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Abstract Nonlinear semidefinite programming (SDP) problems have received a lot of attentions because of
large variety of applications. In this paper, we survey numerical methods for solving nonlinear SDP problems.
Three kinds of typical numerical methods are described; augmented Lagrangian methods, sequential SDP
methods and primal-dual interior point methods. We describe their typical algorithmic forms and discuss
their global and local convergence properties which include rate of convergence.
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1. Introduction

This paper is concerned with the nonlinear SDP problem:

minimize f(x), x ∈ Rn,
subject to g(x) = 0, X(x) ≽ 0

(1.1)

where the functions f : Rn → R, g : Rn → Rm and X : Rn → Sp are sufficiently smooth,
and Sp denotes the set of pth-order real symmetric matrices. We also define Sp

+ to denote
the set of pth-order symmetric positive semidefinite matrices. By X(x) ≽ 0 and X(x) ≻ 0,
we mean that the matrix X(x) is positive semidefinite and positive definite, respectively.

When f is a convex function, X is a concave function and g is affine, this problem is a
convex optimization problem. Here the concavity of X(x) means that

X(λu + (1 − λ)v) − λX(u) − (1 − λ)X(v) ≽ 0

holds for any u, v ∈ Rn and any λ satisfying 0 ≤ λ ≤ 1. We note that problem (1.1) is
an extension of a linear SDP problem. When all the functions f and g are linear and the
matrix X(x) is defined by

X(x) =
n∑

i=1

xiAi − B

with given matrices Ai ∈ Sp, i = 1, . . . , n, and B ∈ Sp, the problem reduces to a linear SDP
problem. The linear SDP problems include linear programming problems, convex quadratic
programming problems and second-order cone programming problems [1] as special cases.
Linear SDP model has been one of the most active research field for several decades. There
are many researches on theories and applications, and polynomial-time algorithms based on
interior point methods for linear SDP problems. These results can be found in survey papers
by Vandenberghe and Boyd [68] and Todd [66], and in the books by Boyd, Ghaoui, Feron
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and Balakrishnan [10], Wolkowicz, Saigal and Vandenberghe [70], Ben-Tal and Nemirovski
[4], and Anjos and Lasserre [3], for example.

Though the linear SDP model is very useful in practical applications, it is insufficient
if one wants to deal with more general problems. The nonlinear SDP problems arise from
several application fields, for example, control theory (especially LMI-constrained problems
and BMI-constrained problems), structural optimization, material optimization, eigenvalue
problems, finance and so forth. See [17, 18, 23, 34, 40, 43, 57, 63, 69] and references therein.
Thus, it is desired to develop numerical methods for solving nonlinear SDP problems.
Though the interior point methods are main tools for linear SDP problems, nonlinear SDP
problems (1.1) can have various algorithms. Typical studies on numerical methods include
the three categories; (1) augmented Lagrangian method, (2) the sequential linear program-
ming (SLP) method, or the sequential quadratic programming (SQP) method, and (3)
interior point methods.

The nonlinear SDP contains the nonlinear second-order cone programming (SOCP).
There are several researches on numerical methods for nonlinear SOCP problems, but these
topics are not included in this paper. We list Kanzow, Ferenczi and Fukushima [35], Ya-
mashita and Yabe [74] and Fukuda, Silva and Fukushima [24] for references.

The present paper is organized as follows. In Section 2, we introduce optimality condi-
tions for problem (1.1) and fundamental notions that are used in the subsequent sections.
In Section 3, we review the augmented Lagrangian method and its convergence properties.
Section 4 describes sequential SDP methods from the view point of the rate of local conver-
gence and the global convergence properties within a framework of a line search strategy, the
trust region strategy and the filter method. In Section 5, we focus on primal-dual interior
point methods and their local and global convergence properties. Since researches by the
current authors in nonlinear SDP area have been on primal-dual interior point methods, the
description of this section may be more detailed than the other methods. Finally, we give
some concluding remarks in Section 6.

Notations: Throughout this paper, we define the inner product ⟨U, V ⟩ by ⟨U, V ⟩ =
tr(UV ) for any matrices U and V in Sp, where tr(M) denotes the trace of the matrix M .
The superscript T denotes the transpose of a vector or a matrix. For U, V ∈ Sp, we define
the multiplication U ◦ V by

U ◦ V =
UV + V U

2
. (1.2)

We will implicitly make use of various useful relations described in [2] and Appendix of [67].
For P ∈ Rp1×p2 and Q ∈ Rq1×q2 , the Kronecker product is defined by

P ⊗ Q = [PijQ] ∈ Rp1q1×p2q2 .

For U ∈ Rp2×q2 , we have

(P ⊗ Q)vec(U) = vec(PUQT ),

where the notation vec(U) is defined by

vec(U) = (U11, U21, . . . , Up21, U12, U22, . . . , Up22, U13, . . . , Up2q2)
T ∈ Rp2q2 .

For U ∈ Sp, P ∈ Rp×p and Q ∈ Rp×p, we define the operator

(P ⊙ Q)U =
1

2
(PUQT + QUP T )
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and the symmetrized Kronecker product

(P ⊗S Q)svec(U) = svec((P ⊙ Q)U),

where the operator svec is defined by

svec(U) = (U11,
√

2U21, . . . ,
√

2Up1, U22,
√

2U32, . . . ,
√

2Up2, U33, . . . , Upp)
T ∈ Rp(p+1)/2.

We note that, for any U, V ∈ Sp,

⟨U, V ⟩ = tr(UV ) = svec(U)T svec(V ) (1.3)

holds, and that for any U, V ∈ Rp1×p2 ,

tr(UT V ) = vec(U)T vec(V ). (1.4)

In what follows, ∥ • ∥, ∥ • ∥1 and ∥ • ∥∞ denote the l2, l1 and l∞ norms for vectors, and
∥ • ∥F denotes the Frobenius norm for matrices. λmin(M) denotes the minimum eigenvalue
of a matrix M ∈ Sp.

2. Optimality Conditions and Preliminaries for Analysis of Local Behavior

This section introduces optimality conditions for problem (1.1) and related quantities. We
first define the Lagrangian function of problem (1.1) by

L(w) = f(x) − yT g(x) − ⟨X(x), Z⟩ ,

where w = (x, y, Z), and y ∈ Rm and Z ∈ Sp are the Lagrange multiplier vector and
matrix for the equality and positive semidefiniteness constraints, respectively. We also
define matrices

Ai(x) =
∂X(x)

∂xi

for i = 1, . . . , n. Then the Karush-Kuhn-Tucker (KKT) conditions for optimality of problem
(1.1) are given by the following (see [11]):

r0(w) ≡

 ∇xL(w)
g(x)

X(x)Z

 =

 0
0
0

 (2.1)

and
X(x) ≽ 0, Z ≽ 0. (2.2)

Here ∇xL(w) is the gradient vector of the Lagrangian function given by

∇xL(w) = ∇f(x) −∇g(x)y −A∗(x)Z,

where ∇g(x) is defined by

∇g(x) = (∇g1(x), . . . ,∇gm(x)) ∈ Rn×m

and A∗(x) is the operator such that for Z,

A∗(x)Z =

 ⟨A1(x), Z⟩
...

⟨An(x), Z⟩

 .
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We will use the norm ∥r0(w)∥ defined by

∥r0(w)∥ =

√∥∥∥∥(
∇xL(w)

g(x)

)∥∥∥∥2

+ ∥X(x)Z∥2
F

in this paper.
The complementarity condition X(x)Z = 0 will appear in various forms in the following.

We will occasionally deal with the multiplication X(x) ◦ Z instead of X(x)Z. It is known
that X(x) ◦Z = 0 is equivalent to the relation X(x)Z = ZX(x) = 0 for symmetric positive
semidefinite matrices X(x) and Z. We also note that for symmetric positive semidefinite
matrices X(x) and Z, X(x)Z = 0 ⇐⇒ ⟨X(x), Z⟩ = 0.

In the rest of this section, we briefly present some definitions that are necessary for
the analysis of local behavior of methods surveyed below. We also describe the definitions
of a stationary point, the Mangasarian-Fromovitz constraint qualification condition, the
quadratic growth condition, the strict complementarity condition and the nondegeneracy
condition, and the second order necessary / sufficient conditions for optimality. More com-
prehensive description can be found in [7–9, 56, 59, 60]. We recommend the paper by Shapiro
and Scheinberg [60] for a good introduction to these subjects. Alternative derivation of the
optimality conditions is described in Forsgren [21].
Definition 2.1. A point x∗ ∈ Rn is said to be a stationary point of problem (1.1) if there
exist Lagrange multipliers (y, Z) such that (x∗, y, Z) satisfies the KKT conditions (2.1) and
(2.2).

Let Λ(x∗) denote the set of Lagrange multipliers (y, Z) such that (x∗, y, Z) satisfies the
KKT conditions. In this paper, when we refer to a point w∗ = (x∗, y∗, Z∗), then it means
that w∗ is a KKT point.
Definition 2.2. We say that the Mangasarian-Fromovitz constraint qualification (MFCQ)
condition holds at a feasible point x if the matrix ∇g(x) is of full column rank and there
exists a nonzero vector v ∈ Rn such that

∇g(x)T v = 0 and X(x) +
n∑

i=1

viAi(x) ≻ 0.

It can be shown that, if the Mangasarian-Fromovitz condition holds at a stationary point
x∗, then the set Λ(x∗) is bounded.

The set C(x∗) denote the critical cone of (1.1) at x∗ that is defined as follows. Let
TSp

+
(X(x∗)) denote the tangent cone of Sp

+ at X(x∗), which is defined by

TSp
+
(X(x∗)) = {D | dist(X(x∗) + tD,Sp

+) = o(t), t ≥ 0},

where dist(P,Sp
+) = inf{∥P − Q∥F | Q ∈ Sp

+}. The set C(x∗), the critical cone at x∗, is
defined by

C(x∗) =

{
h ∈ Rn | ∇g(x∗)T h = 0,

n∑
i=1

hiAi(x
∗) ∈ TSp

+
(X(x∗)), ∇f(x∗)T h = 0

}
.

Definition 2.3. The second order necessary condition for local optimality of x∗ under the
MFCQ condition is given by

sup
(y,Z)∈Λ(x∗)

hT (∇2
xL(x∗, y, Z) + Ĥ(x∗, Z))h ≥ 0, for all h ∈ C(x∗). (2.3)
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28 H. Yamashita & H. Yabe

Here Ĥ(x, Z) is a matrix whose (i, j)th element is

(Ĥ(x, Z))ij = 2tr(Ai(x)X(x)†Aj(x)Z) (2.4)

and † denotes the Moore-Penrose generalized inverse.
The matrix Ĥ(x, Z) contains a curvature information of the domain defined by the

constraint X(x) ≽ 0.
Corresponding to the above necessary condition, we have the following sufficient condi-

tion.
Definition 2.4. The second order sufficient condition for local optimality of x∗ under the
MFCQ condition is given by

sup
(y,Z)∈Λ(x∗)

hT (∇2
xL(x∗, y, Z) + Ĥ(x∗, Z))h > 0, for all h ∈ C(x∗)\{0}. (2.5)

It is said that a quadratic growth condition holds at a feasible point x∗ of problem (1.1)
if there exists c > 0 such that the following inequality holds

f(x) ≥ f(x∗) + c∥x − x∗∥2 (2.6)

for any feasible point x in a neighborhood of x∗. The quadratic growth condition implies that
x∗ is a strict local optimal solution of problem (1.1). Suppose that the MFCQ condition
holds. Then the quadratic growth condition holds if and only if the above second order
sufficient conditions (2.5) are satisfied. By comparing conditions (2.3) and (2.5), we note
that these conditions give a pair of “no gap” second order optimality conditions. By “no
gap”, we mean that the weak inequality sign in (2.3) is changed to the strict inequality sign
in (2.5).

The matrix Ĥ(x∗, Z) can be written in the following form

Ĥ(x∗, Z) = 2A(x∗)T
(
Z ⊗ X(x∗)†

)
A(x∗),

where
A(x) = [vec(A1(x)), . . . , vec(An(x))] ∈ Rp2×n. (2.7)

Since X(x∗) ≽ 0 and Z ≽ 0, the matrix Z⊗X(x∗)† is positive semidefinite (see Appendix of
[67]), Ĥ(x∗, Z) is positive semidefinite. Then the following second order sufficient condition

sup
(y,Z)∈Λ(x∗)

hT∇2
xL(x∗, y, Z)h > 0, for all h ∈ C(x∗)\{0}, (2.8)

which will also be used in the following, is a stronger condition than (2.5). If condition (2.8)
holds, condition (2.5) holds. Then the quadratic growth condition is also satisfied under the
MFCQ condition.

Since X(x∗)Z∗ = 0, the matrices X(x∗) and Z∗ commute. Therefore they can be si-
multaneously diagonalized. Thus because of the complementarity condition, we can assume
without loss of generality that the matrix X(x∗) and Z∗ are represented by

X(x∗) =

 X∗
B 0 0

0 0 0
0 0 0

 and Z∗ =

 0 0 0
0 0 0
0 0 Z∗

N


respectively, where X∗

B and Z∗
N are diagonal and positive definite matrices.
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Definition 2.5. We say that the strict complementarity condition holds at x∗ if there exists
(y∗, Z∗) ∈ Λ(x∗) such that

rank(X(x∗)) + rank(Z∗) = p.

If the strict complementarity condition holds, we have

X(x∗) =

(
X∗

B 0
0 0

)
and Z∗ =

(
0 0
0 Z∗

N

)
, (2.9)

where rank(X∗
B) + rank(Z∗

N) = p. Corresponding to (2.9), we partition the matrices X(x)
and Z as

X(x) =

(
XB(x) XU(x)
XU(x)T XN(x)

)
and Z =

(
ZB(x) ZU(x)
ZU(x)T ZN(x)

)
in a neighborhood of w∗ = (x∗, y∗, Z∗). Similarly, we partition the matrix Ai(x) as

Ai(x) =

(
ABi(x) AUi(x)
AUi(x)T ANi(x)

)
for i = 1, . . . , n. Then the critical cone at x∗ can be specifically represented by

C(x∗) =

{
h ∈ Rn | ∇g(x∗)T h = 0,

n∑
i=1

hiANi(x
∗) = 0

}
.

Definition 2.6. We say that the nondegeneracy condition holds at x∗ if the n-dimensional
vectors

∇gi(x
∗), i = 1, . . . ,m and

 eT
i A1(x

∗)ej
...

eT
i An(x∗)ej

 , i, j = 1, . . . , p − r

are linearly independent, where r = rank(X(x∗)) and the vectors e1, . . . , ep−r form a basis
of the null space of the matrix X(x∗).

If the strict complementarity condition holds, the nondegeneracy condition means that
the vectors

∇gi(x
∗), i = 1, . . . ,m and

 (AN1(x
∗))ij

...
(ANn(x∗))ij

 , i, j = 1, . . . , |N |

are linearly independent, where |N | denotes the size of Z∗
N . If the strict complementarity

condition holds at x∗, then Λ(x∗) is a singleton if and only if the nondegeneracy condition
is satisfied. It is known that the nondegeneracy condition is stronger than the MFCQ
condition, i.e., if the nondegeneracy condition holds at x∗, then the MFCQ condition also
holds at x∗.

3. Augmented Lagrangian Method

As in ordinary nonlinear programming, it is possible to device a class of algorithms based on
the augmented Lagrangian function. In this section, we survey two kinds of approaches that
use the augmented Lagrangian type merit function. The first one is based on a quadratic
penalty type augmentation and the second one is based on Polyak’s modified barrier func-
tion. For other methods which are not reviewed here, refer to [28–31].
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3.1. Augmented Lagrangian method based on quadratic penalty function

To solve the following nonlinear optimization problem:

minimize f(x), x ∈ Rn,
subject to g(x) = 0, x ≥ 0,

the augmented Lagrangian by the quadratic penalty is of the form (see, for example, [5])

Fµ(x, y, z) = f(x) +
µ

2

n∑
i=1

{(
max

{
0, zi −

xi

µ

})2

− z2
i

}
− yT g(x) +

1

2µ
∥g(x)∥2 , (3.1)

where µ > 0 is a penalty parameter. We repeat alternately an unconstrained minimization of
Fµ(x, yk, zk) for computing next primal estimate xk+1 and a multiplier update for computing
next dual estimates yk+1, zk+1 for k = 0, 1, . . . . Because

0 = ∇xFµ(xk+1, yk, zk)

= ∇f(xk+1) −
n∑

i=1

max

{
0, (zk)i −

(xk+1)i

µ

}
−∇g(xk+1)(yk − g(xk+1)/µ),

if xk+1 is at the minimum of Fµ(x, yk, zk), the usual practice is to update the dual variables
by

yk+1 = yk − g(xk+1)/µ,

(zk+1)i = max

{
0, (zk)i −

(xk+1)i

µ

}
, i = 1, . . . , n,

which gives ∇xL(xk+1, yk+1, zk+1) = 0. The update of dual variables corresponds to the
maximization step of the dual function.

An extension of the above algorithm to problem (1.1) is rather straightforward, and the
augmented Lagrangian is defined by

Fµ(x, y, Z) = f(x) +
µ

2

{
tr

(∣∣∣∣Z − 1

µ
X(x)

∣∣∣∣2
+

)
− tr(Z2)

}
− yT g(x) +

1

2µ
∥g(x)∥2 , (3.2)

where the matrix |A|+ for A ∈ Sp is defined by |A|+ = Sdiag(|λ1|+ , . . . , |λp|+)ST where

A = Sdiag(λ1, . . . , λp)S
T is an eigenvalue decomposition of A, and |λi|+ = max{0, λi}, i =

1, . . . , p. Therefore the matrix |A|+ is the projection of A onto Sp
+. We will also use the

notation |A| for A ∈ Sp as the matrix |A| = Sdiag(|λ1| , . . . , |λp|)ST later.
Since

∇xFµ(x, y, Z) = ∇f(x) −A∗(x)

∣∣∣∣Z − 1

µ
X(x)

∣∣∣∣
+

−∇g(x)(y − g(x)/µ), (3.3)

and ∇xFµ(xk+1, yk, Zk) = 0 at the minimum xk+1 of Fµ(x, yk, Zk) (see, for example, [65]),
similarly to the nonlinear optimization case, the next multiplier estimates are computed by

yk+1 = yk − g(xk+1)/µ,

Zk+1 =

∣∣∣∣Zk −
1

µ
X(xk+1)

∣∣∣∣
+

,
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yielding ∇xL(xk+1, yk+1, Zk+1) = 0. We note that Zk+1 is always positive semidefinite.
From (3.3), it is easy to verify that ∇xFµ(x∗, y∗, Z∗) = ∇xL(x∗, y∗, Z∗) = 0 at a KKT

point w∗.
In order to calculate the values of the merit function and its derivatives at a point x with

this type of the augmented Lagrangian function, we have to calculate all the eigenvalues of
the matrix Z− 1

µ
X(x). This may cause some difficulties in practical computation, especially

with large scale problems.
We note that Noll, Torki and Apkarian [54] solved nonlinear LMI/BMI problems by

handling the equality constraints with an ordinary Lagrangian augmentation as above, and
treating the matrix inequalities by interior point methods.

3.1.1. Local properties of quadratic penalty augmented Lagrangian

In this subsection, we describe local properties of the above augmented Lagrangian near the
KKT point w∗. The following results are given by Sun, Zhang and Wu [65]. In [65], only
problems with inequality constraints are considered, therefore we omit the term containing
g(x) and y in this subsection. We note that it is a straightforward matter to include
equality constraints in the following analysis. The local convexification and global saddle
point condition are proved in the following theorem.

Theorem 3.1. Assume that the functions f and X are twice continuously differentiable.
Assume further that the Mangasarian-Fromovitz constraint qualification, the strict com-
plementarity condition and second order sufficient condition (2.8) hold at w∗. Then the
augmented Lagrangian function Fµ(x, Z) defined by (3.2) satisfies the following properties:

(i) ∇xFµ(x∗, Z∗) = 0.

(ii) vT∇2
xFµ(x∗, Z∗)v > 0, ∀v ∈ C(x∗)\{0} when µ > 0. Moreover there is a positive

constant µ̄ > 0 such that ∇2
xFµ(x∗, Z∗) is positive definite when µ ∈ (0, µ̄].

(iii) There exists a positive µ0 ≤ µ̄ such that the global saddle point condition

Fµ(x∗, Z) ≤ Fµ(x∗, Z∗) ≤ Fµ(x, Z∗) for all x ∈ Rn, Z ∈ Sp

holds for all positive µ ≤ µ0.

Based on these properties, various types of augmented Lagrangian methods can be de-
rived. The following simple algorithm is presented for the analysis of local convergence
properties.

Algorithm 3.1.

Step 0. Let x0 ∈ Rn, Z0 ≽ 0, µ̄ > µ > 0 and ε > 0 be given. Set k = 0.

Step 1. (Primal update) Solve the following subproblem, and calculate its minimizer xk+1 ∈
Rn:

minimize Fµ(x, Zk), x ∈ Rn.

Step 2. If ZkX(xk+1) = 0, then stop.

Step 3. (Dual update) Calculate the next multiplier estimate by

Zk+1 =

∣∣∣∣Zk −
1

µ
X(xk+1)

∣∣∣∣
+

.

Step 4. Set k = k + 1 and go to Step 1. ¤
The local convergence property of the above algorithm is given by the following theorem.
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Theorem 3.2. Assume that the functions f and X are twice continuously differentiable.
Assume further that the Mangasarian-Fromovitz constraint qualification, the strict comple-
mentarity condition and second order sufficient condition (2.8) hold at w∗. Then there exist
δ > 0, ϵ > 0, µ̄ > 0, µ1 > 0,and µ2 > 0 with µ1 < µ2 ≤ µ̄, such that for any µ ∈ [µ1, µ2] and
for Z ∈ {Z |∥Z − Z∗∥F ≤ δ}, the following statements hold:

(i) There exists a unique vector x̂ ∈ Rn such that ∇Fµ(x̂, Z) = 0 and

x̂ = arg min {Fµ(x, Z) |∥x − x∗∥ ≤ ϵ, x ∈ Rn} .

(ii) Denote U = Z − 1
µ
X(x̂) and Ẑ = |U |+. Assume that the inverse of the matrix(

∇2
xFµ(x̂, Ẑ) −A(x̂)T

−1
2
A(x̂)T − 1

2
V −µp2I

)
is bounded for Z in a neighborhood of Z∗ and µ sufficiently small, where A(x) is defined in
(2.7), and

V = [vec(V1), . . . , vec(Vn)]

with
Vi = (|U | ⊙ I)−1(U ⊙ I)Ai(x̂), i = 1, . . . , n.

Then, the following estimates hold:

∥x̂ − x∗∥ ≤ cµ ∥Z − Z∗∥F ,∥∥∥Ẑ − Z∗
∥∥∥

F
≤ cµ ∥Z − Z∗∥F

where the constant c is independent of µ.

The above theorem shows the rate of convergence is linear, but its speed can be adjusted
by decreasing the value of µ.

We note that some local properties of the quadratic penalty type augmented Lagrangian
is studied by Shapiro and Sun [61]. Sun, Sun and Zhang [64] proved the similar linear rate
of convergence without assuming the strict complementarity condition.

3.1.2. Globally convergent algorithm

It is possible to globalize the quadratic penalty augmented Lagrangian method. The essence
of the modifications/assumptions of possible variations is to maintain the primal and dual
sequences as bounded somehow, and let the penalty parameter µk → 0. We describe the
algorithm proposed by Wu, Luo, Ding and Chen [71] in this subsection. We note that Luo,
Wu and Chen [47] proposed other variants of globally convergent algorithms. Let

σk ≡ max

{
µk

∥∥∥∥∣∣∣∣Zk −
1

µk

X(xk+1)

∣∣∣∣
+

− Zk

∥∥∥∥
F

, ∥g(xk+1)∥∞

}
.

It can be shown that, if ∥∇Fµk
(xk+1, yk, Zk)∥ ≤ ϵ and σk = 0, then the point (xk+1, yk, Zk)

is an ϵ-approximate KKT point which satisfies

∥∇f(xk+1) −∇g(xk+1)yk −A∗(xk+1)Zk∥ ≤ ϵ,

g(xk+1) = 0,

X(xk+1)Zk = 0,

X(xk+1) ≽ 0, Zk ≽ 0.

Therefore searching for a point that satisfies ∥∇Fµk
(x, yk, Zk)∥ ≤ ϵ and σk = 0 along with

the semidefinite conditions may give a desired approximate KKT point.
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Algorithm 3.2.

Step 0. Let x0 ∈ Rn, y0 ∈ Rm, Z0 ≽ 0, µ0 > 0, µ′
0 > 0, ϵ > 0 and θ ∈ (0, 1) be given. Set

k = 0.
Step 1. (Primal update) Find a point xk+1 ∈ Rn that satisfies

∥∇Fµk
(x, yk, Zk)∥ ≤ µ′

k,

by solving the problem

minimize Fµk
(x, yk, Zk), x ∈ Rn.

Step 2. If σk = 0 and µ′
k ≤ ϵ, then stop. If σk = 0 and µ′

k > ϵ, then set µ′
k+1 = θµ′

k, k =
k + 1, and go to Step 1. Otherwise go to Step 3.

Step 3. (Dual update) Calculate the next multiplier estimate by

Zk+1 =

∣∣∣∣Zk −
1

µk

X(xk+1)

∣∣∣∣
+

, yk+1 = yk − g(xk+1)/µk.

Step 4. Set 0 < µk+1 ≤ µk, k = k + 1 and go to Step 1. ¤

The following theorem shows the convergence of the above algorithm.

Theorem 3.3. Assume that the functions f, g and X are continuously differentiable.
(i) If the sequence generated by Algorithm 3.2 stops in Step 2 at the kth iteration, then

{xk+1, yk, Zk} is an ϵ-approximate KKT point.
(ii) If the generated sequence is not finite, and if {yk, Zk} is bounded and µk → 0 as

k → ∞, then any limit point x̄ of {xk} is either infeasible, or does not satisfy the MFCQ
condition, or a KKT point.
In [71], another more complicated algorithm that converges under more relaxed conditions
is also described.

3.2. Augmented Lagrangian function based on modified barrier function

Representatives of this line were first done by Mosheyev and Zibulevsky [49], and later
developed by Kočvara and Stingl ([38–40, 62]). Kočvara and Stingl developed the software
PENNON [38, 41], and applied it to many practical problems. The augmented Lagrangian

function (3.1) for ordinary NLP contains the penalty term µ
2
{
(
max

{
0, zi − xi

µ

})2

− z2
i }

for the constraint xi ≥ 0, that goes to infinity as xi goes to −∞. Polyak proposed the
modified barrier function method [55] that uses the penalty/barrier term −µ log(xi

µ
+ 1)zi,

for example, for the constraint xi ≥ 0, that goes to infinity as xi goes to −µ < 0 from the
above.

In the following, the outline of the algorithm by Kočvara and Stingl is described. The
problem to be solved is

minimize f(x), x ∈ Rn,
subject to X(x) ≽ 0.

(3.4)

Here the equality constraints are omitted for the sake of simplicity of discussion. Kočvara
and Stingl proposed two approaches for handling equality constraints in their implementa-
tion. One is that an equality constraint gi(x) = 0 is converted to two inequality constraints
gi(x) ≤ 0 and gi(x) ≥ 0, and the other is that gi(x) = 0 is converted to the inequality
constraints −ε ≤ gi(x) ≤ ε, where ε is a small positive constant. They claimed that these
two approaches are equally efficient.

In this section, we describe various properties of this type following the contents in [62].
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3.2.1. Properties of modified barrier augmented Lagrangian function

In this subsection, we assume that the KKT point x∗ satisfies

x∗ ∈ arg min{f(x) |x ∈ Ω},

where Ω = {x ∈ Rn |X(x) ≽ 0}, the strict complementarity condition, the nondegeneracy
condition, and the second order sufficient condition (2.5), and that

∃π > 0 and τ > 0 such that max{∥X(x)∥F |x ∈ Ωπ } ≤ τ, (3.5)

with
Ωµ = {x ∈ Rn |X(x) ≽ −bµI },

where b is a positive constant and µ is a positive number. Condition (3.5) is called a growth
condition.

We introduce a penalty/barrier matrix function Φµ : Sp → Sp that satisfies a number of
constraints described below. Let X(x) = S(x)diag(λ1(x), . . . , λp(x))S(x)T be an eigenvalue
decomposition of X(x). Then the primary matrix function Φµ is defined by

Φµ(X(x)) = S(x)


φµ(λ1(x)) 0 · · · 0

0 φµ(λ2(x))
...

...
. . . 0

0 · · · 0 φµ(λp(x))

 S(x)T ,

where φµ : R → R characterizes the above matrix function and specific choice of φµ given
below assures

X(x) ≽ 0 ⇐⇒ Φµ(X(x)) ≽ 0,

in particular, for any value of penalty parameter µ > 0.
The augmented Lagrangian of (3.4) is defined by

Fµ(x, Z) = f(x) − ⟨Φµ(X(x)), Z⟩ . (3.6)

In order for the augmented Lagrangian (3.6) to have desired properties, we require the
function φ to satisfy the following properties, and let the above φµ be defined by φµ(t) =
−µφ(−t/µ):
Definition 3.1. Let φ : (−∞, b) → R, where b ∈ (0,∞] is a given number, be a function
with the following properties.

(φ0) φ is strictly convex, strictly monotone increasing and twice continuously differentiable,
(φ1) φ(0) = 0,
(φ2) φ′(0) = 1,
(φ3) ∃c1 such that φ′(t) ≥ c1 for any t < 0,
(φ4) ∃c2 such that φ′(σ/µ) ≤ c2µ for any σ < 0 and µ > 0,
(φ5) ∃c3 such that φ′′(ρσ) ≤ c3µ

2 for any σ < 0 and µ > 0,
(φ6) φ′ is convex, and limt→b φ′ = ∞, limt→−∞ φ′ = 0.

Well known examples of the function φ are:

• The logarithmic penalty function

φlog(t) = − log(1 − t).
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• The hyperbolic penalty function

φhyp(t) =
1

1 − t
− 1.

These penalty functions are introduced by Polyak [55], and he called them the modified
barrier functions.

Let t1, . . . , tp be real values, and define

∆φµ(ti, tj) =

{
φµ(ti)−φµ(tj)

ti−tj
, for i ̸= j,

φ′
µ(ti), for i = j,

∆2φµ(ti, tj, tk) =


∆φµ(ti,tk)−∆φµ(tj ,tk)

ti−tj
, for i ̸= j,

∆φµ(ti,tj)−∆φµ(tk,tj)

ti−tk
, for i = j ̸= k,

φ′′
µ(ti), for i = j = k,

where φ′
µ and φ′′

µ are the first and the second derivatives of φµ, respectively. Further,
let λ′

1(x) < λ′
2(x) < . . . < λ′

p′(x)(x) be distinct eigenvalues of X(x), and let X(x) =

S(x)diag(λ′
1(x), . . . , λ′

1(x), . . . , λ′
p′(x)(x), . . . , λ′

p′(x)(x))S(x)T be an eigenvalue decomposition

of X(x) where each eigenvalue occurs in its multiplicity at x. The Frobenius covariant
matrices Pi(x) ∈ Sp, i = 1, . . . , p′(x) of X(x) is defined by

Pi(x) = S(x)diag(0, . . . , 0, 1, . . . , 1, 0, . . . , 0)S(x)T , i = 1, . . . , p′(x),

where the nonzeros in the diagonal matrix occur exactly in the positions of λ′
i(x) in

diag(λ′
1(x), . . . , λ′

p′(x)(x)) ∈ Sp.
With the above definition of the augmented Lagrangian, we can prove the following

theorem that shows the desired properties at the KKT point w∗.

Theorem 3.4. The augmented Lagrangian function Fµ(x, Z) defined by (3.6) satisfies the
following properties:

(i) Fµ(x∗, Z∗) = f(x∗).
(ii) ∇xFµ(x∗, Z∗) = ∇f(x∗) −A∗(x∗)Z∗ = 0.
(iii) ∇2

xFµ(x∗, Z∗) = ∇2
xL(x∗, Z∗) + Hµ(x∗, Z∗) + M/µ, where

Hµ(x∗, Z∗) = 2

⟨
Z∗, Ai(x

∗)

p′(x∗)−1∑
k=1

∆2φµ(tk, 0, 0)Pk(x
∗)

 Aj(x
∗)

⟩n

i,j=1

∈ Sn,

M = 2
[⟨

Z∗, Ai(x
∗)φ′′

µ(0)Pp′(x∗)(x
∗)Aj(x

∗)
⟩]n

i,j=1
∈ Sn,

and limµ→0 Hµ(x∗, Z∗) = Ĥ(x∗, Z∗) (see (2.4)), KerM = C(x∗) and vT Mv > 0, ∀v /∈
C(x∗).

If f is convex and X is concave, then

(iv) Fµ(x, Z) is convex in x for all x ∈ Ωµ.

From (iii) of the above theorem, we see that the matrix ∇2
xFµ(x∗, Z∗) is positive definite

when µ > 0 is sufficiently small. The following theorem shows properties of the augmented
Lagrangian in a neighborhood of x∗.
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Theorem 3.5. The augmented Lagrangian function Fµ(x, Z) satisfies the following proper-
ties:

(i) There exists µ̄ > 0 such that Fµ(x, Z∗) is strongly convex for all µ ≤ µ̄ in a neighborhood
of x∗.

(ii) There exist ε > 0 and µ̄ > 0 such that, for any µ < µ̄,

x∗ = arg min {Fµ(x, Z∗) |∥x − x∗∥ ≤ ε} .

Moreover, if f is convex and X is concave, then for any µ > 0,

x∗ = arg min {Fµ(x, Z∗) |x ∈ Rn} .

3.2.2. Algorithm and its local convergence property

As usual, we perform the unconstrained minimization of Fµ(x, Z) with fixed multiplier
estimate Z and current penalty parameter µ. Then we update the multiplier matrix Z and
decrease the penalty parameter µ if necessary, and repeat this primal and dual iteration
until some termination criterion is satisfied. This procedure will be described more precisely
below.

By using the matrix function chain rule, it is possible to write
⟨

∂Φµ(X(x))

∂xi
, Z

⟩
as a trace of

a product matrix of Ai(x) and some matrix. We write this latter matrix as DΦµ(X(x)) [Z],
and interpret it as a directional derivative of Φµ(X(x)) with respect to X(x) along the
direction Z. More precisely, we have (see (6.6.25) of [27])

∂Φµ(X(x))

∂xi

=

p′(x)∑
j,k=1

∆φµ(λ′
j(x), λ′

k(x))Pj(x)Ai(x)Pk(x),

then we have

∂Fµ(x, Z)

∂xi

=
∂f(x)

∂xi

−
⟨

∂Φµ(X(x))

∂xi

, Z

⟩
=

∂f(x)

∂xi

−
p′(x)∑
j,k=1

⟨
∆φµ(λ′

j(x), λ′
k(x))Pj(x)Ai(x)Pk(x), Z

⟩
=

∂f(x)

∂xi

−
p′(x)∑
j,k=1

⟨
Ai(x), ∆φµ(λ′

j(x), λ′
k(x))Pk(x)ZPj(x)

⟩
=

∂f(x)

∂xi

− ⟨Ai(x), DΦµ(X(x)) [Z]⟩ ,

where

DΦµ(X(x)) [Z] =

p′(x)∑
j,k=1

∆φµ(λ′
j(x), λ′

k(x))Pj(x)ZPk(x).

The formal statement of the algorithm is as follows:
Algorithm 3.3.

Step 0. Let x0 ∈ Rn, Z0 ≻ 0, µ0 > 0 and ε > 0 be given. Set k = 0.
Step 1. If

∥r0(wk)∥ ≤ ε, X(xk) ≽ 0, Zk ≽ 0,

then stop.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



A Survey of Numerical Methods for Nonlinear SDP 37

Step 2. (Primal update) Solve the following subproblem, and calculate the minimizer
xk+1 ∈ Rn:

minimize Fµk
(x, Zk), x ∈ Rn.

Step 3. (Dual update) Calculate the next multiplier estimate by

Zk+1 = DΦµk
(X(xk+1)) [Zk] .

Step 4. Set µk+1 ≤ µk, k = k + 1 and go to Step 1. ¤

By using the above update formula for Zk, we have

∇xFµ(xk+1, Zk) = ∇xL(xk+1, Zk+1) = 0,

as desired. It is also possible to show that if Zk ≻ 0, then Zk+1 ≻ 0 with the above update
formula (see Lemma 7.9 in [62]).

Local convergence properties of the above algorithm is given below. Let |N | be the
size of the matrix Z∗

N . For ϵ and Θ (0 < ϵ < (Z∗
N)ii < Θ, i = 1, . . . , |N |), define the set

V = V (Z∗, µ̄, δ, ϵ, Θ) by

V = {(Z, µ) ∈ Sp
+ × R |∥Z − Z∗∥F ≤ δ/µ, µ < µ̄} ∩

{(Z, µ) ∈ Sp
+ × R |∥Z∥F ≤ Θ} ∩

{(Z, µ) ∈ Sp
+ × R |(ZN)ii ≥ ϵ, i = 1, . . . , |N |} .

Theorem 3.6. There exist a penalty parameter µ̄ > 0 and a small enough number δ > 0
such that for any (Z, µ) ∈ V ,

(i) There exists a vector
x̂ = arg min {Fµ(x, Z) |x ∈ Rn}

such that ∇xFµ(x̂, Z) = 0.

(ii) For the pair x̂ and Ẑ = DΦµ(X(x̂)) [Z], the estimate

max
{
∥x̂ − x∗∥ ,

∥∥∥Ẑ − Z∗
∥∥∥

F

}
≤ µc ∥Z − Z∗∥F

holds, where c is a constant independent of µ.

(iii) x∗ = arg min {Fµ(x, Z∗) |x ∈ Rn} and Z∗ = DΦµ(X(x∗)) [Z∗].

(iv) The function Fµ(x, Z) is strongly convex with respect to x in a neighborhood of x̂.

From the above theorem, the following local convergence result is obtained.

Theorem 3.7. For µ0 (< µ̄) small enough and (Z0, µ0) ∈ V , Algorithm 3.3 converges to
w∗ with a linear rate. If µk+1 < µk for all k ≥ 0, and limk→∞ µk = 0, then the rate of
convergence is superlinear.

3.2.3. Globally convergent algorithm

In [62], a globally convergent augmented Lagrangian algorithm was proposed and its con-
vergence property was proved.

Algorithm 3.4.

Step 0. Let x0 ∈ Rn, Z0 ≻ 0, µ0 > 0, µ′
0 > 0 and ε > 0 be given. Set k = 0.
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Step 1. If
∥r0(wk)∥ ≤ ε, X(xk) ≽ 0, Zk ≽ 0,

then stop.
Step 2. (Primal update) Find a point xk+1 ∈ Rn that satisfies

∥∇Fµk
(x, Zk)∥ ≤ µ′

k,

by minimizing Fµk
(x, Zk).

Step 3. (Dual update) Calculate the next multiplier estimate by

Zk+1 = DΦµk
(X(xk+1)) [Zk] .

Step 4. Set µk+1 < µk, µ
′
k+1 < µ′, k = k + 1 and go to Step 1. ¤

The global convergence of the above algorithm is shown by the following theorem. As
noted in the previous subsection, this theorem also assumes the boundedness of the sequence
and µk → 0.
Theorem 3.8. Assume that there exists µ̄ > 0 such that Ωµ is a compact set for all µ ≤ µ̄,
the nondegeneracy condition holds at any limit point of the sequence {xk}, and the sequence
{Zk} is bounded. Assume further that µk → 0 and µ′

k → 0. Then the limit point of any
convergent subsequence of {xk, Zk} satisfies the KKT conditions.

3.2.4. Actual form of penalty function

In order to have computable forms of multiplier update and derivatives, Kočvara and Stingl
used the following penalty function:

Φµ(X(x)) = −µ2(X(x) + µI)−1 + µI.

Let
U(x) = (X(x) + µI)−1.

Since

0 =
∂

∂xi

[
U(x)U(x)−1

]
=

∂

∂xi

[U(x)] U(x)−1 + U(x)
∂

∂xi

[
U(x)−1

]
=

∂

∂xi

[U(x)] U(x)−1 + U(x)Ai(x),

we have
∂Φµ(X(x))

∂xi

= µ2U(x)Ai(x)U(x)

for the first derivative of Φµ(X(x)). In order to have⟨
∂Φµ(X(xk))

∂xi

, Zk

⟩
= ⟨Ai(xk), Zk+1⟩ ,

we set
Zk+1 = µ2

kU(xk+1)ZkU(xk+1)

for multiplier update. We note that when Zk is positive definite, then Zk+1 is also positive
definite.

Noll [53] also gave a local convergence property similar to the result given in Section
3.2.2 using this particular form of penalty function.
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4. Sequential SDP Method

The sequential SDP (S-SDP) method was proposed by using the idea of the SQP (sequential
quadratic programming) method [6, 52] for solving nonlinear optimization problems. Such
an idea has already been mentioned by Robinson [58] within the more general framework of
nonlinear programming problems over convex cones. Given a current point xk, the S-SDP
method generates a search direction ∆xk by solving the quadratic subproblem:

minimize ∇f(xk)
T ∆x + 1

2
∆xT Gk∆x, ∆x ∈ Rn

subject to g(xk) + ∇g(xk)
T ∆x = 0,

X̂k(∆x) ≡ X(xk) +
∑n

i=1 ∆xiAi(xk) ≽ 0,
(4.1)

where Gk is the Hessian matrix ∇2
xL(xk, yk, Zk) of the Lagrangian function or its approxi-

mation. Letting (∆xk, yk+1, Zk+1) be a KKT point for minimization problem (4.1), we have
the following:

∇f(xk) + Gk∆xk −∇g(xk)yk+1 −A∗(xk)Zk+1 = 0,

g(xk) + ∇g(xk)
T ∆xk = 0,

X̂k(∆xk) ≽ 0,

Zk+1 ≽ 0,

X̂k(∆xk)Zk+1 = 0,

where yk+1 and Zk+1 are multipliers corresponding to the equality and positive semidefinite-
ness constraints, respectively. We note that when ∆xk = 0, the above conditions become the
KKT conditions (2.1) and (2.2) of problem (1.1). As noted in [23], if the matrix Gk is posi-
tive definite, then problem (4.1) reduces to a linear SDP, because the convex quadratic term
in the objective function can be written as a semidefiniteness constraint or a second-order
cone constraint.

Fares, Noll and Apkarian [18] proposed a local S-SDP method. Later Freund, Jarre and
Vogelbusch [23] also analyzed the local rate of convergence of the S-SDP method from a
different viewpoint. The global convergence of the S-SDP method was shown by Correa and
Ramı́rez [15] under the line search strategy. As another global convergent method, Gómez
and Ramı́rez [25] applied a filter method to the S-SDP method. These methods will be
briefly reviewed in this section. Furthermore, other related methods were studied by Jarre
[33], Kanzow, Nagel, Kato and Fukushima [36], Diehl, Jarre and Vogelbusch [16], Kanno
and Takewaki [34], Li and Sun [46] and Zhu and Zhu [78], for example.

4.1. Local convergence properties of S-SDP methods

Fares, Noll and Apkarian [18] originally dealt with the following minimization problem of a
linear objective function subject to linear matrix inequality (LMI) constraints and nonlinear
matrix equality constraints, which arises from robust control design:

minimize cT x, x ∈ Rn,
subject to L(x) ≽ 0, B(x) = 0,

(4.2)

where c is a given vector, L(x) : Rn → Sp is an affine symmetric matrix function, and B(x)
is a nonlinear matrix valued function. The matrix function B(x) is bilinear with respect to
x in many cases. Fares et. al. [18] solved the problem via the S-SDP method. The following
local convergence theorem was shown for solving problem (1.1) (See Theorem 11 of [15]).

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



40 H. Yamashita & H. Yabe

Theorem 4.1. Let (x∗, y∗, Z∗) be a point satisfying the KKT conditions of problem (1.1).
Assume that (x∗, y∗, Z∗) satisfies

vT∇2
xL(x∗, y∗, Z∗)v > 0 (4.3)

for all nonzero vectors v ∈ C(x∗), where C(x∗) denotes the critical cone of (1.1) at x∗. Sup-
pose that the matrix ((A1(x

∗), . . . , An(x∗))T ,∇g(x∗))T has full rank and that Gk approaches
∇2

xL(x∗, y∗, Z∗). Then there exists δ > 0 such that, if ∥x0−x∗∥ < δ,
√
∥y0−y∗∥2+∥Z0−Z∗∥2

F

< δ and ∥Gk −∇2
xL(x∗, y∗, Z∗)∥ < δ for all k, the sequence (xk, yk, Zk) generated by the S-

SDP method with xk+1 = xk +∆xk is well defined and converges superlinearly to (x∗, y∗, Z∗).
Furthermore, the convergence is quadratic if the following holds

Gk −∇2
xL(x∗, y∗, Z∗) = O(∥xk − x∗∥ +

√
∥yk − y∗∥2 + ∥Zk − Z∗∥2

F ).

We note that assumption (4.3) is stronger than (2.3).
Freund, Jarre and Vogelbusch [23] chose a motivation that contrasts the S-SDP method

with primal-dual interior-point methods and analyzed the local and quadratic convergence
based on a sensitivity result for nonlinear SDP problems. They dealt with the following
nonlinear SDP problem:

minimize cT x, x ∈ Rn,
subject to X(x) ≽ 0

(4.4)

where c ∈ Rn is a given vector. In addition, they extended this result to a more general
class of nonlinear SDP problems with equality and inequality constraints.

4.2. Globally convergent algorithms

In order to establish the global convergence of the S-SDP method, Correa and Ramı́rez [15]
introduced the Han penalty function as a merit function of the line search procedure. For
a penalty parameter σ > 0, the merit function is defined by

θσ(x) = f(x) − σ(min{0, λmin(X(x))} + ∥g(x)∥). (4.5)

Then they show that the directional derivative θ′σ(xk; ∆xk) of the function θσ(x) along a
search direction ∆xk at xk satisfies the following estimate.

Lemma 4.1. Assume that the functions f , g and X are continuously differentiable and that
their derivatives are Lipschitz continuous in a neighborhood of xk. Using the penalty function
θσ(x) in (4.5), if the point (∆xk, yk+1, Zk+1) satisfies the KKT conditions of subproblem
(4.1), then the following holds

θ′σ(xk; ∆xk) ≤ ∇f(xk)
T ∆xk + σ(min{0, λmin(X(xk))} − ∥g(xk)∥)

= −∆xT
k Gk∆xk − tr(Zk+1X(xk)) − yT

k+1g(xk)

+σ(min{0, λmin(X(xk))} − ∥g(xk)∥). (4.6)

Furthermore, if σ ≥ max{tr(Zk+1), ∥yk+1∥}, we have

θ′σ(xk; ∆xk) ≤ −∆xT
k Gk∆xk.

This result shows that the search direction becomes a descent direction for θσ(x), i.e.
θ′σ(xk; ∆xk) < 0, when Gk is positive definite and σ is sufficiently large.

The algorithm proposed by Correa and Ramı́rez [15] is described for a given current
point xk and a positive definite matrix Gk as follows:
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Algorithm 4.1.

Step 0. Give x1 ∈ Rn and σ0 > 0. Set k = 1.
Step 1. Compute a point (∆xk, yk+1, Zk+1) satisfying the KKT conditions of subproblem

(4.1).
Step 2. Compute σk in a way that the following properties are satisfied:

(a) σk ≥ max{tr(Zk+1), ∥yk+1∥} + σ̄.
(b) For all k ≥ k1, if σk−1 ≥ max{tr(Zk+1), ∥yk+1∥} + σ̄, then σk = σk−1.
where a positive integer k1 and σ̄ > 0 are fixed parameters.
(Remark: The parameter σk is updated by σk = max{1.5σk−1, max{tr(Zk+1), ∥yk+1∥}+
σ̄}, for example.)

Step 3. The step size αk is computed by using the Armijo rule, that is, αk is set to αk = βlk

for the smallest nonnegative integer lk that satisfies the sufficient decrease condition

θσk
(xk + βlk∆xk) ≤ θσk

(xk) + ε0β
lk∆̃k,

where 0 < ε0 < 1 and 0 < β < 1 are given, and ∆̃k is the upper bound of θ′σk
(xk; ∆xk)

given in (4.6).
Step 4. Set xk+1 = xk + αk∆xk.
Step 5. Set k := k + 1 and go to Step 1. ¤

The global convergence property is shown by the following theorem.

Theorem 4.2. Assume that the functions f , g and X are continuously differentiable and
that their derivatives are Lipschitz continuous. Consider the global algorithm described in
Algorithm 4.1. Suppose that Gk is a positive definite matrix for all k. If the sequence {Gk}
is bounded together with the sequence {G−1

k }, then one of the following situations occurs for
the sequence {(xk, yk+1, Zk+1)}:

1. The sequences {σk} and {(yk+1, Zk+1)} are unbounded.
2. There is an index k2 such that σk is constant for all k ≥ k2. In this case, one of the

following situations occurs:
(a) θσk

(xk) → −∞,
or
(b) ∇xL(xk, yk+1, Zk+1) → 0, g(xk) → 0, min{0, λmin(X(xk))} → 0,
and tr(Zk+1X(xk)) → 0.

As another globally convergent method, Gómez and Ramı́rez [25] proposed a filter
method for solving problem (1.1). The filter methods were first introduced by Fletcher
and Leyffer [19] for nonlinear optimization problems. In general, filter methods deal simul-
taneously with the optimality and feasibility. In the methods, the trial points are accepted
when they improve either the objective function or a constraint violation measure. These
criteria are compared to previous iterates collected in a filter. Global convergence results of
several kinds of filter methods have been studied for nonlinear optimization problems (see
[20], for example). Given the current iterate xk and matrix Gk, Gómez and Ramı́rez defined
the following trust-region local semidefinite approximation of problem (1.1):

minimize ∇f(xk)
T ∆x + 1

2
∆xT Gk∆x, ∆x ∈ Rn

subject to g(xk) + ∇g(xk)
T ∆x = 0,

X(xk) +
∑n

i=1 ∆xiAi(xk) ≽ 0,
∥∆x∥∞ ≤ ∆k,

(4.7)
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where ∆k is a trust-region radius. In order to investigate the feasibility, let us define the
constraint violation measure by

θ(x) = ∥g(x)∥ − min{0, λmin(X(x))}. (4.8)

A filter, denoted by F , is a finite collection of two dimensional vectors. In each vector
of the filter, the two components refer to the values of the feasibility function θ and the
objective function f , respectively. The new candidate (θ̄, f̄) is called acceptable to the filter
F = {(θj, fj)}N

j=1, if, for each j = 1, . . . , N , at least one of the following two conditions is
satisfied:

θ̄ ≤ βθj,

f̄ + γθ̄ ≤ fj,

where β ∈ (0, 1) and γ ∈ (0, β) are fixed parameters. If the point (θ̄, f̄) is acceptable for the
current filter F , the new filter Add((θ̄, f̄),F) is defined as

Add((θ̄, f̄),F) = (F ∪ {(θ̄, f̄)})\{(θj, fj) ∈ F | θ̄ ≤ θj, f̄ ≤ fj}.

The following is a filter-type algorithm of the S-SDP method.

Algorithm 4.2.

Step 0. Set the parameters β ∈ (0, 1), γ ∈ (0, β), ∆max > ∆min > 0, σ ∈ (0, 1), u > 0 and
k = 1. Define F0 = {(u,−∞)}.

Step 1. (Restoration phase) Find a point xk and a corresponding trust-region radius ∆max

≥ ∆k ≥ ∆min such that
(a) (θ(xk), f(xk)) is acceptable to Fk−1.
(b) Subproblem (4.7) is feasible.

Step 2. (Solving subproblem (4.7))

Step 2.1 Solve subproblem (4.7) to obtain a step ∆x.
If subproblem (4.7) is not feasible, then set Fk = Add((θ(xk), f(xk)),Fk−1), k :=
k + 1 and go to Step 1.
If ∆x = 0 is obtained, then xk is a stationary point of problem (1.1) and stop.

Step 2.2 If (θ(xk+∆x), f(xk+∆x)) is not acceptable to the filter Fk−1∪{(θ(xk),f(xk))},
then set ∆ := ∆/2 and go to Step 2.1.

Step 2.3 If the following conditions are fulfilled

∇f(xk)
T ∆x +

1

2
∆xT Gk∆x < 0,

f(xk) + σ

(
∇f(xk)

T ∆x +
1

2
∆xT Gk∆x

)
< f(xk + ∆x),

then set ∆ := ∆/2 and go to Step 2.1

Step 2.4 Go to Step 3.

Step 3. If ∇f(xk)
T ∆x + 1

2
∆xT Gk∆x ≥ 0, then Fk = Add((θ(xk), f(xk)),Fk−1), otherwise

set Fk = Fk−1.

Step 4. Define ∆k = ∆, ∆xk = ∆x. Set xk+1 = xk +∆xk, k := k +1. Finally, reset ∆ such
that ∆max ≥ ∆ ≥ ∆min is satisfied and go to Step 2. ¤
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In the above algorithm, Step 1 is called restoration phase. The restoration phase is executed
at the first iteration and when subproblem (4.7) is not feasible in Step 2.1. The loop between
Steps 2 and 4 is a main loop, and the loop between Steps 2.1 and 2.3 solves subproblem
(4.7) many times for various trust region radii if necessary.

Now we give the global convergence theorem as follows.

Theorem 4.3. Suppose that the points sampled by Algorithm 4.2 lie in a nonempty compact
set Ω ⊂ Rn and that the MFCQ condition is satisfied at each feasible point of problem (1.1)
lying in the set Ω. Assume that there exists a positive constant M such that ∥Gk∥F ≤ M for
all k. Consider the sequence {xk} generated by Algorithm 4.2. Then one of the following
situations occurs:

1. The restoration phase (Step 1) fails to find a point xk satisfying (a) and (b).
2. A stationary point of problem (1.1) is found, that is, ∆x = 0 solves subproblem (4.7) for

some iteration k.
3. There exists an accumulation point of {xk} that is a stationary point of problem (1.1).

It is known that the trust-region method [14] is a robust strategy to obtain the global
convergence property for general nonlinear optimization problems. Kanzow, Nagel, Kato
and Fukushima [36] incorporated the idea of the trust-region method into the successive lin-
earization method for nonlinear SDP problems, and showed its global convergence property.
Specifically, they considered the following nonlinear semidefinite programming problem:

minimize f(X), X ∈ Sp,
subject to h(X) ≤ 0, X ≽ 0

(4.9)

where X is a variable, and the functions f : Sp → R and h : Sp → Rm are continuously
differentiable functions. By defining the exact l1 penalty function

pρ(X) = f(X) + ρ

m∑
i=1

max{0, hi(X)}

with a penalty parameter ρ > 0, Kanzow et al. dealt with the penalized problem:

minimize pρ(X) subject to X ≽ 0. (4.10)

Letting hi denote the ith component of h, and letting Df(X) and Dhi(X) be the Fréchet
derivatives of f and hi, respectively, at X, they defined the first-order approximation of
pρ(X + ∆X) by

Φρ(X, ∆X) = f(X) + ⟨Df(X), ∆X⟩ + ρ

m∑
i=1

max{0, hi(X) + ⟨Dhi(X), ∆X⟩}.

Based on the above, they calculated a search direction ∆Xk ∈ Sp by solving the following
subproblem:

minimize
1

2
ck ⟨∆X, ∆X⟩ + Φρk

(Xk, ∆X) subject to Xk + ∆X ≽ 0, (4.11)

where ck and ρk are suitably chosen parameters. Since the quadratic term of the objective
function in (4.11) means that the trust-region idea is implicitly used, this algorithm may be
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regarded as a successive linearization method for problem (4.9) that employs a trust-region-
type globalization technique. We can also consider that the parameter 1/ck plays the role
of the trust-region radius. Furthermore, the quadratic term guarantees the strict convexity
of the subproblem. In their algorithm, they used criteria based on the ratio

rk =
pρk

(Xk) − pρk
(Xk + ∆Xk)

pρk
(Xk) − Φρk

(Xk, ∆Xk)
,

which is the quotient of the actual and the predicted reductions for the function value of
the penalty function. Then the point Xk and the parameter ck are updated by the same
method as the trust-region method. In a similar way to this method, Kanno and Takewaki
[34] proposed a method for maximum robustness design of structures. Furthermore, Li and
Sun [46] applied the filter method to the successive linearization method.

In the algorithms given in this section, the matrix Gk approximates the Hessian matrix
∇2

xL(xk, yk, Zk) of the Lagrangian function by using the quasi-Newton updating formula, if
necessary. In this case, Gk+1 must satisfy the following secant condition

Gk+1sk = qk,

where sk = xk+1 − xk and

qk = ∇xL(xk+1, yk+1, Zk+1) −∇xL(xk, yk+1, Zk+1)

= (∇f(xk+1) −∇g(xk+1)yk+1 −A∗(xk+1)Zk+1)

−(∇f(xk) −∇g(xk)yk+1 −A∗(xk)Zk+1)

= ∇f(xk+1) −∇f(xk) − (∇g(xk+1) −∇g(xk))yk+1 − (A∗(xk+1) −A∗(xk))Zk+1.

In order to preserve the positive definiteness of the matrix Gk, we can use the modified
BFGS update proposed by Powell, which is given by the form

Gk+1 = Gk −
Gksks

T
k Gk

sT
k Gksk

+
q̂kq̂

T
k

sT
k q̂k

,

where

q̂k = ψkqk + (1 − ψk)Gksk,

ψk =


1 if sT

k qk ≥ 0.2sT
k Gksk

0.8sT
k Gksk

sT
k (Gksk − qk)

otherwise.

5. Primal-Dual Interior Point Method

As in ordinary NLP problems and linear SDP problems, the interior point methods can be
one of most useful numerical methods for solving nonlinear SDP problems. In this section,
we introduce the primal-dual interior point methods proposed by Yamashita, Yabe and
Harada [76], and Yamashita and Yabe [75]. The proposed algorithm is implemented in the
software NUOPT (the current name is Numerical Optimizer), and its numerical performance
is described in [76].

We note Jarre [32] gave a primal predictor-corrector type interior point method for
solving nonlinear SDP problem, and Leibfritz and Mostafa [45] gave a primal interior point
method for solving a special class of nonlinear SDP problem. Burer, Monteiro and Zhang [12,
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13] converted problem (1.1) to an equivalent NLP problem, and solved the resultant problem
by the interior point method. In [77], Yang and Yu proposed a primal-dual predictor-
corrector method based on the homotopy method which is not an interior point type.

A point w = (x, y, Z) satisfying X(x) ≻ 0 and Z ≻ 0 is called an interior point, and
interior point methods generate such points. To construct an interior point algorithm, a
positive barrier parameter µ is introduced as in the interior point methods for ordinary
NLP, and the complementarity condition X(x)Z = 0 is replaced by X(x)Z = µI, where
I denotes the identity matrix. The primal-dual interior point methods try to find a point
that satisfies the barrier KKT (BKKT) conditions:

r(w, µ) ≡

 ∇xL(w)
g(x)

X(x)Z − µI

 =

 0
0
0

 (5.1)

and the positivity conditions:

X(x) ≻ 0, Z ≻ 0,

for a given µ. By using the symmetrization (1.2), we also define the symmetrized residual
rS(w, µ) by

rS(w, µ) =

 ∇xL(w)
g(x)

X(x) ◦ Z − µI

 . (5.2)

This will be used for constructing Newton iteration later, and we denote rS(w, 0) by r0S(w).

We define the norms ∥r(w, µ)∥ and ∥rS(w, µ)∥ by

∥r(w, µ)∥ =

√∥∥∥∥(
∇xL(w)

g(x)

)∥∥∥∥2

+ ∥X(x)Z − µI∥2
F

and

∥rS(w, µ)∥ =

√∥∥∥∥(
∇xL(w)

g(x)

)∥∥∥∥2

+ ∥X(x) ◦ Z − µI∥2
F ,

respectively. Note that ∥rS(w, µ)∥ ≤ ∥r(w, µ)∥ is satisfied, because ∥X(x) ◦ Z − µI∥F ≤
∥X(x)Z − µI∥F .

5.1. Algorithm for finding a KKT point

We first describe a procedure for finding a KKT point by using the BKKT conditions. In
this subsection, the subscript k denotes an iteration count of the outer iterations.

Algorithm 5.1.

Step 0. (Initialize) Set ε > 0, Mc > 0 and k = 0. Let a positive sequence {µk} , µk ↓ 0 be
given.

Step 1. (Approximate BKKT point) Find an interior point wk+1 that satisfies

∥r(wk+1, µk)∥ ≤ Mcµk. (5.3)

Step 2. (Terminate) If ∥r0(wk+1)∥ ≤ ε, then stop.

Step 3. (Update) Set k := k + 1 and go to Step 1. ¤

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



46 H. Yamashita & H. Yabe

The condition (5.3) is called the approximate BKKT condition, and a point that satisfies
this condition the approximate BKKT point. The barrier parameter sequence {µk} in the
above needs not be determined beforehand, and the value of each µk may be set adaptively
as the iteration proceeds. The concrete procedure in Step 1 of Algorithm 5.1 will be given
as Algorithm 5.2 in Section 5.2.

The following theorem shows the convergence property of Algorithm 5.1 under the MFCQ
condition.
Theorem 5.1. Assume that the functions f , g and X are continuously differentiable. Let
{wk} be an infinite sequence generated by Algorithm 5.1. Suppose that the sequence {xk} is
bounded and that the MFCQ condition is satisfied at any accumulation point of the sequence
{xk}. Then the sequences {yk} and {Zk} are bounded, and any accumulation point of {wk}
satisfies the KKT conditions (2.1) and (2.2).

5.2. Newton method for finding a barrier KKT point and primal-dual merit
function

In [76], a globally convergent algorithm to find a BKKT point for a given fixed barrier
parameter µ > 0 was proposed. The algorithm given below is used as an inner iteration of
Algorithm 5.1. This subsection describes a Newton-like method to the system of equations
(5.4). We denote the Newton directions for the primal and dual variables by ∆x ∈ Rn, ∆y ∈
Rm and ∆Z ∈ Sp. We define ∆X =

∑n
i=1 ∆xiAi(x), and note that ∆X ∈ Sp. In order

to have a Jacobian operator from Rn × Rm × Sp to Rn × Rm × Sp (a square matrix when
represented in matrix form), we employ the symmetrized residual representation of the
BKKT conditions rS(w, µ) = 0.

As in the case of linear SDP problems, a scaling of the primal-dual pair (X(x), Z) is
used in order to make the resulting Newton equation solvable. In what follows, we denote
X(x) simply by X when it is not confusing. Throughout this subsection, we assume that
X ≻ 0 and Z ≻ 0 hold. We introduce a nonsingular matrix T ∈ Rp×p and scale X and Z
by

X̃ = TXT T and Z̃ = T−T ZT−1,

respectively. Using the scaling matrix T , we try to solve the equation X̃ ◦ Z̃ = µI instead
of XZ = µI, and consider the scaled symmetrized residual:

r̃S(w, µ) ≡

 ∇xL(w)
g(x)

X̃ ◦ Z̃ − µI

 =

 0
0
0

 , (5.4)

to form the Newton directions.
Scalings of ∆X and ∆Z are similarly done by

∆X̃ = T∆XT T and ∆Z̃ = T−T ∆ZT−1.

Newton equations for (5.4) are given by

G∆x −∇g(x)∆y −A∗(x)∆Z = −∇xL(x, y, Z) (5.5)

∇g(x)T ∆x = −g(x) (5.6)
1

2
(∆X̃Z̃ + Z̃∆X̃ + X̃∆Z̃ + ∆Z̃X̃) = µI − 1

2
(X̃Z̃ + Z̃X̃), (5.7)

where G denotes the Hessian matrix of the Lagrangian function L(w) or its approximation.
By solving these equations, we obtain the Newton direction ∆w = (∆x, ∆y, ∆Z) ∈ Rn ×
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Rm × Sp. Writing the last part of Newton equations as

(Z̃ ⊙ I)∆X̃ + (X̃ ⊙ I)∆Z̃ = µ(X̃ ⊙ I)X̃−1 − (X̃ ⊙ I)Z̃,

we can formally solve this equation for ∆Z̃.
The following theorem [76] gives the desired form of the Newton directions.

Theorem 5.2. Suppose that the operator X̃ ⊙ I is invertible. Then the direction ∆Z̃ ∈ Sp

is given by the form

∆Z̃ = µX̃−1 − Z̃ − (X̃ ⊙ I)−1(Z̃ ⊙ I)∆X̃, (5.8)

or equivalently

∆Z = µX−1 − Z − (T T ⊙ T T )(X̃ ⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )∆X. (5.9)

Furthermore, the directions (∆x, ∆y) ∈ Rn × Rm satisfy(
G + H −∇g(x)

−∇g(x)T 0

)(
∆x
∆y

)
= −

(
∇f(x) −∇g(x)y − µA∗(x)X−1

−g(x)

)
, (5.10)

where the elements of the matrix H ∈ Rn×n are represented by the form

Hij =
⟨
Ãi(x), (X̃ ⊙ I)−1(Z̃ ⊙ I)Ãj(x)

⟩
(5.11)

with Ãi(x) = TAi(x)T T .
In addition, if the matrix G+H is positive definite and the matrix ∇g(x) is of full rank,

then the Newton equations (5.5) – (5.7) give a unique search direction ∆w = (∆x, ∆y, ∆Z)
∈ Rn × Rm × Sp.

In the following, we choose a nonsingular matrix T so that X̃ and Z̃ commute, i.e.,
X̃Z̃ = Z̃X̃. In this case, the matrices X̃ and Z̃ share the same eigensystem, and XZ =
µI ⇐⇒ X̃ ◦ Z̃ = µI. In the algorithm described here, this commutativity is necessary
to prove a descent property of the Newton direction with respect to the merit function
described later.

Well known examples of the scaling matrix T that satisfy such a condition are given
below.
(i) HRVW/KSH/M direction

If we set T = X−1/2, then we have X̃ = I and Z̃ = X1/2ZX1/2, which corresponds to the
HRVW/KSH/M direction for linear SDP problems [26, 42, 48]. In this case, the matrices H
and ∆Z can be represented by the form:

Hij = tr
(
Ai(x)X−1Aj(x)Z

)
,

∆Z = µX−1 − Z − 1

2
(X−1∆XZ + Z∆XX−1).

(ii) NT direction

If we set T = W−1/2 with W = X1/2(X1/2ZX1/2)−1/2X1/2, then we have X̃ = W−1/2XW−1/2

= W 1/2ZW 1/2 = Z̃, which corresponds to the NT direction for linear SDP problems [50, 51].
In this case, the matrices H and ∆Z can be represented by the form:

Hij = tr
{
Ai(x)W−1Aj(x)W−1

}
,

∆Z = µX−1 − Z − W−1∆XW−1.

Both examples make (X̃⊙I)−1 in (5.8) tractable by letting (X̃⊙I)−1 = I (HRVW/KSH

/M) or (X̃ ⊙ I)−1(Z̃ ⊙ I) = I (NT).
Under the above scalings, if the matrices Ai(x) (i = 1, . . . , n) are linearly independent,

the matrix H is symmetric positive definite.
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5.3. Global convergence of primal-dual interior point methods

In [76], the line search strategy was used, and the following merit function in the primal-dual
space was proposed:

F (x, Z) = FBP (x) + νFPD(x, Z). (5.12)

Here FBP (x) and FPD(x, Z) are the primal barrier penalty function and the primal-dual
barrier function, respectively, and they are given by

FBP (x) = f(x) − µ log(detX) + ρ∥g(x)∥1, (5.13)

FPD(x, Z) = ⟨X,Z⟩ − µ log(detXdetZ), (5.14)

where ν and ρ are positive parameters. Though the functions FBP (x) and FPD(x, Z) depend
on the parameters ν, ρ and µ, we use the notation F (x, Z) for simplicity. It follows from the

fact X̃Z̃ = TXZT−1 that
⟨
X̃, Z̃

⟩
= ⟨X,Z⟩ and the value of FPD(x, Z) is invariant under

the choice of T .
We define the first order approximation Fl of the merit function by

Fl(x, Z; ∆x, ∆Z) = F (x, Z) + ∆Fl(x, Z; ∆x, ∆Z).

Here ∆Fl(x, Z; ∆x, ∆Z) corresponds to the directional derivative and it is defined by the
form

∆Fl(x, Z; ∆x, ∆Z) = ∆FBPl(x; ∆x) + ν∆FPDl(x, Z; ∆x, ∆Z),

where

∆FBPl(x; ∆x) = ∇f(x)T ∆x − µtr(X−1∆X) (5.15)

+ρ
(
∥g(x) + ∇g(x)T ∆x∥1 − ∥g(x)∥1

)
,

∆FPDl(x, Z; ∆x, ∆Z) = tr(∆XZ + X∆Z − µX−1∆X − µZ−1∆Z).

With these definitions, it is possible to prove that the Newton direction ∆w satisfies

∆Fl(x, Z; ∆x, ∆Z) ≤ −∆xT (G + H) ∆x − (ρ − ∥y + ∆y∥∞)∥g(x)∥1.

By using this inequality, the following theorem is obtained, which shows that the Newton
direction ∆w becomes a descent search direction for the proposed primal-dual merit function
(5.12).
Theorem 5.3. Assume that ∆w solves (5.5) – (5.7) and that the matrix G+H is symmetric
positive definite. Suppose that the penalty parameter ρ satisfies ρ > ∥y + ∆y∥∞. Then the
following hold:

(i) The direction ∆w becomes a descent search direction for the primal-dual merit function
F (x, Z), i.e. ∆Fl(x, Z; ∆x, ∆Z) ≤ 0.

(ii) If ∆x ̸= 0, then ∆Fl(x, Z; ∆x, ∆Z) < 0.
(iii) ∆Fl(x, Z; ∆x, ∆Z) = 0 holds if and only if (x, y + ∆y, Z) is a BKKT point.

In order to construct a globally convergent algorithm to a BKKT point for a fixed µ > 0,
the iterations take the form

xk+1 = xk + αk∆xk, Zk+1 = Zk + αk∆Zk and yk+1 = yk + ∆yk

where αk is a step size determined by the line search procedure described below. Throughout
this subsection, the index k denotes the inner iteration count for a given µ > 0. We also
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denote X(xk) by Xk for simplicity. We note that Xk ≻ 0 and Zk ≻ 0 are maintained for all
k in the following.

Since the main iteration is to decrease the value of the merit function (5.12), the step
size is determined by the sufficient-decrease rule of the merit function. At the current point
(xk, Zk), the initial step size is calculated by

ᾱxk =

{
− γ

λmin(X−1
k ∆Xk)

if X(x) is linear

1 otherwise
(5.16)

and

ᾱzk = − γ

λmin(Z
−1
k ∆Zk)

, (5.17)

where γ ∈ (0, 1) is a constant. If the minimum eigenvalue in either expression (5.16) or
(5.17) is positive, the corresponding step size is set to 1. By trying the values ℓk = 0, 1, . . .
successively, we find a step to the next iterate given by

αk = ᾱkβ
lk , ᾱk = min {ᾱxk, ᾱzk, 1} ,

where β ∈ (0, 1) is a constant, and lk is the smallest nonnegative integer such that the
sufficient-decrease condition

F (xk + ᾱkβ
lk∆xk, Zk + ᾱkβ

lk∆Zk) ≤ F (xk, Zk) + ε0ᾱkβ
lk∆Fl(xk, Zk; ∆xk, ∆Zk) (5.18)

and the positive definiteness condition

X(xk + ᾱkβ
lk∆xk) ≻ 0 (5.19)

hold, where ε0 ∈ (0, 1) is a constant.
Now we summarize the line search algorithm in the following. Since this algorithm

should be regarded as the inner iteration of Algorithm 5.1 (Step 1 of Algorithm 5.1), ε′

given below corresponds to Mcµ and an initial point can be set to the approximate BKKT
point obtained at the previous outer iteration.

Algorithm 5.2.

Step 0. (Initialize) Let w0 ∈ Rn × Rm × Sp (X0 ≻ 0, Z0 ≻ 0), µ > 0, ρ > 0 and ν > 0 be
given. Set ε′ > 0, γ ∈ (0, 1), β ∈ (0, 1) and ε0 ∈ (0, 1). Let k = 0.

Step 1. (Termination) If ∥r(wk, µ)∥ ≤ ε′, then stop.

Step 2. (Search direction) Calculate the matrix Gk and the scaling matrix Tk. Determine
the direction ∆wk by solving (5.5) – (5.7). If ∆xk = 0, then set wk+1 = (xk, yk+∆yk, Zk+
∆Zk), and stop.

Step 3. (Step size) Find the smallest nonnegative integer lk that satisfies the criteria (5.18)
and (5.19), and calculate

αk = ᾱkβ
lk .

Step 4. (Update) Set

xk+1 = xk + αk∆xk, Zk+1 = Zk + αk∆Zk and yk+1 = yk + ∆yk.

Step 5. Set k := k + 1 and go to Step 1. ¤
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If the matrix Gk approximates the Hessian matrix ∇2
xL(wk) by the quasi-Newton for-

mula, the method stated in the last part of Section 4 can be used.
If we want to use the Hessian matrix ∇2

xL(wk) itself for the matrix Gk, the Levenberg-
Marquardt type modification of ∇2

xL(wk) may be used to obtain a positive semidefinite Gk

for global convergence property shown below. Namely, we compute a parameter σ ≥ 0
which gives a positive semidefinite matrix ∇2

xL(wk) + σI. This strategy may be useful for
solving large scale problems.

The following global convergence theorem was proved by Yamashita, Yabe and Harada
[76].
Theorem 5.4. If ∆xk = 0 in Step 2 of Algorithm 5.2, then (xk, yk + ∆yk, Zk) is a BKKT
point. Otherwise let an infinite sequence {wk} be generated by Algorithm 5.2. Suppose the
followings:

(i) The functions f , gi, i = 1, . . . ,m, and X are twice continuously differentiable;
(ii) The sequence {xk} remains in a compact set Ω of Rn;
(iii) The matrix ∇g(xk) is of full rank and the matrices A1(xk), . . . , An(xk) are linearly

independent for all xk in Ω;
(iv) The scaling matrix Tk is chosen so that X̃k and Z̃k commute;
(v) The matrix Gk is uniformly bounded and positive semidefinite;
(vi) Both of the sequences {Tk} and {T−1

k } are bounded;
(vii) The penalty parameter ρ is sufficiently large so that ρ > ∥yk + ∆yk∥∞ holds for all k.

Then there exists at least one accumulation point of {wk}, and any accumulation point
of the sequence {wk} is a BKKT point.

5.4. The rate of convergence of primal-dual interior point methods

In this section, we survey the local behavior of the primal-dual interior point methods
following the study by Yamashita and Yabe [75]. Consider the scaled Newton equations
(5.5)-(5.7) and denote the Newton equations by

J̃S(w)∆w = −r̃S(w, µ), (5.20)

where J̃S(w) is the linear operator from Rn × Rm × Sp to Rn × Rm × Sp and r̃S(w, µ) is
defined by (5.4). If we choose T = I, we call the above equations the unscaled Newton

equations and denote the operator J̃S(w) by JS(w) in this case. This case corresponds to
the AHO direction for linear SDP problems [2].

In order to analyze the local behavior of the methods, we make the following assumptions
in this subsection: The second derivatives of the functions f , gi, i = 1, . . . ,m, and X are
Lipschitz continuous at x∗; The second order sufficient condition (2.5) holds at x∗; The strict
complementarity condition holds at x∗; The nondegeneracy condition is satisfied at x∗.

We will discuss a local behavior of the unsymmetric residual r0(w) in (2.1) or r(w, µ) in
(5.1). For this purpose, we define a linear operator J : Rn × Rm × Sp → Rn × Rm × Rp×p

at w by

J(w)∆w =

 ∇2
xL(w)∆x −∇g(x)∆y −A∗(x)∆Z

∇g(x)T ∆x
∆XZ + X∆Z


for ∆w = (∆x, ∆y, ∆Z) ∈ Rn × Rm × Sp, which is an estimate of the first order change of
r0(w + ∆w) or r(w + ∆w, µ).

For the unscaled Newton method, the Newton equations (5.20) is

JS(w)∆w = −rS(w, µ). (5.21)
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Under the above assumptions, the regularity of the operators JS(w∗) and J(w∗) is shown as
follows.

Theorem 5.5. ([75]) The operator JS(w∗) is nonsingular, and the operator J(w∗) is left
invertible.

With the above properties of JS(w∗) and J(w∗), an algorithm for the analysis of local
behavior can be defined as follows.
Algorithm 5.3.

Step 0. (Initialize) Set ε > 0 and 0 < τ < 1. Choose w0 = (x0, y0, Z0) ∈ Rn × Rm × Sp

(X(x0) ≻ 0, Z0 ≻ 0). Set k = 0.
Step 1. (Termination) If ∥r0(wk)∥ ≤ ε, then stop.
Step 2. (Newton step) Choose a barrier parameter µk such that

µk = ξk∥r0(wk)∥1+τ (5.22)

with ξk = Θ(1). Compute the direction ∆wk by solving the Newton equations (5.21).
Set wk+1 = wk + ∆wk.

Step 3. (Update) Set k := k + 1 and go to Step 1. ¤

We note that in the above algorithm, the barrier parameter is decreased faster than
∥r0(wk)∥, and the step sizes are set to 1. By Theorem 5.5, if the iterate wk is sufficiently close
to w∗, the Jacobian operator JS(wk) is nonsingular and its inverse is uniformly bounded.
Thus the Newton equations have a unique solution and the following relations hold

∆wk = Θ(∥rS(wk, µk)∥) = O(∥r0S(wk)∥) + O(µk) = O(∥r0(wk)∥). (5.23)

Here the last equality can be obtained by equation (5.22) which shows that the parameter
µk is decreased sufficiently fast. Then it is possible to show that the unit step iteration
gives an interior point and an approximate BKKT point successively. Thus we can prove
the superlinear convergence of Algorithm 5.3 in the following theorem.
Theorem 5.6. Let Mc and τ be given constants satisfying 0 < Mc < 1 and 0 < τ < 1.
Let µ−1 be a sufficiently small positive number. Assume that an initial interior point w0

is sufficiently close to w∗ and satisfies the approximate BKKT condition ∥r(w0, µ−1)∥ ≤
Mcµ−1. Then the sequence {wk} generated by Algorithm 5.3 satisfies

∥r(wk, µk−1)∥ ≤ Mcµk−1, X(xk) ≻ 0 and Zk ≻ 0 (5.24)

for all k ≥ 0 and converges locally and superlinearly to w∗.

We note that although no globally convergent algorithm for unscaled Newton method
is proposed yet, this method has favorable local properties as seen in the above theorem.
We also note that, to solve the unscaled Newton equation, we have to represent it by the
following matrix-vector form: ∇2

xL(w) −∇g(x) −AS(x)T

∇g(x)T 0 0
(Z ⊗S I)AS(x) 0 (X ⊗S I)

  ∆x
∆y

svec(∆Z)

 =

 −∇xL(x, y, Z)
−g(x)

svec(µI − X ◦ Z)

 ,

where
AS(x) = [svec(A1(x)), . . . , svec(An(x))] ∈ Rp(p+1)/2×n.
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Next, we proceed to results on the local behavior of the scaled Newton equations. Specif-
ically we show that local and two-step superlinear convergence properties are proved for the
primal-dual interior point methods which use the HRVW/KSH/M and the NT directions.

In the following, we describe an algorithm which calculates a KKT point by using the
scaled Newton method. Roughly speaking, if the current point wk is sufficiently close to the
BKKT point with sufficiently small µk, then the Newton equation (5.20) can be written as

J ′
S(wk)∆wk = −rS(wk, µk)

with an operator J ′
S(wk) which is close to nonsingular JS(wk), and ∆wk satisfies

∆wk = O(∥r(wk, µk)∥).
With these properties, the scaled Newton step gives a local and two-step superlinear con-
vergence as the following algorithm and theorem show.
Algorithm 5.4.

Step 0. (Initialize) Set ε > 0 and 0 < τ < 1. Choose w0 = (x0, y0, Z0) ∈ Rn × Rm × Sp

(X(x0) ≻ 0, Z0 ≻ 0). Set k = 0.
Step 1. (Termination) If ∥r0(wk)∥ ≤ ε, then stop.
Step 2. (Scaled Newton steps)

Step 2.1 Choose µk = ξk∥r0(wk)∥1+τ with ξk = Θ(1).
Step 2.2 Calculate the direction ∆wk by solving the scaled Newton equations

J̃S(wk)∆wk = −r̃S(wk, µk) at wk. Set wk+ 1
2

= wk + ∆wk.
Step 2.3 Calculate the direction ∆wk+ 1

2
by solving the scaled Newton equations

J̃S(wk+ 1
2
)∆wk+ 1

2
= −r̃S(wk+ 1

2
, µk)

at wk+ 1
2
. Set wk+1 = wk+ 1

2
+ ∆wk+ 1

2
.

Step 3. (Update) Set k := k + 1 and go to Step 1. ¤

In the above algorithm, the decreasing speed of the barrier parameter is set to the same as
the unscaled algorithm. But the scaled Newton steps with unit step sizes are repeated twice
with the same barrier parameter value. The following theorem gives a detailed behavior of
the scaled Newton steps near the KKT point.
Theorem 5.7. Let Mc be a positive constant, and let τ and τ ′ be positive constants that
satisfy

1 > τ ′ > τ and τ ′ >
2τ

1 − τ
.

Let µ−1 be a sufficiently small positive number and satisfy(
1

2Mc

)1/τ ′

≥ µ−1.

Assume that an initial interior point w0 is sufficiently close to w∗ and satisfies the ap-
proximate BKKT condition ∥r(w0, µ−1)∥ ≤ Mcµ

1+τ ′

−1 . Then the sequence {wk} generated by

Algorithm 5.4 with Tk = X
−1/2
k or Tk = W

−1/2
k satisfies

∥r(wk, µk−1)∥ ≤ Mcµ
1+τ ′

k−1 , X(xk) ≻ 0 and Zk ≻ 0

for all k ≥ 0 and converges two-step superlinearly to w∗ in the sense that

∥wk + ∆wk + ∆wk+ 1
2
− w∗∥ = O(∥wk − w∗∥1+τ ′

) for all k.
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5.5. Primal-dual interior point methods with shifted KKT conditions

Interior point methods usually replace the complementarity condition X(x)Z = 0 by X(x)Z
= µI and manage the resulting barrier KKT conditions instead of conditions (2.1) and
(2.2). These conditions are intimately related to the necessary condition for optimality of
the following problem

min
X(x)≻0

FBP (x, µ) = f(x) + ρ∥g(x)∥1 − µ log(detX(x)), x ∈ Rn. (5.25)

In connection with (1.1), we consider the following problem instead of (5.25):

min
X(x)≻0

FBP2(x, µ) = f(x) +
1

2µ
∥g(x)∥2 − µ log(detX(x)), x ∈ Rn. (5.26)

The necessary conditions for optimality of this problem are given by

∇FBP2(x, µ) = ∇f(x) +
1

µ
∇g(x)g(x) − µA∗(x)X−1(x) = 0,

and X(x) ≻ 0. If we let the variables y and Z satisfy the relations y = −g(x)/µ and
Z = µX(x)−1, respectively, then the above conditions are written as

r(w, µ) =

 ∇xL(w)
g(x) + µy

X(x)Z − µI

 =

 0
0
0

 (5.27)

and
X(x) ≻ 0, Z ≻ 0.

These conditions are called the shifted barrier KKT (SBKKT) conditions, and the point
which satisfies SBKKT conditions are called the SBKKT point. Motivated by the prior work
by Forsgren and Gill [22], Yamashita and Yabe [73] proposed a method that uses SBKKT
conditions for ordinary NLP. An extension of the method for solving nonlinear SDP was
done by Kato, Yabe and Yamashita [37]. We note that similar approach for nonlinear SDP
was also done by Yamakawa and Yamashita [72].

In order to obtain the KKT point, the same prototype algorithm as Algorithm 5.1 is
used, where condition (5.3) in Step 1 of Algorithm 5.1 should use the above residual (5.27).
As in the previous section, the Newton method for equations (5.27) is considered to search
the SBKKT point for fixed µ, and we obtain the Newton step ∆w by solving the following
linear system:

G∆x −∇g(x)∆y −A∗(x)∆Z = −∇xL(x, y, Z) (5.28)

∇g(x)T ∆x + µ∆y = −g(x) − µy (5.29)

∆X̃Z̃ + Z̃∆X̃ + X̃∆Z̃ + ∆Z̃X̃ = 2µI − X̃Z̃ − Z̃X̃. (5.30)

Then, the equations (5.28) – (5.30) are rewritten by

{G + H +
1

µ
∇g(x)∇g(x)T}∆x = −∇FBP2(x, µ), (5.31)

∆y = − 1

µ
{g(x) + µy + ∇g(x)T ∆x} (5.32)
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and
∆Z = µX−1 − Z − (T T ⊙ T T )(X̃ ⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )∆X, (5.33)

where the elements of the matrix H ∈ Rn×n are given by (5.11).
If the matrix G + H + 1

µ
∇g(x)∇g(x)T is nonsingular, then the Newton equations (5.28)

– (5.30) have a unique search direction ∆w = (∆x, ∆y, ∆Z) ∈ Rn × Rm × Sp obtained by
(5.31) – (5.33). To obtain a unique direction, the interior point method in [76] needs the
assumption that ∇g(x) is of full rank, while this method does not need such an assumption.

In contrast to the merit function FBP (x, µ) which contains the non-differentiable term
and which does not depend on y, the merit function in [37] has the following form:

Fℓ2(w, µ) = FBP2(x, µ) + νFPD2(w, µ),

where FBP2(x, µ) is defined by (5.26) and FPD2(w, µ) is a primal-dual barrier function given
by

FPD2(w, µ) =
1

2
∥g(x) + µy∥2 + log

⟨X,Z⟩/p + ∥Z 1
2 XZ

1
2 − µI∥2

F

{det(XZ)}1/p
.

It is possible to prove that the Newton direction is a descent direction with respect to
this merit function. The Newton direction ∆w satisfies

D(Fℓ2(w, µ); ∆w) ≤ −∆xT{G + H +
1

µ
∇g(x)∇g(x)T}∆x

−ν
∥Z 1

2 XZ
1
2 − µI∥2

F

⟨X,Z⟩/p + ∥Z 1
2 XZ

1
2 − µI∥2

F

− ν∥g(x) + µy∥2,

where D(Fℓ2(w, µ); ∆w) is the directional derivative of the function Fℓ2(w, µ) along the
direction ∆w. If the matrix G + H + 1

µ
∇g(x)∇g(x)T is positive definite, then the Newton

direction ∆w is a descent direction for the merit function Fℓ2(w, µ).
The algorithm that finds an approximate SBKKT point given in [37] is similar to Al-

gorithm 5.2. The only difference is that ∆Fl(xk, Zk; ∆xk, ∆Zk) in Algorithm 5.2 is re-
placed by the directional derivative D(Fℓ2(wk, µ); ∆wk), because the merit function Fℓ2 is
differentiable.

Algorithm 5.5.

Step 0. (Initialize) Set an initial interior point w0 = (x0, y0, Z0) ∈ Rn ×Rm ×Sp (X(x0) ≻
0, Z0 ≻ 0), the fixed barrier parameter µ > 0 and a parameter Mc > 0. Choose the
parameters ν > 0, γ ∈ (0, 1), β ∈ (0, 1) and ε0 ∈ (0, 1). Set k = 0.

Step 1. (Termination) If ∥r(wk, µ)∥ ≤ Mcµ, then stop.
Step 2. (Search direction) Calculate the matrix Gk and the scaling matrix Tk. Determine

a search direction ∆wk by (5.31) – (5.33).
Step 3. (Step size) Calculate an initial step size ᾱk by

ᾱk = min {ᾱxk, ᾱzk, 1} ,

where ᾱxk and ᾱzk are calculated by (5.16) and (5.17). Find the smallest nonnegative
integer ℓk that satisfies the conditions

Fℓ2(wk + ᾱkβ
ℓk

∆wk, µ) ≤ Fℓ2(wk, µ) + ε0ᾱkβ
ℓk

D(Fℓ2(wk, µ); ∆wk)

and
X(xk + ᾱkβ

ℓk∆xk) ≻ 0.

Set αk = ᾱkβ
ℓk .
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Step 4. (Update) Set
wk+1 = wk + αk∆wk.

Step 5. Set k := k + 1 and go to Step 1.

The global convergence of the proposed algorithm is proved in [37]:

Theorem 5.8. Let {wk} be the sequence generated by Algorithm 5.5. Suppose the followings:

(i) The functions f , gi, i = 1, . . . ,m, and X are twice continuously differentiable;

(ii) The sequence {xk} remains in a compact set Ω of Rn;
(iii) The matrix Gk + Hk + 1

µ
∇g(xk)∇g(xk)

T is uniformly positive definite and the matrix
Gk + Hk is uniformly bounded;

(iv) The scaling matrix Tk is chosen so that X̃k and Z̃k commute and both of the sequences
{Tk} and {T−1

k } are bounded.

Then there exists at least one accumulation point of {wk}, and any accumulation point
of the sequence {wk} is an SBKKT point.

6. Concluding Remarks

In this paper, current status of numerical methods for solving the nonlinear SDP problems
has been surveyed. It is seen that typical methods for ordinary NLP problems, such as
the augmented Lagrangian method, the SQP method and the primal-dual interior point
method, have their counterparts in this area.

The augmented Lagrangian method, especially the one with the modified barrier type
augmentation, has been applied to the wide area of problems using PENNON [38] by
Kočvara and Stingl. The prototype algorithm is rather simple, and the subproblems to
be solved are ordinary nonlinear optimization problems. The globally convergent algorithm
that assures bounded sequences could be somewhat complex though. The primal-dual in-
terior point method proposed by Yamashita, Yabe and Harada [76] has nice global and
local convergence properties, and implemented in the software Numerical Optimizer (its old
name is NUOPT). The sequential SDP methods seem to have rooms for more research in
theory and practice. Also it is not so obvious that the methods that have linear/quadratic
SDP subproblems can be practical or not, because these subproblems should be solved by
an interior point method anyway. Notable practical implementation of the sequential SDP
method is not yet known to the current authors.

In order to have a brief comparison of the algorithms described in this paper, we cite
the comparative study of numerical results of a class of problems solved by PENNON and
Numerical Optimizer given in [76]. For detailed explanation about computational aspects of
the comparison, we refer to the original paper. The following example problem area is the
so called static output feedback (SOF) problems from COMPleib library [44]. The SOF-H2

type problem is defined as follows:

minimize tr(X),
subject to Q ≽ 0,

A(F )Q + QA(F )T + B1B
T
1 ≼ 0,(

X C(F )Q
QC(F )T Q

)
≽ 0,

where X ∈ Snz×nz , F ∈ Rnu×ny and Q ∈ Snx×nx are variable matrices to be determined.
The matrices A ∈ Rnx×nx , B ∈ Rnx×nu , B1 ∈ Rnx×nw , C ∈ Rny×nx , C1 ∈ Rnz×nx , D11 ∈
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Rnz×nw , D12 ∈ Rnz×nu and D21 ∈ Rny×nw are given constant matrices, and form the matrices
A(F ), B(F ), C(F ), D(F ) which appear in the problem definition as follows:

A(F ) = A + BFC,

B(F ) = B1 + BFD21,

C(F ) = C1 + D12FC,

D(F ) = D11 + D12FD21.

Table 8 in [76] shows the required CPU(sec) data for solutions of the SOF-H2 problems
by Numerical Optimizer and PENBMI which is a specialized BMI-version of PENNON.
The number of variables of the test problem ranges from 7 to 160. The required CPU by
Numerical Optimizer varies from 0.03 sec to 12.19 sec, and that by PENBMI varies from
0.18 sec to 223 sec. As the table shows, the performances of these two codes are comparable,
and it is difficult to draw any firm conclusion about relative merits of these two algorithms
from the table. However we should point out that interior point methods need an interior
point for starting the calculation, and it is not so easy to find an interior point for this type
of problems.

In summary, the area of nonlinear SDP problems seems to be still in the early stage.
We believe there appear new proposals of algorithms and their variations in the future as
in ordinary NLP world.
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