

Nuorium Optimizer

SIMPLE チュートリアル V27

株式会社NTTデータ数理システム

2024年12月

目 次

第1章	はじめに		1
1.1	数理最適化問題とは .		1
1.2	数理最適化問題を解く	(PySIMPLE)	1
1.3	数理最適化問題を解く	(C++SIMPLE)	2
歩 引			1

第1章 はじめに

Nuorium Optimizer は数理最適化問題を解くための汎用ソルバであり、SIMPLE は数理最適化問題を記述するモデリング言語の総称です。そしてそれらの専用 GUI 環境が Nuorium です。

本稿は Nuorium Optimizer/SIMPLE の基本的な機能に関するチュートリアルです。本稿を一読していただければ、Nuorium Optimizer/SIMPLE の基本的な利用方法がご理解いただけると思います。

数理最適化問題とは

数理最適化問題とは、「与えられた条件の下で、望ましさの尺度を表す何らかの関数の最小値(最大値)を求め、さらにその最小値(最大値)を与える不特定要素の値を決定する」という問題です.

上記における,「与えられた条件」は制約条件,「望ましさの尺度を表す関数」は目的関数,「不特定要素」は変数と一般に呼ばれています.この用語を用いて書き直すと,数理最適化問題とは,「制約条件を満たす範囲における目的関数の最小値(最大値)及びその最小値(最大値)を与える変数を求める問題」といえます.

例えば、 $x \ge 0$ において 3x + 2 の最小値を求める問題は、数理最適化問題です。この場合、制約条件は $x \ge 0$ 、目的関数は 3x + 2、変数は x となります。

この問題は数理最適化の世界では次のように書かれます:

• 目的関数: 3x + 2 →最小化

制約条件: x ≥ 0

考える間もなく、上記の数理最適化問題の最もよい目的関数値は 2(x=0 のとき)となります.このときの変数の値を最適解と呼びます.

最適解を求めることを「数理最適化問題を解く」あるいは「最適化する」といいます.

1.2 数理最適化問題を解く(PySIMPLE)

早速 Windows 版 Nuorium Optimizer の GUI 環境である Nuorium およびモデリング言語 PySIMPLE を用いて数理最適化問題を解いてみましょう。 まずは Windows のスタートメニューから「すべてのプログラム」→「MSI Solutions」→「Nuorium」を選択してください.

メニューの「ファイル」→「新規作成」→「新規作成 (.py)」を選択します.

表示された画面左のパネルにある untitled.py タブで次のように書き、メニューの「ファイル」→「名前を付けて保存」で適当な場所にファイルを保存します.

2 第 1 章 はじめに

```
from pysimple import *
x = Variable()
p = Problem(type=min)
p += 3*x + 2
p += x >= 0
p.solve()
```

次に、画面左上の実行単位(「デフォルト」となっている箇所)をクリックし、「Python@Nuorium」に変更します.

最後に、画面左上の「実行」ボタンを押すと Nuorium Optimizer が計算を開始し、画面右のパネルに 各種出力が表示されます.

この一連の操作で、あなたは Nuorium Optimizer を使って次の数理最適化問題を解いたことになります.

• 目的関数:3x + 2 →最小化

制約条件: x ≥ 0

1.3 数理最適化問題を解く(C++SIMPLE)

本節ではモデリング言語 C++SIMPLE を用いて数理最適化問題を解く方法を説明します.

Windows のスタートメニューから「すべてのプログラム」 \rightarrow 「MSI Solutions」 \rightarrow 「Nuorium」を選択してください.

表示された画面左のパネルにある newModel.smp タブで次のように書き、メニューの「ファイル」→「名前を付けて保存」で適当な場所にファイルを保存します.

```
newModel.smp* ×

1  Variable · x; ↓
2  Objective · f(type=minimize); ↓
3  f · = · 3*x · + · 2; ↓
4  x · > = · 0; ↓
5  [EOF]
```

最後に、画面左上の「実行」ボタンを押すと Nuorium Optimizer が計算を開始し、画面右のパネルに 各種出力が表示されます.

索引

C	
C++SIMPLE2	最適解
${f N}$	
Nuorium 1	数理最適化
Nuorium Optimizer	
P	制約条件
PySIMPLE1	
SIMPLE1	変数
W	目的関数
Windows 版1	口印]因数

	3	
最適解		1
	す	
数理最適化問題		1, 2
	せ	
制約条件		1, 2
	^	
変数		1
	Ł	
目的関数		1.2