.DA2.exp <- paramIter(cholesterol.DA2, 1:5000,
+ expand = T)

See Figure 9.5 for histograms of the parameters, which are generated
as follows:

Mean cholesterol level on day 14.
> mean.day14 <- sapply(cholesterol.DA2.exp,
+ function(x) x$mu[3])
> hist(mean.day14, prob = T, nclass = 20,
+ ylim = c(0.0, 0.045), main = "Mean of Day 14")

Average decrease in cholesterol level from day 2 to 14.
> decrease <- sapply(cholesterol.DA2.exp,
+ function(x) x$mu[1] - x$mu[3])
> hist(decrease, prob = T, nclass = 20,
+ ylim = c(0.0, 0.045), main = "Decrease")

Percentage decrease in cholesterol level from day 2 to
day 14.
> percent.decrease <- sapply(cholesterol.DA2.exp,
+ function(x) 100 * (x$mu[1] - x$mu[3]) / x$mu[1])
> hist(percent.decrease, prob = T, nclass = 20,
+ ylim = c(0.0, 0.11), main = "Percent Decrease")
111

Chapter 9 Example 1: The Gaussian Model
Figure 9.5: Histograms of the three parameters of interest in the cholesterol study.

180 220 260

0.
0

Mean of Day 14

-20 20 60

0.
0

Decrease

-10 10 30

0.
0

Percent Decrease

0 10 30

0.
0

Likelihood Ratio Test

The estimated mean is obtained as the mean of the empirical
posterior distribution of the simulated parameters. Likewise, the 95%
confidence intervals for the mean are the quantiles of this distribution.
For example:

Point estimate of the mean cholesterol level on day 14.
> mean(mean.day14)
[1] 222.0511

95% confidence intervals for the estimated mean.
> quantile(mean.day14, probs = c(0.025, 0.975))
 2.5% 97.5%
 201.0462 242.2077
112

Analysis Using Parameter Simulation
The estimates and confidence intervals are summarized below in
Table 9.1. See Table 9.2 on page 120 to compare these results with
those obtained using EM and multiple imputation.
Table 9.1: Estimates and confidence intervals given by parameter simulation.

Parameter Estimate Lower Confidence
Bound

Upper Confidence
Bound

mean 222.05 201.05 242.21

difference 31.87 9.01 54.23

percent
decrease

12.48 3.78 20.55
113

Chapter 9 Example 1: The Gaussian Model
GENERATING MULTIPLE IMPUTATIONS THROUGH DA

Data augmentation algorithms can be used to generate multiple
imputations. You may produce multiple imputations either by saving
imputations from fixed intervals of one long chain or by saving the
final imputations of several parallel chains. Gelman and Rubin (1992)
recommend starting parallel chains with the initial values from a
distribution that is overdispersed relative to the observed data
posterior P θ Yobs[] . In practice, Schafer (1997) recommends using

the bootstrap, where the bootstrap sample sizes n* are smaller than

the original sample size n (n* n 2⁄= , for example).

The starting values to the impGauss function can be either a Gauss
object or a list. The following illustrates using the bootstrap to create a
Gauss object:

> start <- matrix(0, 5, 9)
> for (i in 1:5)
+ start[i,] <- paramIter(emGauss(cholesterol,
+ subset = sample(1:28, 14, T), prior = "ml"))[1,]
> class(start) <- "Gauss"

Alternatively, create a list as follows:

> start <- list()
> for (i in 1:5)
+ start[[i]] <- paramIter(emGauss(cholesterol,
+ subset = sample(1:28, 14, T), prior = "ml"))

The diagnostics in the section Assessing Convergence on page 105
indicate that the chain converges to stationarity after 20 iterations.
However, computations are inexpensive with this small data set, so
we run fifty iterations. In the unlikely event that stationarity is not
achieved in fifty iterations, the overdispersed starting values help to
reach conservative inferences.

For example, generate five imputations from five parallel chains using
the five starting values as follows:

> cholesterol.imp <- impGauss(cholesterol, prior = "non",
+ start = start, control = list(niter=50))
114

Generating Multiple Imputations Through DA
To perform inference in this situation, we apply Rubin’s rule for
inference using a normal approximation. Schafer (1997, page 196)
derives the complete data point estimates and standard errors for
each quantity given in the section The Cholesterol Data on page 94.
The following is a function that calculate these estimates:

cholesterol.estimates <- function(x) {
tmp <- x[,3]
mu3 <- mean(tmp)
tmp <- x[,1] - x[,3]
delta13 <- mean(tmp)
tmp <- tmp/mean(x[,1])
tau13 <- 100*mean(tmp)
c(mean.day14 = mu3, decrease = delta13,

percent.decrease=tau13)
}

Next is a function that calculates the standard errors:

cholesterol.se <- function(x) {
tmp <- x[,3]
mu3 <- mean(tmp)
sigma.mu3 <- sqrt(var(tmp)/28)
sigma3 <- var(tmp)
tmp <- x[,1] - x[,3]
delta13 <- mean(tmp)
sigma.delta13 <- sqrt(var(tmp)/28)
tmp <- tmp/mean(x[,1])
tau13 <- 100*mean(tmp)
tmp <- x[,1]
mu1 <- mean(tmp)
sigma1 <- var(tmp)
sigma13 <- var(tmp, x[,3])
sigma.tau13 <- sqrt((100^2/28)*((mu3^2/mu1^4)*sigma1 -

2*(mu3/mu1^3)*sigma13+(1/mu1^2)*sigma3))
c(sigma.mean.day14 = sigma.mu3,

sigma.decrease = sigma.delta13,
sigma.percent.decrease = sigma.tau13)

}

You calculate these quantities for each of the completed data sets with
the following:

> m.cholesterol.estimates <-
+ miEval(cholesterol.estimates(cholesterol.imp))

> m.cholesterol.se <-
+ miEval(cholesterol.se(cholesterol.imp))
115

Chapter 9 Example 1: The Gaussian Model
To better display the complete point estimates and standard errors,
use the miTrim function to convert both m.cholesterol.estimates
and m.cholesterol.se to miVariable objects:

> m.cholesterol.estimates <-
+ miTrim(m.cholesterol.estimates)
> m.cholesterol.se <- miTrim(m.cholesterol.se)

The complete point estimates for each of the five multiply-imputed
data sets are given by:

> m.cholesterol.estimates

 mean.day14 decrease percent.decrease
 NA NA NA

miVariable object with 5 sets of multiple imputations
 1 2 3 4 5
1 224.59486 223.30495 213.21886 221.89287 221.25933
2 29.33371 30.62362 40.70971 32.03570 32.66924
3 11.55195 12.05994 16.03195 12.61603 12.86552

Similarly, the standard deviations are displayed by:

> m.cholesterol.se

 sigma.mean.day14 sigma.decrease sigma.percent.decrease
 NA NA NA

miVariable object with 5 sets of multiple imputations
 1 2 3 4 5
1 9.074410 8.205488 9.148277 8.159244 7.546552
2 10.635970 9.735713 9.981001 10.697924 9.418020
3 3.962884 3.584578 3.654663 3.927144 3.421878

Finally, consolidate inferences with the following commands:

> chol.consolidate <- miMeanSE(m.cholesterol.estimates,
+ m.cholesterol.se , df = Inf)
116

Generating Multiple Imputations Through DA
> chol.consolidate

$est:
 mean.day14 decrease percent.decrease
 219.9349 33.99365 13.38709

$std.err:
 sigma.mean.day14 sigma.decrease sigma.percent.decrease
 8.950076 10.25067 3.782212

$df:
 sigma.mean.day14 sigma.decrease sigma.percent.decrease
 150.7358 259.3694 199.8662

$m:
[1] 5

$r:
 mean.day14 decrease percent.decrease
 0.1946008 0.1417942 0.1647799

$fminf:
 mean.day14 decrease percent.decrease
 0.1737904 0.1308616 0.1499327

Two diagnostics given in this output are:

• r, the relative increase in variance due to nonresponse, and

• fminf, the fraction of missing information.

Point estimates are obtained by accessing the est component of
chol.consolidate:

> chol.consolidate$est

mean.day14 decrease percent.decrease
 220.8542 33.0744 13.02508
117

Chapter 9 Example 1: The Gaussian Model
Confidence intervals are obtained using t-intervals as follows:

Lower confidence bounds.
> chol.consolidate$est -
+ qt(0.975, chol.consolidate$df) *
+ chol.consolidate$std.err

 mean.day14 decrease percent.decrease
 201.3565 10.83281 4.711483

Upper confidence bounds
> chol.consolidate$est +
+ qt(0.975, chol.consolidate$df) *
+ chol.consolidate$std.err

 mean.day14 decrease percent.decrease
 240.3519 55.31598 21.33867
118

Omitting Cases with Missing Values
OMITTING CASES WITH MISSING VALUES

It is also interesting to calculate parameter estimates using only
complete cases:

> cholesterol.omit <- mdGauss(cholesterol,
+ na.proc = "omit")
119

Chapter 9 Example 1: The Gaussian Model
SUMMARY

Table 9.2 shows the estimates and confidence intervals obtained for
each of the methods for handling missing data. In each cell, the order
of the methods is first EM, then DA, and finally multiple imputation.
The Estimate column also shows estimates obtained after omitting
cases with missing values.
Table 9.2: Comparison of answers obtained using EM, DA, multiple imputation,
and deleting cases with missing values.

Parameter Estimate Lower Confidence
Bound

Upper Confidence
Bound

mean 222.23

222.05

220.8542

221.47

NA

201.05

201.36

NA

242.21

240.35

decrease 31.70

31.87

33.07

38

NA

9.01

10.83

NA

54.23

55.32

percent
decrease

12.48

12.48

13.03

14.65

NA

3.78

4.71

NA

20.55

21.34

Note that omitting cases with missing values leads to a drastically
different estimate for the average decrease in cholesterol level from
day 2 to day 14. Thus, there is at least circumstantial evidence that a
complete case analysis is misleading. Figure 9.6 shows that the
complete cases have a higher average cholesterol level than the
incomplete cases, which helps to explain the difference.
120

Summary
Figure 9.6: The average cholesterol level at day 2 is lower for incomplete cases than for complete cases. This
helps to explain the different parameter estimate obtained using complete case analysis versus using EM, DA, or
multiple imputation.

Complete Case Analysis Misleading

2 days 4 days 14 days

22
0

23
0

24
0

25
0

26
0

Complete Cases
Incomplete Cases
121

Chapter 9 Example 1: The Gaussian Model
122

EXAMPLE 2: THE
LOGLINEAR MODEL 10

Overview 124
The Crime Data 124

Exploring Patterns of Missingness 126
Summarizing and Plotting 126
Preprocessing Data 128

Model Fitting 129
Fitting a Model Using EM 129
Fitting a Model Using DA 130

Assessing Convergence 133
Autocorrelation Plots 133
Fractions of Missing Information 135
Conclusions 136

Generating Multiple Imputations Through DA 140

Analyzing Completed Data Sets 142
Analysis Using Multiple Imputation 142
123

Chapter 10 Example 2: The Loglinear Model
OVERVIEW

This chapter provides detailed examples illustrating the loglinear
model fitting process, in which all variables with missing values are
categorical. Chapter 4 briefly describes both the saturated
multinomial model and the loglinear model, as well as the functions
in S+MISSINGDATA used to fit them. In this chapter, we illustrate the
S+MISSINGDATA functions using the crime example from Schafer
(1997). See Schafer’s book for details about this study and descriptions
of the algorithms involved.

The Crime
Data

Schafer (1997, page 45) illustrates the loglinear model using a data set
that represents 641 housing occupants. The original data were
obtained through the National Crime Survey conducted by the U.S.
Bureau of the Census. Housing occupants were intially asked whether
they had been victimized by crimes committed in the previous six
months, and then six months later they were asked the same question.
A total of 641 occupants responded on at least one of the two
occasions.

The data from the crime study is included in S+MISSINGDATA as the
built-in data set crime. It consists of two dichotomous variables,
Visit.1 and Visit.2, each taking on the values Crime-free or
Victim. A third variable provides the number of housing occupants
corresponding to each of the combinations:

> crime

 Visit.1 Visit.2 count
1 Crime-free Crime-free 392
2 Victim Crime-free 76
3 NA Crime-free 31
4 Crime-free Victim 55
5 Victim Victim 38
6 NA Victim 7
7 Crime-free NA 33
8 Victim NA 9
9 NA NA 115

For additional details, see the online help file for crime.
124

Overview
Note that this data set is in a grouped format. This saves space by
representing the data as the unique combinations of values in Visit.1
and Visit.2 with the corresponding frequencies in the count column.
Equivalently, the data can be represented in an ungrouped format
with the following command. This requires 756 rows instead of 9:

> crime.df <- crime[rep(1:9, crime$count), 1:2]

The goal of the study is to determine whether victimization status in
the second period is independent of victimization status in the first
period. In this chapter, we explore this question in three ways:

1. Large sample approximation to the distribution of the
likelihood ratio test under the null hypothesis of
independence. Because of the missing data, an EM algorithm
is used to calculate the maximum likelihood parameter
estimates.

2. Parameter simulation.

3. Multiple imputation.
125

Chapter 10 Example 2: The Loglinear Model
EXPLORING PATTERNS OF MISSINGNESS

Summarizing
and Plotting

In this section, we use the miss function and its associated methods to
explore the crime data. As discussed in Chapter 3, the miss function
is designed to facilitate exploratory data analysis for data sets that
include missing values. Patterns in missing data are reasonably easy to
discern for data in a grouped format, such as crime. This is especially
true when the data set includes a limited number of factors.
Nevertheless, we illustrate the miss function using the ungrouped data
set crime.df.

The miss function creates an object of class "miss", which by default
rearranges the rows and columns of the data according to the
numbers and patterns of missing values. To create a miss object from
the crime.df data, type:

> crime.miss <- miss(crime.df)
> crime.miss

Summary of missing values
 2 variables, 756 observations, 4 patterns of missing

values
 2 variables (100%) have at least one missing value
 195 observations (26%) have at least one missing value
For more detailed information use summary(x)

The output indicates that both variables in crime.df have missing
values. Note that omitting cases with missing values would throw out
26% of the observations.

Use summary for more detailed information. Here is the annotated
output from summary for the crime.miss object:

> summary(crime.miss)

Summary of missing values
 2 variables, 756 observations, 4 patterns of missing

values
 2 variables (100%) have at least one missing value
 195 observations (26%) have at least one missing value
126

Exploring Patterns of Missingness
Breakdown by variable
 V O name Missing % missing
 1 1 Visit.1 153 20
 2 2 Visit.2 157 21
V = Variable number used below, O = Original number (before

sorting)

The two variables in crime.df are sorted by the number of missing
values. The Visit.1 variable has 153 missing values while Visit.2
has 157. Thus, the first row in the output corresponds to Visit.1. It is
the first variable after reordering and is also the first variable in the
original data set, and so a 1 appears in both the V and O columns of
the summary. Likewise, the second row corresponds to Visit.2,
which is the second variable both before and after the reordering.

Of the 756 rows in the original crime.df data, there are four distinct
patterns of missing values. These are shown in the next section of the
output from the summary function:

Patterns of missing values (variables in columns, patterns
in rows)

Pattern Variables
 12
 1 ..
 2 .m
 3 m.
 4 mm

Observed values are displayed with a period and missing values with
an m. The output indicates that the first pattern has no missing values
while the second pattern has missing values only in the first variable.
As we previously noted, the first variable after reordering is Visit.1.
Likewise, the third pattern detected has missing values only in the
second variable (Visit.2), and the fourth pattern has missing values
in both variables.

Each pattern detected by the miss function corresponds to one or
more rows in the original data set. The correspondence between rows
and patterns is shown in the next section of output from summary:

Pattern #missing #Obs Observations
 1 0 561 1:468 500:592
 2 1 42 600:641
 3 1 38 469:499 593:599
 4 2 115 642:756
127

Chapter 10 Example 2: The Loglinear Model
The observations are contiguous because crime.df is created by
stacking patterns in crime.

Preprocessing
Data

In the next section, we fit models to the crime data using both the EM
and DA algorithms. To save computation resources when fitting these
models, preprocess the crime data by creating a preLoglin object as
follows:

> crime.s <- preLoglin(crime,
+ margins = count~Visit.1:Visit.2)

The margins argument identifies the variables so that count is
recognized as the response in this call to preLoglin. For additional
details, see page 35 and the online help file for preLoglin.
128

Model Fitting
MODEL FITTING

Fitting a Model
Using EM

To perform the likelihood ratio test of independence, the likelihood
must be maximized twice: once for the saturated model and once
under the null hypothesis of independence. Since there are missing
values in the crime data set, an EM algorithm is used to maximize the
likelihoods. The maximum likelihood estimates (MLEs) under
independence are obtained as follows:

> crime.EM.ind <- mdLoglin(crime.s,
+ margins = ~Visit.1+Visit.2, na.proc = "em", prior = 1)

Iterations of ECM:
1...2.498457, -589.665968278183
2...0.6356901, -575.88481965762
3...0.1355902, -575.224397116118
4...0.02803836, -575.195583085395
5...0.005763061, -575.194355312622
6...0.00118325, -575.194303240237

Note that the crime.s object defined in the section Preprocessing
Data on page 128 is used here to save computation resources. The
margins argument specifies the independence model. Since no
starting values are given, the default values are taken from the
uniform table; in this example, each of the four probabilities is equal
to 0.25.

The EM algorithm converges by the sixth iteration. The iterations are
listed above under the Iterations of ECM heading. The abbreviation
ECM stands for “Expectation Conditional Maximization,” which is a
type of EM algorithm. See Meng and Rubin (1992) for details.

The mdLoglin function is a wrapper in which you specify the
algorithm through the na.proc argument. Alternatively, you can call
emLoglin directly to produce the same model:

> crime.EM.ind <- emLoglin(crime.s,
+ margins = ~Visit.1+Visit.2, prior = 1)
129

Chapter 10 Example 2: The Loglinear Model
Similarly, the MLEs for the saturated model are obtained with either
of the following:

> crime.EM.sat <- mdLoglin(crime.s,
+ margins = ~Visit.1:Visit.2, na.proc = "em", prior = 1)

> crime.EM.sat <- emLoglin(crime.s,
+ margins = ~Visit.1:Visit.2, prior = 1)

A hierarchical model is assumed, so the formula ~Visit.1:Visit.2 is
equivalent to ~Visit.1*Visit.2 in the margins argument.

Asymptotic analysis

The following command calculates the likelihood ratio test statistic for
testing independence:

> like.ratio.test <- 2*(
+ crime.EM.sat$algorithm$likelihood -
+ crime.EM.ind$algorithm$likelihood)

The asymptotic p -value is given by:

> 1 - pchisq(like.ratio.test, 1)
[1] 4.70321e-07

There is thus strong evidence that victimization status on the two
occasions is related.

Fitting a Model
Using DA

It is also possible to explore via parameter simulation whether
victimization status on the two visits is related; see Schafer (1997, page
252). To accomplish this, it is generally a good idea to start a DA
algorithm near the center of the posterior obtained from running an
EM algorithm. See the section Using the EM and DA Algorithms in
Conjunction on page 25 for additional details.

The following command fits a saturated model using EM under a
noninformative prior:

> crime.EM <- mdLoglin(crime.s,
+ margins = ~Visit.1:Visit.2,
+ na.proc = "em", prior = "n")

Note that prior="n" is equivalent to prior="noninformative" since
partial matching is used. Also equivalent is prior=0.5.
130

Model Fitting
Next, start from crime.EM and run the DA algorithm for 5100
iterations, saving all of them:

> crime.DA <- mdLoglin(crime.EM, na.proc = "da",
+ control = list(save=1:5100))

The paramIter component of the crime.EM object is a matrix in
which the rows are the parameter iterates for each iteration. The
paramIter matrix is an object of class "Loglin", which enables
S+MISSINGDATA to adapt to and format accordingly the different
structures of the parameter estimates.

> crime.EM$paramIter

 Visit.1=1;Visit.2=1 Visit.1=2;Visit.2=1
5 0.6969570 0.1358427
6 0.6970886 0.1357966

 Visit.1=1;Visit.2=2 Visit.1=2;Visit.2=2
5 0.09872477 0.06847549
6 0.09865219 0.06846263

By default, only the last two iterates are saved for the EM algorithm.
This can be modified through the argument last to
emLoglin.control.

The paramIter component of the crime.DA object is similar to the one
for crime.EM, except that more iterates may be saved (as specified by
the save argument to daLoglin.control). Here are the first 10 rows:

> crime.DA$paramIter[1:10,]

 Visit.1=1;Visit.2=1 Visit.1=2;Visit.2=1
 1 0.6745408 0.1479869
 2 0.6784437 0.1372391
 3 0.6967126 0.1552910
 4 0.6997548 0.1312311
 5 0.6952653 0.1364643
 6 0.6921411 0.1398454
 7 0.6676453 0.1529987
 8 0.6944598 0.1230416
 9 0.6508019 0.1560291
10 0.6968313 0.1309274
131

Chapter 10 Example 2: The Loglinear Model
 Visit.1=1;Visit.2=2 Visit.1=2;Visit.2=2
 1 0.08282638 0.09464592
 2 0.10567274 0.07864449
 3 0.07906126 0.06893515
 4 0.10795915 0.06105492
 5 0.09763649 0.07063395
 6 0.11058398 0.05742950
 7 0.11219294 0.06716300
 8 0.11210834 0.07039024
 9 0.12209065 0.07107828
10 0.08831767 0.08392358

The algorithm component of crime.EM is an object of class "em":

> crime.EM$algorithm

final likelihood = -558.8221
difference in the log-likelihood (or log posterior density)
= 4.540166e-05
maximum absolute relative change in parameter estimate on
last iteration = 0.0007472389

Likewise, the algorithm component of crime.DA is an object of class
"da":

> crime.DA$algorithm

seed = 21 14 49 32 43 1 32 22 36 23 28 3
parameter estimates saved for iterations: 1:5100
132

Assessing Convergence
ASSESSING CONVERGENCE

Autocorrelation
Plots

As discussed in the section Practical Considerations for Missing Data
Problems on page 60, it may suffice to look at the following to assess
convergence of the EM and DA model fitting algorithms:

1. Time series plots for each parameter (parameter iterates
versus iteration number);

2. An autocorrelation plot for each parameter;

3. An autocorrelation plot of the worst linear function.

We begin with the plot method for a missmodel class of objects. This
method is not typically useful if the EM algorithm has been used.
However, it can help diagnose convergence in the case of data
augmentation.

By default, this plot method produces the time series plots of all
variables:

> plot(crime.DA)

By setting the argument select=T, you may select specific variables to
plot.

Next, plot the autocorrelation function for each parameter:

> daAcfPlot(crime.DA)

Again, by setting the argument select=T, you may produce
autocorrelation plots only for selected variables. Figure 10.1 shows
the time series and autocorrelation plots for each parameter.
133

Chapter 10 Example 2: The Loglinear Model
Figure 10.1: Plots for the parameters in the crime model. The top row, produced by the plot method for
missmodel objects, is a set of time series plots of each parameter versus iteration number. The bottom row,
produced by the daAcfPlot function, is a set of ACF plots of each parameter. These suggest that convergence is
reached quickly.

Iteration Number

V
is

it.
1=

1;
V

is
it.

2=
1

0 2000 5000

0.
62

0.
66

0.
70

0.
74

Iteration Number

V
is

it.
1=

2;
V

is
it.

2=
1

0 2000 5000

0.
10

0.
14

0.
18

Iteration Number

V
is

it.
1=

1;
V

is
it.

2=
2

0 2000 5000

0.
08

0.
12

Iteration Number

V
is

it.
1=

2;
V

is
it.

2=
2

0 2000 5000

0.
04

0.
06

0.
08

0.
10

Visit.1=1;Visit.2=1

lag

A
C

F

0 40 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Visit.1=2;Visit.2=1

lag

A
C

F

0 40 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Visit.1=1;Visit.2=2

lag

A
C

F

0 40 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Visit.1=2;Visit.2=2

lag

A
C

F

0 40 80
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

134

Assessing Convergence
Fractions of
Missing
Information

The rate of convergence for the EM algorithm is governed by the
fraction of missing information. To aid in assessing convergence, we
monitor a function with high rates of missing information, since
convergence is slowest for this type of function. Schafer (1997, pages
129–131) recommends monitoring the worst linear function of θ . To
do this, we first use the worstFraction function with the crime.EM
object to compute the worst fraction of missing information and its
corresponding eigenvector. See Fraley (1999) for details on the
algorithms implemented in worstFraction.

> worst.est <- worstFraction(crime.EM, method = "power")
> worst.est

$direction:
[1] -0.4616784 0.4846614 0.5137191 -0.5367021
$fraction:
[1] 0.2642576

Next, calculate the worst linear function of the parameters by
combining worst.est with the crime.DA object:

> wlf <- worstLinFun(crime.DA, worst.est)

Finally, plot the autocorrelation function of wlf:

> wlf.acf <- acf(wlf, lag.max = 100, plot = F)
> wlf.acf$series <- "Worst Linear Function"
> acf.plot(wlf.acf)
135

Chapter 10 Example 2: The Loglinear Model
Figure 10.2: ACF plot of the worst linear function of the parameters in the crime models, with 95%
confidence bounds. The correlations for lags 4 and beyond are not significantly different than 0.

Lag

A
C

F

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : Worst Linear Function

Conclusions In summary, all of the diagnostics in this section indicate fast
convergence. Moreover, the EM algorithm converged in 6 steps. To
be safe, discard the first 100 observations:

> crime.DA$paramIter <- crime.DA$paramIter[-c(1:100),]
136

Assessing Convergence
In the parameter simulation approach, test independence by looking
at the distribution of the odds ratios. See Figure 10.3 for the result of
the following commands:

> crime.omega <- apply(crime.DA$paramIter, 1,
+ function(x) x[1]*x[4]/(x[2]*x[3]))
> hist(crime.omega)

Figure 10.3: Histogram of the simulated odds ratios. This distribution forms the basis of inference using
parameter simulation.

2 4 6 8

0
20

0
60

0
10

00

crime.omega
137

Chapter 10 Example 2: The Loglinear Model
The fraction of simulated odds ratios less than 1 gives an approximate
p -value for testing independence versus the alternative hypothesis
that households victimized in the first period were more likely to be
victimized in the second period:

> sum(crime.omega <= 1)/length(crime.omega)
[1] 0

This agreement with the asymptotic result is not surprising if we look
at the distribution of the likelihood ratio test statistic that compares
the MLE with the simulated values. Asymptotically, the posterior
distribution is chi-square with 3 degrees of freedom. See Figure 10.4

for the histogram with the χ3
2

 distribution overlaid.

The simulated posterior mean is a point estimate of the odds ratio:

> mean(crime.omega)
[1] 3.666283

This compares with the MLE of 3.566756 obtained using the
estimates given in the section Fitting a Model Using EM on page 129
to calculate the odds ratio.

The 95% confidence intervals for the odds ratio are given by:

> quantile(crime.omega, probs = c(0.025, 0.975))

 2.5% 97.5%
 2.211379 5.692615

See table Table 10.1 on page 143 to compare these results with those
obtained by other methods.
138

Assessing Convergence
Figure 10.4: Histogram of the likelihood ratio test statistic that compares the MLE with the simulated values.

Asymptotically, this observed data posterior distribution is χ3
2

. The agreement is good, suggesting good large

sample properties.

0 5 10 15 20

0.
0

0.
10

0.
20

Likelihood Ratio Statistic
139

Chapter 10 Example 2: The Loglinear Model
GENERATING MULTIPLE IMPUTATIONS THROUGH DA

Data augmentation algorithms can be used to generate multiple
imputations. For example, to generate ten imputations from one long
chain under a saturated model of the crime data, type:

> crime.imp.1chain <- impLoglin(crime.s, nimpute = 10,
+ prior = "n", start = crime.EM$paramIter[2,],
+ control = list(niter=100)

Alternatively, type the following to generate 10 independent chains,
each starting from the MLE:

> start.crime <- crime.EM$paramIter[rep(2,10),]
> crime.imp <- impLoglin(crime.s, prior = "n",
+ start = start.crime, control = list(niter=100))

The result of impLoglin is an miList object if the original data is in
grouped format; otherwise it is an miVariable object. The case of
grouped data is a (rare) situation when the imputed data object is
most naturally represented as an miList:

> crime.imp

$I1:
 Visit.1 Visit.2 frequency
1 "Crime-free" "Crime-free" "529"
2 " Victim" "Crime-free" "100"
3 "Crime-free" " Victim" " 71"
4 " Victim" " Victim" " 56"

$I2:
 Visit.1 Visit.2 frequency
1 "Crime-free" "Crime-free" "525"
2 " Victim" "Crime-free" " 96"
3 "Crime-free" " Victim" " 76"
4 " Victim" " Victim" " 59"
.
.
.

140

Generating Multiple Imputations Through DA
$I10:
 Visit.1 Visit.2 frequency
1 "Crime-free" "Crime-free" "517"
2 " Victim" "Crime-free" "102"
3 "Crime-free" " Victim" " 82"
4 " Victim" " Victim" " 55"

attr(, "call"):
impLoglin.preLoglin(object = crime.s, prior = "n", start =
start.crime, control
 = list(niter = 100))
attr(, "seed"):
 [1] 33 2 58 26 51 3 47 25 42 12 28 1
141

Chapter 10 Example 2: The Loglinear Model
ANALYZING COMPLETED DATA SETS

The miApply function can be used to calculate contingency tables for
each of the ten completed data sets as follows:

> crime.col2 <- miApply(crime.imp, function(data, formula)
+ oldUnclass(crosstabs(formula, data)),
+ frequency ~ Visit.1+Visit.2)

Instead, you can use miEval as follows:

> crime.col <- miEval(oldUnclass(crosstabs(
+ frequency ~ Visit.1+Visit.2, data = crime.imp)),
+ vnames = "crime.imp")

Note

Any calculation on the result of crosstabs is another object of class "crosstabs", so that the
elements of the calculation must be integers. In particular, the odds ratio calculation fails, which
is why we must oldUnclass above.

Analysis Using
Multiple
Imputation

Several functions combine the separate complete data analyses to
produce one result that accounts for missing data uncertainty. For the
crime example, we test independence by:

• Combining odds ratios. Asymptotically, the log odds ratios
are normally distributed. Following rules given by Rubin
(1987), the multiple imputation inference is based on a t
distribution.

• Combining likelihood ratio tests.

With complete data, the log odds ratio ωlog is asymptotically

normal with mean ωlog and a variance estimated by

1
x11
------- 1

x12
------- 1

x21
------- 1

x22
-------+ + + ,

where xij is the count for which Visit.1=i and Visit.2=j. See
Schafer (1997, section 6.4.2).
142

Analyzing Completed Data Sets
We calculate the log odds ratio and the variance for each completed
data set as follows:

> crime.logodd <- miEval(log(
+ crime.col[1,1]*crime.col[2,2]/
+ (crime.col[1,2]*crime.col[2 ,1])))
> crime.var <- miEval(sum(1/crime.col))

The following command gives quantities needed to calculate a point
estimate, standard error, and the degrees of freedom for the t
distribution:

> crime.logodd.comb <- miMeanSE(crime.logodd, crime.var,
+ df = Inf, sse = T)

The point estimate is obtained by exponentiation:

> exp(crime.logodd.comb$est)
[1] 3.809245

The 95% confidence intervals are obtained with:

> exp(crime.logodd.comb$est + c(-1,1) *
+ qt(0.975, crime.logodd.comb$df) *
+ crime.logodd.comb$std.err)
[1] 2.317047 6.262431

Table 10.1 compares the inferences for the odds ratio obtained using
the EM algorithm, DA algorithm, and multiple imputation.
Table 10.1: Comparison of inferences obtained for the odds ratio.

Method Estimate
Lower

Confidence
Bound

Upper
Confidence

Bound

EM 3.57 NA NA

DA 3.67 2.21 5.69

Multiple Imputation 3.81 2.32 6.26

Note that standard errors are not automatically produced by EM
calculations, which do not involve second derivatives. Therefore, the
standard errors and confidence bounds are not available without
extra effort.
143

Chapter 10 Example 2: The Loglinear Model
We can also test independence using the likelihood ratio test. The
following simple function calculates the test:

likratio.Loglin <- function(data, marginsHa, marginsH0,
prior) {

"data" is a data frame and "frequency" is a column in
"data". This is the form of each component in the miList
object returned by impLoglin when the data is given in
grouped format

missmodel.Ha <- Loglin(data, frequency = frequency,
margins = marginsHa, prior = prior)

missmodel.H0 <- Loglin(data, frequency = frequency,
margins = marginsH0, prior = prior)

2*(logpost.Loglin(missmodel.Ha) -
logpost.Loglin(missmodel.H0))

}

The miLikelihoodTest function uses likratio.Loglin, both to
calculate the likelihood ratio test for each completed data set and to
combine the tests; see Li et al. (1991).

> crime.lrt <- miLikelihoodTest(crime.imp, likratio.Loglin,
1, marginsHa = ~Visit.1:Visit.2,
marginsH0 = ~Visit.1+Visit.2, prior = 0.5)

The p -value of the test for independence is:

> 1 - pf(crime.lrt$Fstat, crime.lrt$df1, crime.lrt$df2)
[1] 1.891866e-08

This confirms the likelihood ratio test result obtained using the EM in
Fitting a Model Using EM on page 129.
144

EXAMPLE 3: THE
CONDITIONAL GAUSSIAN
MODEL 11

Overview 146
The Foreign Language Data 146

Exploring Patterns of Missingness 148
Summarizing and Plotting 148
Preprocessing Data 151

Model Fitting 152
Specifying a Restricted Model 152
Fitting a Model Using EM 153
Fitting a Model Using DA 154

Assessing Convergence 156

Multiple Imputation 158

Analyzing Completed Data Sets 159

Consolidating Inferences 161

Conclusions 163
145

Chapter 11 Example 3: The Conditional Gaussian Model
OVERVIEW

This chapter provides detailed examples illustrating the conditional
Gaussian model fitting process, in which the variables with missing
values are either numeric or categorical. This model arises, for
example, in analysis of covariance and logistic regression with
continuous predictors. Chapter 4 briefly describes the conditional
Gaussian model, the associated priors, and the functions in
S+MISSINGDATA used to fit it. In this chapter, we illustrate the
S+MISSINGDATA functions using the foreign language example from
Schafer (1997). See Schafer (1997) for additional details and algorithm
descriptions.

The Foreign
Language Data

Schafer (1997) illustrates the conditional Gaussian model using a data
set of 279 students enrolled in foreign language courses at the
Pennsylvania State University. The original data are given in
Raymond and Roberts (1983). For each student, twelve variables
were collected, including age and sex. Variables measuring academic
achievement in foreign languages were also collected. One such
variable, GRD, is the final grade in the foreign language course. Two
instruments, the new Foreign Language Attitude Scale (FLAS) and
the established Modern Language Aptitude Test (MLAT), are
designed to predict success in studying foreign languages. The
students’ scores on these standardized tests were also collected and
recorded.

The data from the foreign language study is included in
S+MISSINGDATA as the built-in data set language. It consists of 12
variables, including GRD, FLAS, and MLAT:

> language

 AGE PRI SEX FLAS MLAT SATV SATM ENG HGPA CGPA GRD
 1 20-21 3 male 74 32 540 660 58 3.77 3.75 A
 2 <20 2 male 69 28 610 760 75 2.18 3.81 A
 3 20-21 0 female 81 28 610 560 61 3.19 3.73 A
 4 <20 4+ female 89 13 430 470 33 2.21 3.54 B
 5 <20 3 male 56 26 630 630 78 3.59 4.00 NA
 6 20-21 3 female 95 22 440 580 48 3.25 3.20 A
 7 NA NA male 71 NA NA NA NA 2.46 NA NA
 8 <20 4+ female 95 NA 560 540 55 2.00 2.77 NA
. . .
146

Overview
For additional details, see the help file for language.

The goal of the study is to address the following questions:

• Does the newly developed instrument, FLAS, help predict
success in the study of foreign languages?

• How does FLAS compare with a well established instrument
like MLAT?

As Schafer (1997) shows, you may use the Gaussian model after
recoding some of the factor variables to make the normality
assumption more reasonable. To avoid possible loss of information
due to recoding, you may also use the conditional Gaussian model.

If there were no missing data, one way of answering the question
would be to heuristically gauge the practical importance of the
estimated effects by estimating partial correlations . In particular, how
does the partial correlation of FLAS with GRD compare with that of
MLAT? Since there are missing data, however, we show how to
perform the analysis after first multiply imputing missing values
under a conditional Gaussian model.
147

Chapter 11 Example 3: The Conditional Gaussian Model
EXPLORING PATTERNS OF MISSINGNESS

Summarizing
and Plotting

In this section, we use the miss function and its associated methods to
explore the language data. As discussed in Chapter 3, the miss
function is designed to facilitate exploratory data analysis for data sets
that include missing values. It creates an object of class "miss", which
by default rearranges the rows and columns of the data according to
the numbers and patterns of missing values.

To create a miss obect from the language data, type:

> language.miss <- miss(language)
> language.miss

Summary of missing values
 10 variables, 279 observations, 18 patterns of missing

values
 10 variables (83%) have at least one missing value
 105 observations (38%) have at least one missing value
For more detailed information use summary(x)

Ten of the twelve variables have at least one missing value. Omitting
cases with missing values would delete 38% of the observations.

Use summary for more detailed information. Here is the annotated
output from summary for language.miss:

> summary(language.miss)

Summary of missing values
 10 variables, 279 observations, 18 patterns of missing

values
 10 variables (83%) have at least one missing value
 105 observations (38%) have at least one missing value

Breakdown by variable
 V O name Missing % missing
 1 9 HGPA 1 0
 2 3 SEX 1 0
 3 1 AGE 11 4
 4 2 PRI 11 4
 5 6 SATV 34 12
 6 7 SATM 34 12
 7 10 CGPA 34 12
148

Exploring Patterns of Missingness
 8 8 ENG 37 13
 9 11 GRD 47 17
 10 5 MLAT 49 18
V = Variable number used below, O = Original number (before

sorting)
No missing values for variables:
FLAS LAN

The twelve variables in language are sorted by the number of missing
values; neither FLAS nor LAN have any missing values. The HGPA
variable has the least number (1) of missing values. Thus, it is the first
variable after reordering and a 1 appears in the V column of the
summary. It is the ninth variable in the original data set, so that a 9
appears in the O column. Likewise, the MLAT variable has the most
number (49) of missing values. It is the last variable after reordering
and the fifth variable in the original data set. Thus, a 10 appears in the
V column of the output and a 5 appears in the O column.

Of the 279 rows in the original language data, there are 18 distinct
patterns of missing values. These are shown in the next section of the
output from summary:

Patterns of missing values (variables in columns, patterns
in rows)

Pattern Variables
 1
 1234567890
 1
 2m
 3m.
 4m..
 5mm
 6mm.
 7 ..mm......
 8 .m......m.
 9 ..mm.....m
 10 ..mm....m.
 11mmmm..
 12 ..mm....mm
 13mmmm.m
 14mmmmm.
 15 m...mmmm..
 16mmmmmm
 17 ..mmmmmm..
 18 ..mmmmmmmm
149

Chapter 11 Example 3: The Conditional Gaussian Model
Observed values are displayed with a period and missing values with
an m. The output indicates that the first pattern has no missing values
while the second pattern has missing values only in variable 10. As we
previously noted, the tenth variable after reordering is MLAT.

Each pattern detected by the miss function corresponds to one or
more rows in the original data set. The correspondence between rows
and patterns is shown in the next section of the output from summary:

Pattern #Missing #Obs Observations
 1 0 174 1:4 6 9 11 13:14 18:21 23:25 27:29
 31 34 36:41 43:45 47 51:52 54 58:62
 65 67:68 71:72 74:77 79:80 83:86
 88:90 92:96 98 102:105 107:110 112
 114:115 120 122 124:129 131:134
 138:141 143 146 148:151 153:154
 156:157 159:160 162:165 169:170
 172:175 177:178 180:181 183 186:187
 190:191 193 195:198 201:208 210 212
 215 217 219:221 223:224 227 230:233
 235 238 240:242 244:245 247:249
 1 0 174 252:254 256 258:259 261 264:266 271
 273 275:278
 2 1 26 35 48 55 63:64 73 81:82 97 99 101
 116:117 119 142 147 161 166:168 222
 225 250 262 270 274
 3 1 18 5 16 32:33 50 53 57 106 118 158 184
 194 199 216 226 234 267 279
 4 1 1 30
 5 2 15 8 12 49 91 113 137 144 179 188 209
 211 214 228 243 269
 6 2 2 10 260
 7 2 3 111 251 263
 8 2 1 218
 9 3 3 22 268 272
 10 3 1 189
 11 4 20 26 66 69:70 100 130 135:136 145 155
 171 176 182 185 200 213 229 236:237 246
 12 4 1 78
 13 5 2 42 87
 14 5 7 17 46 56 192 239 255 257
 15 5 1 123
 16 6 1 152
 17 6 2 15 121
 18 8 1 7
150

Exploring Patterns of Missingness
You can view an image plot of the language.miss object by using the
plot.miss function. Figure 11.1 displays the plot created by the
following command:

> plot(language.miss)

Figure 11.1: Image plot of the language.miss object.

250

200

150

100

50

1

O
bs

er
va

tio
ns

 (
re

or
de

re
d) F

LA
S

 L
A

N

 H
G

P
A

 S
E

X

 A
G

E

 P
R

I

 S
A

T
V

 S
A

T
M

 C
G

P
A

 E
N

G

 G
R

D

 M
LA

T
Preprocessing
Data

In the next section, we fit models to the language data using both the
EM and DA algorithms. To save computation resources during the
model fitting process, preprocess the language data by creating a
preCgm object as follows:

> language.s <- preCgm(language)

The arguments margins and gauss to preCgm identify the factor and
numeric variables, respectively. Since language is a data frame and
these arguments are not supplied in the above command, all factor
variables are modeled by the loglinear part of the model and all
numeric variables are modeled by the (conditional) Gaussian part.
For additional details, see page 35 and the online help file for preCgm.
151

Chapter 11 Example 3: The Conditional Gaussian Model
MODEL FITTING

Specifying a
Restricted
Model

The categorical variables in the language data set, AGE, PRI, SEX, GRD,
and LAN, have 5, 5, 2, 5, and 4 levels, respectively. Together, they
specify a 5 dimensional contingency table with
5 5× 2× 5× 4× 1000= cells. In addition, there are 7 numeric
variables in language. An unrestricted model therefore involves
1000 1–() 1000 7×() 7 7 1+() 2⁄×()+ + 8027= free parameters.

Clearly, an unrestricted model cannot be fit with 279 observations!

Instead, Schafer (1997, page 367) suggests a restricted model in which:

• The table formed by the factor variables is described by a
loglinear model with all main effects and two-variable
associations.

• The numeric variables are collectively described by a
regression with main effects for each factor variable. The
eight-column design matrix for this regression includes an
intercept, dummy indicators for SEX and LAN, and linear
contrasts for AGE, PRI, and GRD.

To compute this restricted model, first specify the formula for a
loglinear model with all main effects and two-variable associations:

> margins.form <- ~ LAN + AGE + PRI + SEX + GRD +
+ LAN:AGE + LAN:PRI + LAN:SEX + LAN:GRD +
+ AGE:PRI + AGE:SEX + AGE:GRD +
+ PRI:SEX + PRI:GRD +
+ SEX:GRD

Setting the following option ensures that any factor variable
appearing in a formula is represented by dummy variables:

> options(contrasts = c("contr.treatment", "contr.poly"))

 The linear contrast is specified by:

> lc <- c(-2,-1,0,1,2)

Finally, the formula that produces the appropriate design matrix is:

> design.form <- ~ LAN + SEX + C(AGE,lc,1) + C(PRI,lc,1) +
+ C(GRD,lc,1)
152

Model Fitting
Note that LAN and SEX are coded by dummy variables while the other
factor variables are represented by linear contrasts.

Fitting a Model
Using EM

The command below fits the restricted conditional Gaussian model to
the language data using the EM algorithm. To ensure a mode in the
interior of the parameter space, Schafer (1997, page 369)
recommends setting the Dirichlet prior hyperparameter to 1.05:

> language.EM <- emCgm(language.s, margins = margins.form,
+ design = design.form, prior = 1.05)

Steps of ECM:
1...2...3...4...5...6...7...8...9...10...11...12...13...14
...15...16...17...18...19...20...21...22...23...24...25...
26...27...28...29...30...31...32...33...34...35...36...37
...38...39...40...41...42...43...44...45...46...47...48...
49...50...51...52...53...54...55...56...57...58...59...60
...61...62...63...64...65...66...

Note that the language.s object defined in the section Preprocessing
Data on page 151 is used to save computation resources. As discussed
by Schafer (1997, page 253), the 1.05 prior is an example of a
flattening prior, which smooths estimates toward a uniform table. In
this example, the equivalent of 0.05 prior observations is added to
each cell. Since there are 1000 cells in the contingency table, this
gives an effective prior sample size of 50, roughly 18% of the actual
sample size.

The paramIter component of the language.EM object is a matrix in
which the rows are the parameter iterates for each iteration. The
paramIter matrix is an object of class "cgm", which enables
S+MISSINGDATA to adapt to and format accordingly the different
structures of the parameter estimates.

> language.EM$paramIter

========== iteration = 65 ================
means
numeric matrix: 7 rows, 1000 columns.
 AGE=1;PRI=1;SEX=1;GRD=1;LAN=1
FLAS 71.694619
MLAT 17.126537
SATV 467.402216
SATM 529.032427
153

Chapter 11 Example 3: The Conditional Gaussian Model
 ENG 43.504382
HGPA 1.516468
CGPA 2.530749

 AGE=2;PRI=1;SEX=1;GRD=1;LAN=1
FLAS 70.311911
MLAT 15.833215
SATV 468.583594
SATM 513.125791
 ENG 41.335946
HGPA 1.563725
CGPA 2.417728
. . .

The algorithm component of language.EM is an object of class "em":

> language.EM$algorithm

final log-likelihood = -6087.938

difference in the log-likelihood (or log posterior density)
= 4.773301e-08

maximum absolute relative change in parameter estimate on
last iteration = 0.0009985025

Fitting a Model
Using DA

In this section, we use the DA model fitting algorithm on the
language data. As discussed in Schafer (1997, page 369), a flattening
prior may be undesirable for models of the language data because the
AGE and GRD variables have rare levels. Flattening priors can distort
the marginal distributions for these variables, leading to too many
rare levels in the imputed values. Instead, Schafer recommends using
a data dependent prior that smooths toward a table of mutual
independence but leaves the marginal distributions unchanged. The
hyperparameters are scaled so that they add to 50, giving the same
effective prior sample size as used in the previous section for the EM
algorithm.

Create such a data dependent prior as follows:

> dataDepend <- dataDepPrior(language.s, nPriorObs = 50,
+ algorithm = "da")
154

Model Fitting
The following command starts from the maximum likelihood
estimate computed by the EM algorithm and runs the DA algorithm
for 1000 iterations, discarding the first 99:

> language.DA <- daCgm(language.EM, prior = dataDepend,
+ control = list(niter=1000, save=100:1000))
155

Chapter 11 Example 3: The Conditional Gaussian Model
ASSESSING CONVERGENCE

Since there are 8028 parameters for the language data, it is
unreasonable to monitor each of them individually with
autocorrelation plots. Instead, we look at the worst linear function of
the parameters. The rate of convergence for the EM algorithm is
governed by the fraction of missing information. To aid in assessing
convergence, we monitor a function with high rates of missing
information, since convergence is slowest for this type of function.
Schafer (1997, pages 129–131) recommends monitoring the worst
linear function of θ .

Warning

When the posterior is non-normal, other functions may converge more slowly. Thus, do not
blindly rely on the apparent stationarity of the worst linear function without enlisting other
diagnostic techniques.

To compute the worst linear function, we first use the worstFraction
function with the language.EM object to compute the worst fraction of
missing information and its corresponding eigenvector. See Fraley
(1999) for details on the algorithms implemented in worstFraction.

> worst.est <- worstFraction(language.EM, method = "power")
> worst.est$fraction
[1] 0.8278831

Next, calculate the worst linear function of the parameters by
combining worst.est with the language.DA object:

> wlf <- worstLinFun(language.DA, worst.est)

Finally, calculate and plot the autocorrelation function of wlf:

> wlf.acf <- acf(wlf, lag.max = 250, plot = F)
> wlf.acf$series <- "Worst Linear Function"
> acf.plot(wlf.acf)
156

Assessing Convergence
Figure 11.2: ACF plot of the worst linear function of the parameters in the language models. The
autocorrelations seem to die out by iteration 50.

Lag

A
C

F

0 50 100 150 200 250

0.
0

0.
4

0.
8

 Series : Worst Linear Function
157

Chapter 11 Example 3: The Conditional Gaussian Model
MULTIPLE IMPUTATION

The ACF of the worst linear function in Figure 11.2 suggests
convergence by 50 iterations. To be conservative, we save every
250th imputation. The following command generates ten
imputations, starting from the last parameter values in the
language.DA object:

> language.imp <- impCgm(language.DA, nimpute = 10,
+ control = list(niter=250))

To extract the second set of imputations, type:

> miSubscript(language.imp, 2)
158

Analyzing Completed Data Sets
ANALYZING COMPLETED DATA SETS

One way to asses the practical importance of the language variables
in predicting GRD is to estimate partial correlations. In linear
regression, a squared partial correlation measures the proportion of
the variance in the response variable explained by a predictor, after
accounting for the effects of the other predictors. We can use this fact
to compare the partial correlations of the FLAS and MLAT variables
with GRD.

A partial correlation r may be calculated from the t -statistic T used
for testing the significance of a regression coefficient:

r T2

T2 ν+
---------------±= ,

where the sign is chosen to be the sign of T . Moreover, r()atan is

asymptotically Gaussian with a mean of ρ()atan and variance

1 ν 1–()⁄ . We use this fact in the next section to apply Rubin’s rule
and consolidate inferences.

The first step in estimating partial correlations is to fit a linear model
to each of the ten completed data sets for language:

> m.lm.fit <- miEval(lm(as.numeric(GRD) ~ LAN +
+ C(AGE, lc, 1) + C(PRI, lc, 1) +
+ SEX + FLAS + MLAT + SATV + SATM + ENG + HGPA + CGPA,
+ data = language.imp))
mi objects: language.imp

To apply Rubin’s rule, we must calculate the estimate and its standard
error for each completed data set. First, calculate the transformed
partial correlation for each of the data sets:

> m.atanPartCorr <- miEval({
+ tstat <- summary(m.lm.fit)$coef[,"t value"];
+ partCorr <- sign(tstat)*sqrt((tstat*tstat)/
+ ((tstat*tstat) + 267));
+ atan(partCorr)
+ })
mi variables: tstat partCorr m.lm.fit
159

Chapter 11 Example 3: The Conditional Gaussian Model
The degrees of freedom for each t -statistic is equal to n p– :

> dim(language)[1] - dim(language)[2]
[1] 267

Therefore, the standard error is equal to

1
υ 1–
------------ 1

n p– 1–
--------------------- 1

266
---------= = .

The following commands create an impute object that represents this
standard error for each of the ten completed data sets:

> se <- sqrt(1/266)
> se.list <- vector("list", 10)
> for(i in 1:10)
+ se.list[[i]] <- rep(se,14)
> m.se <- miList(se.list, paste("I", 1:10, sep=""))
160

Consolidating Inferences
CONSOLIDATING INFERENCES

The following command calculates the consolidated estimate of the
transformed partial correlation:

> partCorr <- miMeanSE(m.atanPartCorr, m.se, df = Inf,
+ n = 279)

Transform back to get the point estimates for the correlations:

> tan(partCorr$est)

 (Intercept) LAN2 LAN3 LAN4 C(AGE, lc, 1)
 -0.007382197 -0.08169879 0.05172681 -0.03863925 0.1044772

C(PRI, lc, 1) SEX FLAS MLAT SATV SATM
0.235524 0.03341574 0.2696982 0.1473144 -0.04067603 0.03491293

ENG HGPA CGPA
-0.03602713 0.4290499 0.1888691

The estimated fractions of missing information are:

> partCorr$fminf

(Intercept) LAN2 LAN3 LAN4 C(AGE, lc, 1)
 0.5309861 0.1211011 0.07448829 0.8683221 0.3792738

C(PRI, lc, 1) SEX FLAS MLAT SATV
0.1410323 0.2163655 0.3212395 0.4995211 0.2361616

 SATM ENG HGPA CGPA
0.2208094 0.404194 0.1395629 0.5229428
161

Chapter 11 Example 3: The Conditional Gaussian Model
The 95% confidence intervals using a t distribution are given as
follows.

Lower confidence bound.
> tan(partCorr$est + qt(0.025, partCorr$df) *
+ partCorr$std.err)

 (Intercept) LAN2 LAN3 LAN4 C(AGE, lc, 1)
 -0.1863897 -0.2128767 -0.07338188 -0.4002118 -0.0490225

C(PRI, lc, 1) SEX FLAS MLAT SATV SATM
0.1019368 -0.1028575 0.117741 -0.02479043 -0.1802482 -0.1017438

ENG HGPA CGPA
-0.1947592 0.2828887 0.01132832

Upper confidence bound.
> tan(partCorr$est + qt(0.975, partCorr$df) *
+ partCorr$std.err)

 (Intercept) LAN2 LAN3 LAN4 C(AGE, lc, 1)
 0.1711535 0.04674426 0.1784716 0.3131192 0.2630067

C(PRI, lc, 1) SEX FLAS MLAT SATV SATM
0.3775806 0.17094 0.4342266 0.3284068 0.09733176
0.1728846

ENG HGPA CGPA
0.1209123 0.592527 0.3787023
162

Conclusions
CONCLUSIONS

As Schafer (1997, page 372) indicates, the assumptions underlying the
regression model and the normal approximation to the transformed
partial correlation do not hold, so the estimated partial correlation
coefficients must be interpreted loosely. Yet these estimates indicate
that the FLAS variable has the highest partial correlation with GRD
except for HGPA. In particular, its partial correlation is higher than that
of the well established instrument MLAT.
163

Chapter 11 Example 3: The Conditional Gaussian Model
164

BIBLIOGRAPHY

John Barnard and Donald B. Rubin. Small-sample degrees of
freedom wth multiple imputation. Biometrika, 86, Issue 4:948–955,
1999.

Y. M. M. Bishop, S. E. Fienberg, and P. W. Holland. Discrete
Multivariate Analysis: Theory and Practice. MIT Press, Cambridge, MA,
1975.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
estimation from incomplete data via the em algorithm. Journal of the
Royal Statistical Society, Series B, 39:1–38, 1977.

T. Ezzati-Rice, W. Johnson, M. Khare, R. J. A. Little, D. B. Rubin,
and J. L. Schafer. A simulation study to evaluate the performance of
model-based mutiple imputation in nchs health examination surveys.
presented at the Annual Research Conference, U. S. Bureau of the
Census, March 21, 1995, Washington, D. C., 1995.

C. Fraley. Computation of the em iteration for multivariate normal
data with missing values. Internal tech. report, MathSoft, Inc., 1700
Westlake Ave. N., Suite 500, Seattle, WA 98109, 1998.

C. Fraley. On Computing the Largest Fraction of Missing Information
for the EM Algorithm and the Worst Linear Function for Data
Augmentation. Computational Statistics and Data Analysis, 31(1):13-26,
1999.

A. E. Gelfand and A. F. M. Smith. Sampling–based approaches to
calculating marginal densities. Journal of the American Statistical
Association, 85, No. 410, 1990.

A. Gelman and D. B. Rubin. Inference from iterative simulation using
multiple sequences. Statistical Science, 7, No. 4, 1992.
165

Bibliography
S. Geman and D. Geman. Stochastic relaxation, gibbs distributions,
and the bayesian restoration of images. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 6:721 – 741, 1984.

C. J. Geyer. Practical markov chain monte carlo. Statistical Science, 7,
No. 4, 1992.

D. F. Heitjan and R. J. A. Little. Multiple imputation for the fatal
accident reporting system. Applied Statistics, 40, No. 1:13–29, 1991.

Tim C. Hesterberg. Combining multiple imputation t, chi-square, and
f inferences. Research Department 75, MathSoft, Inc., 1700 Westlake
Ave. N., Suite 500, Seattle, WA 98109, 1998.

A. Kong, J. Liu, and W. H. Wong. Sequential imputations and
bayesian missing data problems. Technical report, 1991. University of
Chicago Department of Statistics Technical Report 321.

K. H. Li, X. L. Meng, T. E. Raghunathan, and D. B. Rubin.
Significance levels from repeated p-values with multiply–imputed
data. Statistica Sinica, 1:65–92, 1991.

K. H. Li, T. E. Raghunathan, and D. B. Rubin. Large–sample
significance levels from multiply imputed data using moment–based
statistics and an f reference distribution. Journal of the American
Statistical Association, 86, No. 416:1065–1073, 1991.

K. H. Li, T. E. Raghunathan, and D. B Rubin. Large-sample
significance levels from multiply imputed data using moment-based
statistics and an f reference distribution. Journal of the American
Statistical Association, 86(416):1065–1073, 1991.

R. J. A. Little and D. B. Rubin. Statistical Analysis with Missing Data.
John Wiley and Sons, Inc., 1987.

X.-L. Meng. Multiple imputation inferences with uncongenial sources
of input. Statistical Science, 9, No. 4:538–573, 1994.

X-L. Meng and D. B. Rubin. Performing likelihood ratio tests with
multiply–imputed data sets. Biometrika, 79, No. 1:103–111, 1992.

B. D. Ripley. Modeling spatial patterns (with discussion). Journal of the
Royal Statistical Society, Series B, 39:172–212, 1977.

B. D. Ripley. Simulating spatial patterns: dependent samples from a
multivariate density. Applied Statistics, 28:109–112, 1979.
166

Bibliography
D. B. Rubin. Multiple Imputation for Nonresponse in Surveys. John Wiley
and Sons, Inc., 1987.

D. B. Rubin. Computational aspects of analysing random effects/
longitudinal models. Statistics in Medicine, 11:1809–1821, 1992.

D. B. Rubin and N. Schenker. Multiple imputation for interval
estimation from simple random samples with ignorable nonresponse.
Journal of the American Statistical Association, 81, No. 394:366–374, 1986.

J. L. Schafer. Algorithms for Multiple Imputation and Posterior Simulation
from Incomplete Multivariate Data with Ignorable Nonresponse. PhD thesis,
Harvard University, 1991.

J.L. Schafer. Analysis of Incomplete Multivariate Data. Chapman and
Hall, London, 1997.

J.L. Schafer, M. Khare, and T.M. Ezzati-Rice. Multiple imputation of
missing data in NHANES III. In Proceedings of the Bureau of the Census
Annual Research Conference, 1993.

A. F. M. Smith and G. O. Roberts. Bayesian computation via the
gibbs sampler and related markov chain monte carlo methods. Journal
of the Royal Statistical Society, Series B, 55, No. 1, 1992.

M. A. Tanner and W. H. Wong. The calculation of posterior
distributions by data augmentation. Journal of the American Statistical
Association, 82, No. 398:528 – 550, 1987.

Luke Tierney. Markov chains for exploring posterior distributions.
Technical report, 1991. Technical Report No. 560, University of
Minnesota School of Statistics.

S. L. Zeger and M. R. Karim. Generalized linear models with random
effects: a Gibbs sampling approach. Journal of the American Statistical
Association, 86:79–86, 1991.
167

Bibliography
168

	Introduction
	Overview
	Model-Based Approaches
	Model-Based Multiple Imputation

	Imputing Missing Data with S+MissingData
	Workflow

	S+MissingData Features
	Using S+MissingData
	Starting and Quitting S+MissingData
	Organizing Your Working Data
	Getting Help

	Using This Manual
	Intended Audience
	Organization
	Typographic Conventions

	Background
	Overview
	Taxonomy of Missing Data Methods
	Omit Cases with Missing Values
	Imputation
	Weighting
	Model-Based Approaches

	Imputation
	Single Imputation
	Multiple Imputation

	Model Fitting Algorithms
	Expectation- Maximization (EM)
	Data Augmentation (DA)

	Multiple Imputation Using DA
	Using the EM and DA Algorithms in Conjunction

	Exploring and Preprocessing
	Overview
	Exploring Patterns of Missingness
	Initial Explorations
	The miss Function

	Preprocessing Data

	Fitting a Missing Data Model
	Overview
	Missing Data Models
	The Gaussian Model
	The Loglinear Model
	The Conditional Gaussian Model

	S-Plus Implementation
	Fitting a Gaussian Model
	Fitting a Loglinear Model
	Fitting a Conditional Gaussian Model

	Convergence of Data Augmentation Algorithms
	Overview
	Parameter Simulation
	Multiple Imputation
	Practical Considerations for Missing Data Problems
	Starting Values
	S-Plus Functions

	Imputation
	Overview
	Imputing Data
	The Gaussian Model
	The Loglinear Model
	The Conditional Gaussian Model

	The Class of impute Objects
	Extracting Imputations
	Replacing Imputations
	Manipulating impute Objects

	Analyzing Completed Data Sets
	Overview
	Analysis Functions
	The miEval Function
	The miApply Function
	Additional Arguments
	Compatibility of miEval and miApply

	Consolidating Analyses
	Overview
	Simple Statistics
	Inferences
	Normal and Students-t Inferences
	Chi-Square and F Inferences
	Likelihood Ratio Inferences

	Example 1: The Gaussian Model
	Overview
	The Cholesterol Data

	Exploring Patterns of Missingness
	Summarizing and Plotting
	Preprocessing Data

	Model Fitting
	Fitting a Model Using EM
	Fitting a Model Using DA

	Assessing Convergence
	Autocorrelation Plots
	Fractions of Missing Information
	Conclusions

	Analysis Using Parameter Simulation
	Generating Multiple Imputations Through DA
	Omitting Cases with Missing Values
	Summary

	Example 2: The Loglinear Model
	Overview
	The Crime Data

	Exploring Patterns of Missingness
	Summarizing and Plotting
	Preprocessing Data

	Model Fitting
	Fitting a Model Using EM
	Fitting a Model Using DA

	Assessing Convergence
	Autocorrelation Plots
	Fractions of Missing Information
	Conclusions

	Generating Multiple Imputations Through DA
	Analyzing Completed Data Sets
	Analysis Using Multiple Imputation

	Example 3: The Conditional Gaussian Model
	Overview
	The Foreign Language Data

	Exploring Patterns of Missingness
	Summarizing and Plotting
	Preprocessing Data

	Model Fitting
	Specifying a Restricted Model
	Fitting a Model Using EM
	Fitting a Model Using DA

	Assessing Convergence
	Multiple Imputation
	Analyzing Completed Data Sets
	Consolidating Inferences
	Conclusions

