

オペレーションズ・リサーチ学会 秋季発表会

関心度(Frequency)と忘却度(Recency)に 基づくレコメンド手法 -サンプリングでは対応できないビッグデータの活用-

2013 年 9 月 12 日 株式会社 NTTデータ数理システム *岩永二郎 鍋谷昴一 梶原悠 五十嵐健太

お知らせ

■ 社名変更

2013年9月1日をもって

「数理システム」から「NTTデータ数理システム」に 社名変更しました.

移転

2013年9月1日をもって

「東京都新宿区新宿2丁目4-3フォーシーズンビル10階」 から

「東京都新宿区信濃町35番地 信濃町煉瓦館1階」 に移転しました.

近くにお越しの際には是非ともお立ち寄りください

本日と内容

- 1. はじめに
- 2. 課題の紹介
- 3. 分析の概要
- 4. 関心度と忘却度に基づくレコメンド手法
- 5. 過学習の回避
- 6. まとめ

1. はじめに

1.1. データ解析コンペテション

- 第19回 データ解析コンペティション
 - 76チームがエントリー・総勢400名が参加
- ■課題設定部門(32チーム参加)

■ 評価方法 : 予測スコアと分析内容

■ データ : 不動産賃貸ポータルサイト

数理システムチーム

■ チーム名 :明日分かることは今日予測しない

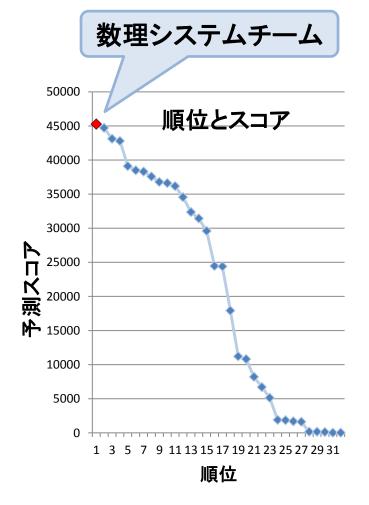
■ 代表者 : 岩永二郎

■ メンバー :鍋谷昴一・梶原悠・五十嵐健太

■結果

■ 予選 : 殊勲賞(1位)受賞

■ 本戦 :最優秀賞(1位)受賞



1.2. コンペの成果紹介

マーケティングの事例

頻度(Frequency)と直近さ(Recency)に基づいて顧客をセグメンテーションする手法が知られている.

Frequency と Recency を具体的に定量化して レコメンドロジックとして実装した事例報告

■ ビッグデータの事例

"ビッグデータを利用して○○した"という宣伝はよく聞くが・・・

- 実際, どのように利用したのか不明
- サンプリングで良かったのでは?という疑問

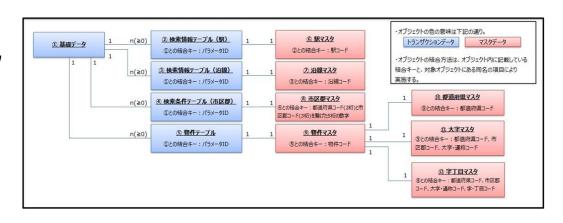
大規模データの特性を活かした手法の事例報告

2. 課題の紹介

2. 題材とデータ

- 題材:不動産賃貸ポータルサイトのアクセスログ ポータルサイト上のユーザの活動を観察
 - 1. サイトへの流入
 - 2. 物件の検索
 - 3. 物件の詳細閲覧 (PV:ページビュー)
 - 4. 物件の資料請求 (CV: コンバージョン)
 - 5. サイトからの離脱
- データ
 - トランザクションデータ
 - 分析用データ
 - 本番用データ
 - マスタデータ

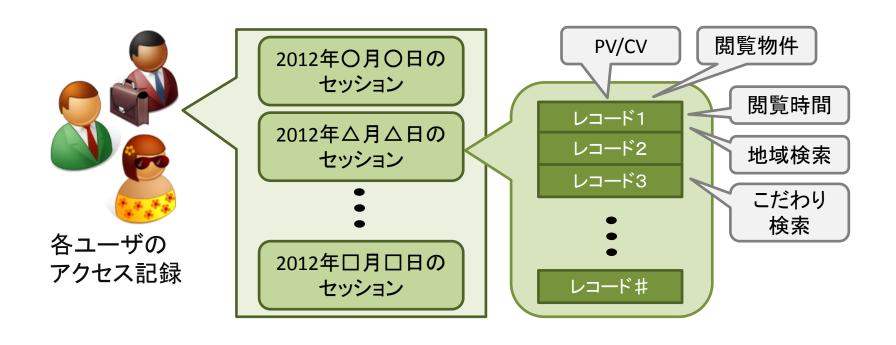
全データサイズ:16GB



予測

2.2. アクセスログのイメージ

アクセスログの内容



2.3. 問題設定

■予測課題

アクセスログ 10 週間を分析し、その後 1 週間のユーザの CV/PV を予測

■ 課題

ユーザ 51364 人に対して,5個の物件をレコメンドする

スコアリング方法

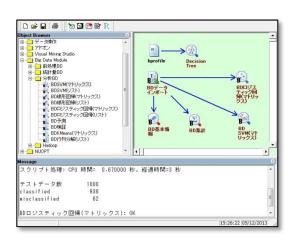
正解 CV/PV の得点は次の通り.

	正解数								
	1個目	2個目	3個目	4個目	5個目				
CV	30	12	9	6	3				
PV	1	1	1	1	1				

3. 分析の概要

3.1. 分析のレシピ

- 分析の環境
 - CPU: Intel Core-i7 3930K 3.20GHz(6コア)
 - メモリ: 32.0 GB
- 分析の道具
 - Python(前処理・レコメンドロジック実装)
 - sqlite3(データベース)
 - R(基礎集計・グラフ描画)
 - Visual Mining Studio(決定木分析)
 - Big Data Module(ロジスティック回帰・SVM)
 - NUOPT(信頼領域内点法)
- 分析の流れ
 - ① 分析準備(クレンジング・分析用DB構築)
 - ② 分析と割当ロジックの検討
 - ③ 実験と検証



3.2. レコメンド方針

- アプローチ ユーザの"過去閲覧物件"から再閲覧する物件をレコメンドする
- 物件のスコアリング関数の構築 物件プロファイル(特徴量ベクトル)に対して,閲覧確率を紐付ける
 - ① ユーザが過去に閲覧した物件を列挙
 - ② 各物件の特徴量を算出
 - ③ 各物件の再閲覧確率を算出

閲覧物件	特徴量1	特徴量2	特徴量3	•••	再閲覧確率
物件コード1	1	34	False	•••	6 %
物件コード2	5	67	True	•••	19%
•••					→ ···

- 分析のタスク
 - 特徴量の作成と選択
 - 再閲覧確率の計算

4. 関心度と忘却度に基づく レコメンド手法

4.1. 特徴量の作成

MI MATHEMATICAL SYSTEMS INC.

ユーザの閲覧物件に特徴量を与える

•	分析期間				予測期間		
閲覧物件	5/28	6/12	6/23	7/02	7/25	7/28	
物件コード1	PV		直	近から	3セッショ	ョン	
物件コード2	2 PV	₽V←					
物件コード3	2 PV		3 PV		CV		
物件コード4			2 PV	PV	CV	PV	
物件コード5	月日 日	些同类 0	3	PV		PV	
物件コード6		覧回数2 □		PV			
	物件-セッションテーブル						

_					
	閲覧物件	特徴量①	特徴量②	特徴量③	 CV・PV フラグ
Ī	物件コード1	1	1	4	0
	物件コード2	3	2	3	0
1	物件コード3	5	2	2	1
1	物件コード4	3	2	1	1
	物件コード5	1	1	1	1
	物件コード6	1	1	1	0
	1.		0		

物件プロファイル

- 作成した特徴量グループ
 - A) ユーザに関する特徴量
 - B) 物件に関する特徴量
 - C) ユーザの物件への興味を表す特徴量

4.2. 特徴量の抽出と分類

■ 特徴量の抽出処理

STEP1:特徴量の加工

STEP 2: CV/PVとの相関・クロス集計

STEP 3:決定木分析・SVM・ロジスティック回帰分析

■ STEP2による絞り込み

C グループ(ユーザの物件への興味を表す特徴量)のCV/PVへの貢献が大きい C グループを関心度と忘却度グループに分類

■ 関心度(閲覧回数・セッション登場回数・総閲覧時間)

■ 忘却度(物件の閲覧順番・セッション順番・経過日数)

Frequency & Recency

■ STEP3による選択

gini係数・information gain ratio,回帰係数 およびセグメンテーションの粒度に考慮して次の指標を選択

■ 関心度:閲覧回数

■ 忘却度:セッション順番

4.3. 関心度と忘却度の分類(相関係数)

■ ピアソンの相関係数

	分類	関心度A	関心度B	関心度C	忘却度A	忘却度B	忘却度C
閲覧回数	関心度A	1	0.80	0.58	-0.04	-0.01	-0.10
セッション登場回数	関心度B		1	0.47	-0.03	-0.01	-0.12
閲覧総時間	関心度C			1	-0.06	0.01	-0.06
閲覧順番	忘却度A				1	0.57	0.23
セッション順番	忘却度B					1	0.31
経過日数	忘却度C						1

*セッション順番:最終セッションから数えて,何セッション目に物件を閲覧したか

関心度と忘却度が無相関

⇒ 関心度と忘却度から1つずつ特徴量を選抜

4.4. 関心度と忘却度の選択(決定木分析) Marhematical systems inc.

■ 二分木における gini 係数 関心度グループ

忘却度グループ

特徴量	gini係数值
閲覧回数	0.0034
セッション登場回数	0.0033
閲覧総時間	0.0016

特徴量	gini係数值
セッション順番	0.0024
閲覧順番	0.0023
経過日数	0.0020

■ 二分木における information gain ratio 関心度グループ 忘却度グループ

特徴量	info gain ratio
閲覧回数	0.0273
セッション登場回数	0.0245
閲覧総時間	0.0103

特徴量	info gain ratio
セッション順番	0.0137
閲覧順番	0.0124
経過日数	0.0120

4.5. 再閲覧確率テーブル構築

■ 再閲覧確率テーブルとは 関心度と忘却度のセグメントに再閲覧確率を対応付けたテーブル

■ 再閲覧確率の計算式

 n_{ii} : 関心度 i, 忘却度 jの

セグメントの物件が

閲覧された件数

 m_{ii} :関心度i,忘却度jの

セグメントの物件が

再閲覧されなかった件数

Γ	集計												
	閲覧確率 テーブル	1	2	3	4	5	6	7	8	9	10	11	12
í	1	6%	4%	3%	2%	2%	2%	1 %	1 %	1%	1%	1 %	1
	2	13%	9%	6%	5%	5%	4%	3%	3%	3%	3%	2%	2
	3	19%	13%	9%	7%	7%	5%	5%	4%	4%	4%	4%	4
	4	24%	17%	12%	10%	9%	8%	6%	7%	7%	5%	2%	4
	5	28%	19%	15%	11%	9%	9%	7%	6%	4%	3%	5%	5
	6	33%	22%	18%	12%	12%	8%	5%	11%	5%	7%	2%	5
	7	36%	17%	16%	14%	11%	9%	8%	6%	7%	6%	10%	6
	8	35%	28%	15%	14%	17%	15%	9%	9%	4%	8%	4%	6
	9	38%	24%	18%	14%	15%	10%	11%	7%	13%	6%	6%	0
	10	45%	27%	19%	15%	18%	16%	13%	7%	5%	5%	3%	10
	11	41%	23%	19%	20%	14%	19%	14%	4%	6%	0%	10%	16
	12	36%	37%	26%	14%	13%	14%	12%	20%	20%	8%	5%	10
	13	52%	27%	27%	16%	6%	16%	9%	18%	6%	3%	0%	- 7
	14	49%	35%	22%	29%	24%	22%	0%	19%	7%	0%	17%	0
	15	69%	35%	24%	24%	27%	13%	7%	13%	9%	0%	20%	11
	16	47%	42%	40%	12%	25%	17%	8%	8%	0%	33%	0%	14
	17	36%	33%	24%	23%	13%	22%	0%	10%	10%	100%	0%	17
	18	67%	35%	24%	13%	10%	10%	10%	11%	9%	0%	50%	0
	19	68%	39%	57%	31%	25%	33%	40%	17%	100%	0%	0%	0
	y 20	54%	25%	27%	8%	29%	15%	40%	20%	50%	0%	0%	0

ᅷᅩᆠᇊᅷ

関心度

データの規模が大きいほど確率の信頼性が上がる

4.6. レコメンドロジック

MATHEMATICAL SYSTEMS INC.

■ 物件プロファイル × 再閲覧確率テーブル

再閲覧確率の高い順に物件をレコメンド

物件プロファイル

閲覧物件	忘却度	関心度	閲覧確率	
物件コード1	1	1	6%	
物件コード2	1	3	19 %	7
物件コード3	1	2	12 %	参照
物件コード4	2	2	9 %	
物件コード5	2	2	9 %	
物件コード6	3	1	3%	
物件コード7	4	2	5%	•
物件コード8	4	4	10 %	

再閲覧確率テーブル(実績値)

<u> </u>	閲覧確率 ^I テーブル	1	2	3	4	忘却度
	1	6%	4%	3%	2%	
	2	12%	9%	6%	5%	
	3	19%	13%	9%	7%	
	4	24%	17%	11%	10%	

関心度

関心度と忘却度のトレードオフを考慮したレコメンドを実現

5. 過学習の回避

5.1. レコメンド手法の改善

Mimathematical systems inc.

- 関心度と忘却度に成り立つ"単調性制約"
 - 関心度が大きい物件ほど再閲覧する
 - 忘却度が小さい物件ほど再閲覧する

再閲覧確率テーブルで単調性制約が満たされないセグメントが存在

閲覧確率		_		➡ 忘却]度				
テーブル	1	2	3	, ,,,,,,					忘却度
1	6%	4%	3%						心叫及
2	13%	9%	6%		閲覧確率				
3	19%	13%	9%		テーブル	5	6	7	8 ′
4	24%	17%	12%						
5	28%	19%	15%		12	13%	14%	12%	20%
6	33%	22%	18%		13	6%	16%	9%	18%
7	36%	17%	16%		14	24%	22%	0%	19%
8	35%	28%	15%		15	27%	13%	7%	13%
9	38%	24%	18%		<u> </u>	2170	10/0	1 70	10/01
関心度									

■ 原因

- 学習データとして十分な量を確保できていない
- 業務上の施策の影響が反映されてしまっている

過学習を回避した再閲覧確率テーブルの推定をしたい

5.2. 数理モデルの構築

- 推定する再閲覧確率テーブルの要件
 - 単調性制約を満たす
 - データ件数が多いセグメントの再閲覧確率ほど信頼する
- 凸二次計画問題に定式化して最適化パッケージ NUOPT で求解
- lack 集合 I : 関心度のセグメント J : 忘却度のセグメント
- ◆ パラメータ p_{ij} (i ∈ I, j ∈ J) : 各セグメントの閲覧確率 (実績値)

 w_{ii} $(i \in I, j \in J)$: 各セグメントのデータ数

- ◆ 制約 x_{ii} + ε ≤ x_{i'i} (i < i'(∈ I)) : 関心度について狭義単調増加

 $x_{ii} \geq x_{ii'} + \varepsilon$ $(j < j' (\in J))$: 忘却度について狭義単調減少

(ε:適当な微小な値)

• 目的関数 minimize $\sum_{i \in I, j \in J} w_{ij}^2 \cdot (x_{ij} - p_{ij})^2$

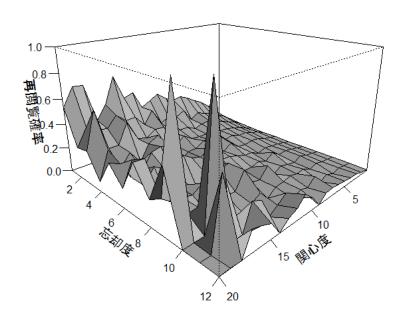
:閲覧確率(実績値)との重み付き自乗誤差最小化

5.3. 推定した再閲覧確率テーブル

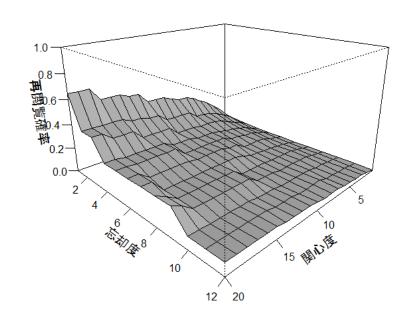
MATHEMATICAL SYSTEMS INC.

■ 再閲覧確率テーブルの比較

再閲覧確率テーブル(実績値)



再閲覧確率テーブル(推定値)



スムージングによって過学習を回避

5.4. 実験と評価

■ 評価用ツールの作成(分析用データ) アクセスログの最終週を予測期間として,17803 ユーザを抽出

総スコア 76,017 点に対する得点率を予測精度としてレコメンド手法を評価

レコメンド手法	スコア	精度
比較手法①: 閲覧が最新の物件から順にレコメンド	11,937	15.70 %
比較手法②:閲覧回数が多い物件から順にレコメンド	13,146	17.29 %
提案手法①:関心度と忘却度に基づくレコメンド(実績値)	14,181	18.66 %
提案手法②:関心度と忘却度に基づくレコメンド(推定値)	14,232	18.72 %

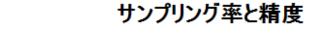
5.5. サンプリング実験

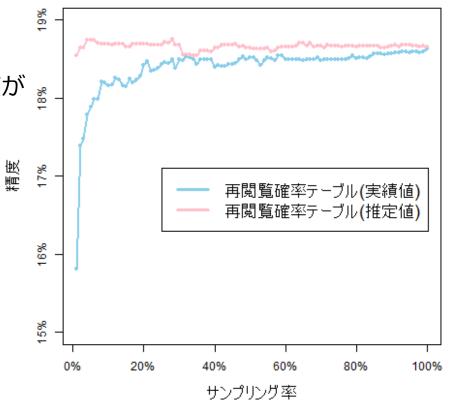
MATHEMATICAL SYSTEMS INC.

■ 17,803 ユーザからサンプリング(1%~100%)

実績値と推定値の2つの 再閲覧確率テーブルを比較

- 実績値より推定値の方がデータ量に限らずレコメンド精度が 良いことを確認
- データ不足も解消可能





より詳細なセグメンテーションが可能

6. まとめ

6.1. まとめ

- マーケティングについて
 - 頻度(Frequency)と直近さ(Recency)を具体的に定量化して レコメンドロジックを構築
 - 予測精度は特徴量の作成と選択に尽きる
- ビッグデータについて
 - 大規模データの特性 規模に比例して確率の信頼性が向上・詳細なセグメンテーションが可能
 - 過学習の回避&データ不足の解消 凸二次計画問題に定式化して再閲覧確率テーブルを推定
- ビジネスにおける実現性
 - スケーラビリティ
 - 再閲覧確率テーブルの作成(Hadoop 等の分散処理技術)
 - 再閲覧確率テーブルの推定(凸二次計画法:変数数 |I|×|J|)
 - レコメンド時のリアルタイム性
 - 再閲覧確率テーブルの参照と確率のソート処理でレコメンド可能