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Abstract

In this paper, error bounds for nonlinear semide�nite optimization problem is
considered. We assume the second order su�cient condition, the strict complemen-
tarity condition and the MFCQ condition at the KKT point. The nondegeneracy
condition is not assumed in this paper. Therefore the Jacobian operator of the
equality part of the KKT conditions is not assumed to be invertible. We derive
lower bounds for the primal and dual distances to the solution set when the primal
variable is close to the solution set. Then a global error bound of the dual distance
to the solution set is obtained assuming the MFCQ condition and the strict com-
plementarity condition. An error bound for the primal variable is given when the
primal-dual pair is close to the solution set, and approximately satis�es the shifted
complementarity condition along with the MFCQ condition and the second order
su�cient condition. Finally we gather these results and obtain the upper and lower
local error bounds for the primal-dual pair.

Keywords Nonlinear semide�nite optimization Error bound Eigenvalues

1 Introduction

In this paper, we consider the error bounds for the following nonlinear semide�nite opti-
mization problem:

minimize f(x); x 2 Rn;
subject to X(x) � 0 (1)

where the functions f : Rn ! R and X : Rn ! Sp are su�ciently smooth, and Sp

denotes the set of pth-order real symmetric matrices. We also de�ne Sp+ to denote the set
of pth-order symmetric positive semide�nite matrices. By X(x) � 0 and X(x) � 0, we
mean that the matrix X(x) is positive semide�nite and positive de�nite, respectively.
Error bounds in mathematical programming play important roles in the sensitivity

analysis of optimal solutions and the convergence analysis of iterative methods. Since the
seminal paper by Ho�man [5] in 1952 which gives a global error bound of the distance to
the polyhedral convex set, extensive researches have been done. For example, his result
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is extended to the global error bound for the set de�ned by the in�nite number of linear
inequalities by Hu and Wang [6]. Various developments around extension to set de�ned
by the convex system are summarized in Lewis and Pang [11], and Pang [12].
On the other hand, for the ordinary nonlinear optimization problems, the local error

bound of the primal-dual distance to the solution set is obtained by Wright [18], and Hager
and Gowda [4]. They derive perturbed problems, and show the current primal-dual pair
satisfy the perturbed KKT conditions. Then it is possible to apply the classical works by
Robinson [14, 15] to obtain local error bounds.
There are several researches on the error bounds of the distance to the semide�nite

constraint set ([3],[1],[7]). However as far as the author aware, there are few researches
on the error bound of the distance to the solution set itself. An exception is the work by
Bonnans, Cominetti and Shapiro [2] which deals with the sensitivity analysis of nonlinear
SDPs.
In this paper, the second order su�cient condition, the MFCQ condition and the

strict complementarity condition are assumed for the proof of some error bounds. We will
not assume the nondegeneracy condition in this paper. If we assume the nondegeneracy
condition along with these conditions, it can be proved that the Jacobian operator of the
equalities of the KKT conditions is left invertible [19]. Thus in this case, the estimate of
error bounds becomes a rather trivial task.
Assuming the MFCQ condition and the strict complementarity condition, we will show

that it is possible to prove the global error bound of the dual distance to the solution set
by using the result of Lewis and Pang [11] on the error bound for the set de�ned by the
convex system. Also we will show that, as in the ordinary NLPs described above, it is
possible to derive the perturbed KKT conditions by using the eigenvalues of the relevant
matrices. Then using the result by Hager and Gowda [4], we obtain the local error
bound for the primal variables when the MFCQ condition and the second order su�cient
condition are satis�ed at the solution, and the primal-dual pair approximately satis�es
the shifted complementarity condition. In the �nal section we summarize our results by
gathering these bounds to obtain the lower and upper bounds for the primal-dual pair.
Throughout this paper, we assume that the functions f and X are twice continuously

di�erentiable. We de�ne the Lagrangian function of problem (1) by

L(x; Z) = f(x)� hX(x); Zi ;

where Z 2 Sp is the Lagrange multiplier matrix (dual variable matrix) for the positive
semide�niteness constraint, and hX(x); Zi = tr(X(x)Z). De�ne the matrices

Ai(x) =
@X(x)

@xi

for i = 1; : : : ; n. Then the Karush-Kuhn-Tucker (KKT) conditions for optimality of
problem (1) are given by the following (see [16]):

rxL(x; Z) = 0; (2)

hX(x); Zi = 0; X(x) � 0; Z � 0: (3)

Here rxL(x; Z) is the gradient vector of the Lagrangian function given by

rxL(x; Z) = rf(x)�A�(x)Z;



1 INTRODUCTION 3

where A�(x) is the operator such that for Z,

A�(x)Z = rx hX(x); Zi =

0B@ hA1(x); Zi
...

hAn(x); Zi

1CA :
For a given X 2 Sp, �i(X); i = 1; :::; p denote the eigenvalues of X in nonincreasing

order. Similarly, for a given Z 2 Sp, 'i(Z); i = 1; :::; p denote the eigenvalues of Z in
nondecreasing order. From the Von Neumann-Theobald inequality

tr(XZ) �
pX
i=1

�i(X)'i(Z); (4)

where the equality holds if and only if X and Z are simultaneously diagonalized, we note
that the complementarity condition (3) can be written as

X(x)Z = 0; X(x) � 0; Z � 0; (5)

or
�i(X(x))'i(Z) = 0; �i(X(x)) � 0; 'i(Z) � 0; i = 1; :::; p: (6)

Also note that condition (6) can be written as

min (�(X(x)); '(Z)) = 0; (7)

where min (�(X(x)); '(Z)) = (min (�1(X(x)); '1(Z)) ; :::;min (�p(X(x)); 'p(Z)))
T 2 Rp.

It is known that there holds the Ho�man-Wielandt inequality for real symmetric ma-
trices X;X 0; Z an Z 0:

k�(X)� �(X 0)k � kX �X 0k ; k'(Z)� '(Z 0)k � kZ � Z 0k ; (8)

i.e., � and ' are Lipschitzian with the above speci�ed ordering. We use the `2 norm for
vectors, and the Frobenius norm for matrices in this paper.
In the following discussions, it is convenient to write the above optimality conditions

as �
rxL(x; Z)
X(x)

�
2
�

0
N(Z)

�
; (9)

where N(Z) is the set de�ned by

N(Z) =

�
fM 2 Sp jM � 0 and MZ = 0g if Z � 0;

; otherwise:

Using the eigenvalue vectors �(X(x)) 2 Rp and '(Z) 2 Rp, the condition X(x) 2 N(Z)
implies

�(X(x)) 2 N 0('(Z))

where

N 0('(Z)) =

� �
u 2 Rp

��u � 0 and uT'(Z) = 0	 if '(Z) � 0;
; otherwise:
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A point x� 2 Rn is said to be a KKT point of problem (1) if there exists a Lagrange
multiplier matrix Z such that (x�; Z) satis�es the KKT conditions (9). Let �(x�) denote
the set of Lagrange multipliers such that (x�; Z), where Z 2 �(x�), satis�es the KKT
conditions.
The Mangasarian-Fromovitz constraint quali�cation (MFCQ) condition holds at a

feasible point x if there exists a vector d 2 Rn such that

X(x) +
nX
i=1

diAi(x) � 0: (10)

It can be shown that, if the MFCQ condition holds at a KKT point x�, then the set �(x�)
is bounded.
The set C(x�), the critical cone at x�, is de�ned by

C(x�) =

(
h 2 Rn

�����
nX
i=1

hiAi(x
�) 2 TSp+(X(x

�)); rf(x�)Th = 0
)
;

where TSp+(X(x
�) is the tangent cone of Sp+ at X(x

�). Then the second order su�cient
condition for local optimality of x� under the MFCQ condition is given by

sup
Z2�(x�)

hT (r2
xL(x

�; Z) + Ĥ(x�; Z))h > 0; for all h 2 C(x�)nf0g: (11)

Here Ĥ(x; Z) is a matrix whose (i; j) element is given by

(Ĥ(x; Z))ij = 2tr(Ai(x)X(x)
yAj(x)Z)

and y denotes the Moore-Penrose generalized inverse.
It is said that a quadratic growth condition holds at a feasible point x� of problem (1)

if there exists c > 0 such that the following inequality holds

f(x) � f(x�) + ckx� x�k2 (12)

for any feasible point x in a neighborhood of x�. The quadratic growth condition implies
that x� is a strict local optimal solution (an isolated local optimal solution) of problem
(1). If the MFCQ condition holds, then the quadratic growth condition holds if and only
if the second order su�cient condition (11) is satis�ed.
We will use the following block partition of matrices X(x) and Z,

X(x) =

�
XB(x) XBN(x)
XT
BN(x) XN(x)

�
; Z =

�
ZB ZBN
ZTBN ZN

�
; (13)

where X(x�) is diagonalized to

X(x�) =

�
X�
B 0
0 0

�
; X�

B � 0; (14)
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if necessary. If Z 2 �(x�), the conditions X(x�)Z = 0 and Z � 0 yield

Z =

�
0 0
0 ZN

�
; ZN � 0; (15)

in this representation.
The strict complementarity condition holds at x� if there exists Z� 2 �(x�) such that

rank(X(x�)) + rank(Z�) = p:

In the above representation (15), the strict complementarity implies Z�N � 0.
Let x 2 Rn and Z 2 Sp be given, and de�ne Ẑ 2 Sp+ as a projection of Z onto �(x�),

i.e.,
kZ � Ẑk = inffkZ � Z 0k j Z 0 2 �(x�)g: (16)

As described above, we will be concerned with the estimation of the upper and lower
bounds of the quantities dist(x; x�) = kx � x�k and dist(Z;�(x�)) = kZ � Ẑk, or
dist((x; Z); (x�;�(x�))) = kx� x�k + kZ � Ẑk under various assumptions. Instead of
using positive constants �1; �2; ::: in the following proofs, we will use a generic positive
constant � that may have di�erent values in di�erent places.

2 Lower bounds

We �rst consider the lower bounds of dist(x; x�); dist(Z;�(x�)) and dist((x; Z); (x�;�(x�)))
that are not di�cult to estimate.

Theorem 1 There exist a neighborhood Nx of x
� and a constant 
 > 0 with the property

that for every x 2 Nx and Z 2 Sp, we have


�1 krxL(x; Z)k � (1 + kZk)dist(x; x�) + dist(Z;�(x�));


�1 kX(x)Zk � dist(x; x�) kZk+ dist(Z;�(x�));
and further for every x 2 Nx and Z 2 Sp+, we have


�1 kmin(�(X(x)); '(Z))k � dist((x; Z); (x�;�(x�))):

Proof. Let Nx be su�ciently small, and thus x be su�ciently close to x
�. Since rf(x�)�

A�(x�)Ẑ = 0, we have

krf(x)�A�(x)Zk =



(rf(x)�A�(x)Z)� �rf(x�)�A�(x�)Ẑ�




= k(rf(x)�A�(x)Z)� (rf(x�)�A�(x�)Z)
�
�
rf(x�)�A�(x�)Ẑ

�
+ (rf(x�)�A�(x�)Z)





� k(rf(x)�A�(x)Z)� (rf(x�)�A�(x�)Z)k

+



��rf(x�)�A�(x�)Ẑ�+ (rf(x�)�A�(x�)Z)




� �((1 + kZk) kx� x�k+ kZ � Ẑk);
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for su�ciently large �. Similarly we obtain

kX(x)Zk = k(X(x)�X(x�))Z +X(x�)(Z � Ẑ)k � �(kx� x�k kZk+ kZ � Ẑk):

Next we prove the third lower bound that uses eigenvalues. If min(�i(X(x)); 'i(Z)) =
'i(Z) and 'i(Ẑ) = 0, we have

jmin(�i(X(x)); 'i(Z))j = j'i(Z)j =
���'i(Z)� 'i(Ẑ)��� � kZ � Ẑk:

The last inequality is due to the Ho�man-Wielandt theorem (8). If 'i(Ẑ) > 0, then
�i(X(x

�)) = 0, and we have

jmin(�i(X(x)); 'i(Z))j � j�i(X(x))j = j�i(X(x))� �i(X(x�))j
� kX(x)�X(x�)k � � kx� x�k :

Similarly if min(�i(X(x)); 'i(Z)) = �i(X(x)) and �i(X(x
�)) = 0, we obtain

jmin(�i(X(x)); 'i(Z))j = j�i(X(x))j � � kx� x�k :

If �i(X(x
�)) > 0, we have �i(X(x)) > 0 for su�ciently small Nx, and 'i(Ẑ) = 0. Then

we obtain
jmin(�i(X(x)); 'i(Z))j � j'i(Z)j � kZ � Ẑk:

Thus these bounds for each i = 1; :::; p yield

kmin(�(X(x)); '(Z))k � �(kx� x�k+ kZ � Ẑk):

This completes the proof. 2

This theorem also shows that if the right hand sides of the above inequalities are small,
then the quantities on the left hand sides of the above inequalities are also small. This
fact will be used for estimating the upper bounds in the following.

3 Global error bound for dual variable

In this section we consider an upper bound of the quantity kZ� Ẑk when Z 2 Sp is given,
where the point Ẑ 2 �(x�) is the projection of Z onto �(x�), and de�ned as follows:

kZ � Ẑk = inf fkZ � Z 0k jZ 0 2 Sp+;rf(x�)�A�(x�)Z 0 = 0; X(x�)Z 0 = 0g : (17)

With the representation (14), we have

Ẑ =

�
0 0

0 ẐN

�
; ẐN � 0:

Since 



� ZB ZBN
ZTBN ZN

�
�
�
0 0
0 Z 0N

�



2 = 



� ZB ZBN
ZTBN 0

�



2 + kZN � Z 0Nk2 ;
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the de�nition of the distance in (17) implies

kZ � Ẑk �




� ZB ZBN

ZTBN 0

�




+ inf

�
kZN � Z 0Nk

����Z 0N 2 Sp0+; @f(x�)@xi
� hANi(x�); Z 0Ni = 0; i = 1; :::; n

�
(18)

where p0 = p� rank(X(x�)), and

ANi(x) =
@XN(x)

@xi
; i = 1; :::; n:

In order to estimate the distance from ZN 2 Sp
0
to the convex set de�ned by

�N(x
�) =

�
Z 0N 2 Sp

0
����Z 0N � 0; @f(x�)@xi

� hANi(x�); Z 0Ni = 0; i = 1; :::; n
�
; (19)

in the proof of Lemma 1, we make use of the result of Lewis and Pang [11] which gives
the global error bound of the distance to a set de�ned by a convex inequality system.

Lemma 1 Assume that the MFCQ condition and the strict complementarity condition
hold at x�. Then there exists a constant 
 > 0 such that, for every ZN 2 Sp

0
,

dist(ZN ;�N(x
�)) � 
max

�
jminf0; 'min(ZN)gj ;

����@f(x�)@xi
� hANi(x�); ZNi

���� ; i = 1; :::; n� ;
(20)

where 'min(ZN) is the smallest eigenvalue of ZN .

Proof. Let us consider 'min(�) as a function of p0(p0 + 1)=2 independent elements of
the matrix Z 0N . The convex set de�ned by Z

0
N � 0 is equivalent to the set de�ned by

'min(Z
0
N) � 0 where 'min : Rp0(p0+1) ! R. We note that �'min is a closed proper convex

function.
Then it is possible to utilize the result of Corollary 2 of Lewis and Pang [11]. The

convex set C in Corollary 2 corresponds to the set de�ned by the equality conditions in the
de�nition of �N(x

�), and the convex set de�ned by the inequality f(x) � 0 in Corollary
2 corresponds to 'min(Z

0
N) � 0. By the strict complementarity condition, there exists a

point Z�N � 0 ('min(Z�N) > 0) that satis�es

@f(x�)

@xi
� hANi(x�); Z�Ni = 0; i = 1; :::; n:

This shows the interiority condition assumed in Corollary 2 is satis�ed. By the MFCQ
condition, the set �N(x

�) is bounded. This implies the statement in Corollary 2 (d) is
valid. Thus the statement of Corollary 2 (a) holds, and we have (20). 2

We note that the above error estimate may also be proved using Corollary of Theorem
1 in Hu and Wang [6], if the equalities in (19) are converted to violated inequalities by
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appropriately changing the sign of each violated equality, and if the set 'min(Z
0
N) � 0 is

expressed by an in�nite set of linear inequalities.
Since the above error bound is for the submatrix ZN , it is necessary to derive a bound

for the matrix Z which does not depend on the particular representation.

Theorem 2 Assume that the MFCQ condition and the strict complementarity condition
hold at x�. Then there exist a neighborhood Nx of x

� and a constant 
 > 0 with the
property that for every x 2 Nx and Z 2 Sp, we have

dist(Z;�(x�)) � 
 (krxL(x; Z)k+ kXZk+ (1 + kZk)dist(x; x�) + jminf0; 'min(Z)gj) ;
(21)

where 'min(Z) is the smallest eigenvalue of Z.

Proof. We need to estimate the value of each term in the right hand side of (18). Using
the representations (13) and (14), write X(x)Z as

X(x)Z =

�
XB(x)ZB +XBN(x)Z

T
BN XBZBN +XBN(x)ZN

XT
BN(x)ZB +XN(x)Z

T
BN XT

BN(x)ZBN +XN(x)ZN

�
:

Since XBN(x
�) = 0, we have

kXBN(x)k = kXBN(x)�XBN(x
�)k � � kx� x�k : (22)

Then from (22), we obtain

kX(x)Zk � kXB(x)ZBN +XBN(x)ZNk � kXB(x)ZBNk � kXBN(x)ZNk
�



XB(x)
�1

 kZBNk � kXBN(x)k kZNk

�


XB(x)

�1

 kZBNk � � kZNk kx� x�k : (23)

Since XB(x
�) � 0 and x is su�ciently close to x�, we have

��1 �


XB(x)

�1

 � �: (24)

Inequalities (23) and (24) imply

kZBNk � �(kX(x)Zk+ kZNk kx� x�k): (25)

Similarly, we have from (22) and (25),

kX(x)Zk �


XB(x)ZB +XBN(x)Z

T
BN



 � kXB(x)ZBk �


XBN(x)Z

T
BN




�



XB(x)
�1

 kZBk � � kx� x�k (kX(x)Zk+ kZNk kx� x�k));

and then we obtain
kZBk � �(kX(x)Zk+ kZNk kx� x�k2): (26)

Estimates (25) and (26) yield



� ZB ZBN
ZTBN 0

�



 � �(kX(x)Zk+ kZNk kx� x�k): (27)
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Next we consider the second term in the right hand side of (18). Its upper bound is
given by (20). De�ning A�N(x) by

A�N(x)ZN =

0B@ hAN1(x); ZNi
...

hANn(x); ZNi

1CA ;
we have

kA�N(x)ZN �A�(x)Zk =





A�(x)� ZB ZBN
ZTBN 0

�




=

vuut pX
i=1

�
Ai(x);

�
ZB ZBN
ZTBN 0

��2

�

vuut pX
i=1

kAi(x)k2




� ZB ZBN

ZTBN 0

�



2
� �





� ZB ZBN
ZTBN 0

�



 :
Therefore we obtain

krf(x�)�A�N(x�)ZNk = krf(x)�A�N(x)ZN
�(rf(x)�A�N(x)ZN �rf(x�) +A�N(x�)ZN)k

� krf(x)�A�N(x)ZNk+ �(1 + kZNk) kx� x�k
= krf(x)�A�(x)Z � (A�N(x)ZN �A�(x)Z)k

+�(1 + kZNk) kx� x�k

� krf(x)�A�(x)Zk+ �




� ZB ZBN

ZTBN 0

�




+�(1 + kZNk) kx� x�k : (28)

Finally, we consider the term jminf0; 'min(ZN)gj in (20). Let ymin 2 Rp0 be the
normalized eigenvector of ZN corresponding to the eigenvalue 'min(ZN). Then we have

'min(Z) = min
y2Rp;kyk=1

yTZy �
�

0
ymin

�T �
ZB ZBN
ZTBN ZN

��
0
ymin

�
= yTminZNymin = 'min(ZN):

Therefore we obtain

jmin f0; 'min(Z)gj � jmin f0; 'min(ZN)gj : (29)

Then from (18), (20), (27), (28) and (29), we obtain (21). 2
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4 Local error bound for primal variable

In this section, we consider the error bound of the primal variables. In the nonlinear
programming problems:

minimize f(x); x 2 Rn;
subject to g(x) � 0;

where g : Rn ! Rm, given a primal dual pair (x; z) 2 Rn � Rm which is close to the
solution set, Wright [18], and Hager and Gowda [4] derive perturbed problems of the
above NLP problem, and show a pair (x; �z) 2 Rn �Rm satis�es�

rxL(x; �z)
g(x) + v

�
2
�

vL
N 0(�z)

�
;

where �z is close to z, and vL 2 Rn and v 2 Rm are small in magnitude. Then they show it
is possible to obtain error bounds of the pair (x; z) using the works by Robinson [14, 15].
We will show that this kind of reasoning is also possible in our nonlinear SDP problems,
if we make use of the eigenvalues of X(x) and Z.
In the following we �rst consider the case when x 2 Rn and Z 2 Sp satisfy

X(x)Z = �I;

for � > 0, where I 2 Rp�p is an identity matrix. The above condition is known as
the shifted complementarity condition, and is the part of the barrier KKT conditions in
various interior point methods. We will show that if x and Z satisfy the above relation
among others, then it is possible to obtain a local error bound for the primal variable in
Lemma 3. The next lemma gives the formula for necessary derivatives which will be used
later.

Lemma 2 Let X(x) be analytic, and Zc 2 Sp and � > 0 be given. De�ne the function
hZc : R

n �! R by

hZc(x) =

pX
i=1

�i(X(x))'i(Zc):

If xc 2 Rn and Zc 2 Sp satisfy
X(xc)Zc = �I; (30)

then hZc(x) is analytic at xc, and

hZc(xc) = hX(xc); Zci ; (31)

rxhZc(xc) = rx hX(xc); Zci (32)

hold.

Proof. If condition (30) is satis�ed at xc, then we have �i(X(xc))'i(Zc) = �; i = 1; :::; p
by simultaneously diagonalizing X(xc) and Zc. Therefore, relation (31) is obvious. In
order to prove (32), we use the result given in Theorem 3.1 of Tsing, Fang and Verriest
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[17] (see also Theorem 1.1 of Lewis [10]) for the derivative of a spectral function which
has a required symmetry.
It is known that if �i(X(x)) is distinct from other eigenvalues, i.e., �i�1(X(x)) >

�i(X(x)) > �i+1(X(x)), then �i(X(x)) is analytic at x (Fact 1.2 in [17]). If 'i0�1(Zc) <
'i0(Zc) = 'i0+1(Zc) = ::: = 'i00(Zc) < 'i00+1(Zc), then hZc(x) is symmetric with respect
to the indices fi0; :::; i00g, i.e., hZc(x) is invariant with the permutation between these
indices at any x. In this case, we have �i0�1(X(xc)) > �i0(X(xc)) = ::: = �i00(X(xc)) >
�i00+1(X(xc)), and the symmetry with respect to the indices fi0; :::; i00g holds at xc. Then
from Theorem 2.1 of [17], the function hZc(x) is analytic at xc.
Now it is possible to use formula (3.7) in [17] for the derivatives of hZc(x) at xc. We

have

rxhZc(xc) =

pX
i=1

@hZc(xc)

@�i
uTi rxX(xc)ui =

pX
i=1

'i(Zc)u
T
i rxX(xc)ui;

where ui 2 Rp; i = 1; :::; p are orthonormal eigenvectors of X(xc) and Zc corresponding
to �i(X(xc)) and 'i(Zc); i = 1; :::; p respectively. De�ne U = (u1; :::; up) 2 Rp�p. Since
UTU = UUT = I, we have

pX
i=1

'i(Zc)u
T
i rxX(xc)ui =

pX
i=1

uTi rxX(xc)Zcui =


UTrxX(xc); ZcU

�
= rx hX(xc); Zci :

This completes the proof. 2

Next we consider the eigenvalues �i(X(x)); 'i(Z) ; i = 1; :::; p when (x; Z) is close to
the solution set (x�;�(x�)). Assuming at least �i(X(x)) or 'i(Z) is nonnegative for each
i = 1; :::; p, we construct vectors v 2 Rp and �' 2 Rp, that satisfy

(�(X(x)) + v)T �' = 0; �(X(x)) + v � 0; �' � 0; (33)

where kvk and k �'� '(Z)k are small. To this end, for each i = 1; :::; p, we consider two
cases:
(i) If min(�i(X(x)); 'i(Z)) = 'i(Z), we let

�i(X(x)) + vi = �i(X(x)); vi = 0;
�'i = �min(�i(X(x)); 'i(Z)) + 'i(Z) = 0;

(34)

(ii) Otherwise, min(�i(X(x)); 'i(Z)) = �i(X(x)) holds, and we let

�i(X(x)) + vi = 0; vi = �min(�i(X(x)); 'i(Z));
�'i = 'i(Z):

(35)

Thus we have (33), and con�rm that

�(X(x)) + v 2 N 0( �'); (36)

jvij+ j �'i � 'i(Z)j = jmin(�i(X(x)); 'i(Z))j ; i = 1; :::; p: (37)

Remark. In the following proofs of lemmas and theorems, we de�ne neighborhoods N
and N 0 of (x�;�(x�)) in a usual sense. We say N is small when dist((x; Z); (x�;�(x�)))
is small for all (x; Z) 2 Nn(x�;�(x�)), and similarly for N 0. 2
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Remark. We will estimate the quantity kmin(�(X(x)); '(Z))k when XZ = �I is sat-
is�ed. The fact �i(X(x))'i(Z) = � implies min(�i(X(x)); 'i(Z)) � �1=2 in general, but
if all the solutions are known to satisfy the strict complementarity condition, we have
min(�i(X(x)); 'i(Z)) � ��. Thus we will use the following relation

kmin(�(X(x)); '(Z))k � ���=2; (38)

where � = 1 is always valid, and � = 2 can be valid if all the solutions in (x�;�(x�)) are
known to be strictly complementary. 2

Lemma 3 Assume that X(x) is analytic, and that the second order su�cient condition
and the MFCQ condition hold at x�. Then there exist a neighborhood N 0 of (x�;�(x�)),
and constants 
 > 0 and �� > 0 with the property that for each (x; Z) 2 N 0 and � 2 (0; ��]
such that

X(x)Z = �I; X(x) � 0; Z � 0; (39)

holds, and

X(x�) +
nX
i=1

(xi � x�i )Ai(x�) � " kx� x�k I (40)

holds, where " > 0 is a given constant, we have

dist(x; x�) � 

�
krxL(x; Z)k+ ��=2

�
: (41)

Proof. Let d 2 Rn be

d =
x� x�
kx� x�k ;

and write x as
x = x� + �td; �t = kx� x�k

and denote f(x� + td) by f(t), and X(x� + td) by X(t) for t 2 R. Because X(t) de-
pends on one parameter t, it is known that there exist appropriately ordered eigenvalues
�i(X(t)); i = 1; :::; p and corresponding orthonormal eigenvectors ui(t) 2 Rp; i = 1; :::; p of
X(t) which are analytic ([13],[9],[8]). We understand that �i(X(t)); i = 1; :::; p are ordered
so that �i(X(�t)) = �i(X(�t)); i = 1; :::; p.
Since x� is a KKT point of problem (1) that satis�es the second order su�cient con-

dition, t = 0 is an isolated local minimum of the following one-dimensional optimization
problem:

minimize f(t); t 2 R;
subject to �i(X(t)) � 0; i = 1; :::; p:

(42)

De�ne vL by

vL = f
0(�t)�

pX
i=1

�0i(X(�t)) �'i; (43)

where �'i; i = 1; :::; p are de�ned in (34) and (35), f
0(�t) denotes the derivative of f(t) with

respect to t at t = �t, and similarly for �0i(X(�t)); i = 1; :::; p. From (36), (�t; �') satisfy the
KKT conditions of the problem:

minimize f(t)� tvL; t 2 R;
subject to �i(X(t)) + vi � 0; i = 1; :::; p;

(44)
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where vi; i = 1; :::p are de�ned in (34) and (35), because the KKT conditions of (44) at
t = �t is

f 0(�t)�
Pp

i=1 �
0
i(X(�t)) �'i = vL;

�(X(�t)) + v 2 N 0( �'):
(45)

If �i(X(�t)) is distinct from all other eigenvalues for some i, �i(X(t)) = �i(X(t)) in a
su�ciently small neighborhood of �t. We have �i(X(t)) = �j(X(t)); i 6= j in this neigh-
borhood only when �i(X(�t)) = �j(X(�t)), which implies 'i(Z) = 'j(Z). Therefore we
have

pX
i=1

�i(X(t))'i(Z) =

pX
i=1

�i(X(t))'i(Z);

in a su�ciently small neighborhood of �t. Thus Lemma 2 yields

pX
i=1

�0i(X(�t))'i(Z) = hX 0(�t); Zi :

Then we have

pX
i=1

�0i(X(�t)) �'i = hX 0(�t); Zi+
pX
i=1

( �'i � 'i(Z))�0i(X(�t)): (46)

From (43) and (46), we have

jvLj =
�����f 0(�t)� hX 0(�t); Zi �

pX
i=1

( �'i � 'i(Z))�0i(X(�t))
�����

�


dT (rf(x)�A�(x)Z)

+ � k �'� '(Z)k

� krf(x)�A�(x)Zk+ � k �'� '(Z)k :

Now from (37) and Theorem 1, we obtain

jvLj+ kvk � krf(x)�A�(x)Zk+ kvk+ � k �'� '(Z)k
� krf(x)�A�(x)Zk+ � kmin(�(X(x)); '(Z))k (47)

� �dist((x; Z); (x�;�(x�))); (48)

and con�rm that jvLj+ kvk is small when N 0 is small.
Next we prove that the KKT conditions of problem (42) is satis�ed at t = 0, and �' is

close to the corresponding dual solution set. We �rst consider the case when there exists
nonzero ~Z 2 �(x�). From assumption (40), we have

X(0) + �tX 0(0) � "�tI: (49)

Since the complementarity condition X(0) ~Z = X(x�) ~Z = 0 holds, we have

f 0(0) =
D
X 0(0); ~Z

E
= �t�1

D
(X(0) + �tX 0(0)); ~Z

E
: (50)
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Let ~Z = Q~�QT , where an orthogonal matrix Q = (q1; :::; qp) 2 Rp�p diagonalizes ~Z to
~� = diag( ~'1; :::; ~'p) � 0. Then we haveD

(X(0) + �tX 0(0)); ~Z
E
=

D
(X(0) + �tX 0(0)); Q~�QT

E
=
D
QT (X(0) + �tX 0(0))Q; ~�

E
=

pX
i=1

qTi (X(0) + �tX
0(0))qi ~'i � "�t

pX
i=1

~'i;

from (49) and ~� 6= 0. Thus from (50), we obtain

f 0(0) � "
pX
i=1

~'i: (51)

Next we note
�0i(X(t)) = u

T
i (t)X

0(t)ui(t); i = 1; :::; p;

which can be proved by using the relations

�i(X(t)) = u
T
i (t)X(t)ui(t); (u

T
i (t)ui(t))

0 = 0; i = 1; :::; p:

Then, from (49), we have

�i(X(0)) + �t�
0
i(X(0)) � "�t; i = 1; :::; p: (52)

This inequality yields
�0i(X(0)) � "; (53)

for i 2 IN = fi j�i(X(0)) = 0; i = 1; :::; pg. From (51) and (53), it is apparent that there
exists � 2 Rp such that

f 0(0)�
pX
i=1

�0i(X(0))�i = 0; (54)

�i(X(0))�i = 0; �i(X(0)) � 0; �i � 0; i = 1; :::; p: (55)

Let �1 be the set of dual variables that satisfy the above KKT conditions for problem
(42). The MFCQ condition holds at t = 0 from (52). Also there exists � 2 �1 such that
�i > 0 for all i 2 IN , and therefore the strict complementarity condition is satis�ed.
In order to estimate the distance between �' and �1, we can apply the result of Ho�man

[5] which states the global error bound for the distance to the boundary of the polyhedron
de�ned by a linear system of inequalities, or Theorem 2 of this paper. Here we follow
Ho�man's result. Thus the distance from �' to �1 is estimated by

dist( �';�1) � �
 �����f 0(0)�

pX
i=1

�0i(X(0)) �'i

�����+
�����
pX
i=1

�i(X(0)) �'i

�����
!
:

We note that the constant � is uniformly bounded when x varies near x� because the coef-
�cients f 0(0) and �0i(X(0)); i = 1; :::; p are uniformly bounded, and f

0(0) and �0i(X(0)); i 2
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IN 6= ; are bounded away from zero. Noting that jf 0(�t)� f 0(0)j � ��t and j�0i(�t)� �0i(0)j �
��t; i = 1; :::; p, we obtain

dist( �';�1) � �

 �����f 0(�t)�
pX
i=1

�0i(X(�t)) �'i

�����+
�����
pX
i=1

�i(X(�t)) �'i

�����+ �t
!

= �
�
jvLj+

��vT �'��+ �t�
� �dist((x; Z); (x�;�(x�)));

where the last inequality is derived from (48). We conclude that �' is close to �1 when
there exists 0 6= ~Z 2 �(x�) and N 0 is small.
The fact f 0(0) > 0 implies 0 =2 �1. The second order su�cient condition is trivially

holds for every element of �1 because the condition �
0
i(X(0))h = 0, for i such that �i > 0

gives h = 0, and thus we have h(f 00(0)�
Pp

i=1 �
00
i (X(0))�i)h � �h2; � > 0.

If �(x�) = f0g, then rf(x�) = 0, and f 0(0) = 0. This implies 0 2 �1. If Z is close to
�(x�) = f0g, then ' and �' is close to 0 2 �1. Because the quadratic growth condition
holds, we have f 00(0) > 0, and thus the second order su�cient condition holds for 0 2 �1.
Now it is possible to apply Lemma 2 of Hager and Gowda [4], because the KKT

conditions (54) and (55) are satis�ed at t = 0, the second order su�cient condition holds
at t = 0 as above, (�t; �') is close to (0;�1) as above, and perturbed KKT condition (45)
holds with small perturbations vL and v. Then from Lemma 2 of Hager and Gowda [4],
(47) and (38), we obtain

dist(x; x�) = �t � dist((�t; �'); (0;�1)) � �(jvLj+ kvk)
� �(krf(x)�A�(x)Zk+ ��=2)

This completes the proof. 2

We note that the above lemma implies that the set of x which satis�es the condition:

X(x�) +
nX
i=1

(xi � x�i )Ai(x�) � "

�
krxL(x; Z)k+ ��=2

�
I

is contained in the set of x which satis�es (40), i.e., in the region where (57) holds. Thus
we obtain the following variation of the previous lemma.

Lemma 4 Assume that X(x) is analytic, and that the second order su�cient condition
and the MFCQ condition hold at x�. Then there exist a neighborhood N 0 of (x�;�(x�)),
and constants 
 > 0 and �� > 0 with the property that for each (x; Z) 2 N 0 and � 2 (0; ��]
such that

X(x)Z = �I; X(x) � 0; Z � 0;
holds, and

X(x�) +

nX
i=1

(xi � x�i )Ai(x�) � "

�
krxL(x; Z)k+ ��=2

�
I (56)

holds, where " > 0 is a given constant, we have

dist(x; x�) � 

�
krxL(x; Z)k+ ��=2

�
: (57)
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2

In the following, we will describe theorems using the condition on the quantity X(x�)+Pn
i=1(xi� x�i )Ai(x�) as in Lemma 4 instead of using the condition as in Lemma 3 for the

sake of brevity.
Lemmas 3 and 4 assume that X(x) and Z satisfy the condition X(x)Z = �I. We

next consider how to relax this condition. In order to obtain the primal error bound, the
dual variable Z can be considered as an auxiliary one. For a given x which is close to x�,
we de�ne Z by Z = �X(x)�1. If �X(x)�1 is close to the dual solution set �(x�), we can
obtain the primal error bound from Lemma 3 or 4. We will show two ways of relaxing
the condition in the following.

Theorem 3 Assume that X(x) is analytic, and that the second order su�cient condition,
the MFCQ condition and the strict complementarity condition hold at x�. Then there exist
a neighborhood Nx of x

�, and constants 
 > 0 and �� > 0 with the property that for each
x 2 Nx, and for each � 2 (0; ��] such that

rf(x)� �A�(x)X(x)�1

 �Mc�

1=2; (58)

where Mc > 0 is a given constant, and

X(x�) +
nX
i=1

(xi � x�i )Ai(x�) � "��=2
I;

holds, where " > 0 is a given constant, we have

dist(x; x�) � 
��=2: (59)

Proof. De�ne Z = �X(x)�1. If the right hand side of inequality (21) in Theorem
2 is small enough, then �X(x)�1 is close to �(x�). Since krxL(x; Z)k � Mc�

1=2 and
kX(x)Zk = p1=2�, we have

dist(�X(x)�1;�(x�)) � �(�1=2 + �+ dist(x; x�));

from Theorem 2. For small enough �� > 0, Z is close to �(x�), and from Lemma 4, we
obtain (59). 2

We note that the inequality in (58) can be written as

krFB(x)k �Mc�
1=2;

where the barrier function FB(x) is de�ned by

FB(x) = f(x)� �
pX
i=1

log(detX(x)):

The next theorem shows that it is possible to have a similar error bound by directly
relaxing the shifted complementarity condition.
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Theorem 4 Assume that X(x) is analytic, and that the second order su�cient condition
and the MFCQ condition hold at x�. Then there exist a neighborhood N of (x�;�(x�)),
and constants 
 > 0 and �� > 0 with the property that for each (x; Z) 2 N , and for each
� 2 (0; ��] such that

kX(x)Z � �Ik �Mc�
1+� ; � �M��min(X(x)) (60)

where Mc > 0;M� > 0 and � > 0 are given constants, and �min(X(x)) is the minimum
eigenvalue of X(x), and

X(x�) +

nX
i=1

(xi � x�i )Ai(x�) � "

�
krxL(x; Z)k+ ��=2 +Mc�

�
�
I

holds, where " > 0 is a given constant, we have

dist(x; x�) � 

�
krxL(x; Z)k+ ��=2 +Mc�

�
�
:

Proof. We have

rf(x)� �A�(x)X(x)�1

 � krf(x)�A�(x)Zk+


A�(x)(Z � �X(x)�1)



� krf(x)�A�(x)Zk+ �


Z � �X(x)�1

 :

The distance between Z and �X(x)�1 is estimated as

Z � �X(x)�1

 � ��1


�X(x)�1

 kX(�)Z � �Ik

� Mc�
�


�X(x)�1



� p1=2Mc�
���min(X(x))

�1

� p1=2McM��
� : (61)

If we choose su�ciently small N , then from (61), we have (x; �X(x)�1) 2 N 0 where N 0

is de�ned in Lemma 4. Therefore from Lemma 4, (57) and (61), we obtain

dist(x; x�) � �(


rf(x)� �A�(x)X(x)�1

+ ��=2)

� �(krf(x)�A�(x)Zk+ ��=2 +


Z � �X(x)�1

)

� �(krf(x)�A�(x)Zk+ ��=2 +Mc�
� ):

The theorem is proved. 2

If X(x) is a concave function, the inequality

X(x�) +

nX
i=1

(xi � x�i )Ai(x�) � X(x)

holds, and assumption (56) can be expressed di�erently. Thus we have the following
corollaries of the preceding theorems.
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Corollary 1 Assume that X(x) is concave and analytic, and that the second order suf-
�cient condition, the MFCQ condition and the strict complementarity condition hold at
x�. Then there exist a neighborhood Nx of x

�, and constants 
 > 0 and �� > 0 with the
property that for each x 2 Nx, and for each � 2 (0; ��] such that

rf(x)� �A�(x)X(x)�1

 � Mc�

1=2;

�min(X(x)) � "
��=2;

holds, where Mc > 0 and " > 0 are given constants, and �min(X(x)) is the minimum
eigenvalue of X(x), we have

dist(x; x�) � 
��=2:

Corollary 2 Assume that X(x) is concave and analytic, and that the second order su�-
cient condition and the MFCQ condition hold at x�. Then there exist a neighborhood N
of (x�;�(x�)), and constants 
 > 0 and �� > 0 with the property that for each (x; Z) 2 N ,
and for each � 2 (0; ��] such that

kX(x)Z � �Ik � Mc�
1+� ;

�min(X(x)) � "

�
krxL(x; Z)k+ ��=2 +Mc�

�
�
;

holds, whereMc > 0; � > 0 and " > 0 are given constants, and �min(X(x)) is the minimum
eigenvalue of X(x), we have

dist(x; x�) � 

�
krxL(x; Z)k+ ��=2 +Mc�

�
�
:

In the last Corollary, the condition � � M��min(X(x)) in (60) is removed since
�min(X(x)) � "


�
krxL(x; Z)k+ ��=2 +Mc�

�
�
� "
��=2 is a stronger or equal condi-

tion.

5 Local error bounds for primal and dual variables

In this section, we summarize error bounds obtained in this paper by gathering the es-
timates from preceding sections. We �rst gather the results from Theorems 1, 2 and
3.

Theorem 5 Assume that X(x) is analytic, and that the second order su�cient condition,
the MFCQ condition and the strict complementarity condition hold at x�. Then there exist
a neighborhood N of (x�;�(x�)), and constants 
 > 0 and �� > 0 with the property that
for each (x; Z) 2 N , and for each � 2 (0; ��] such that

rf(x)� �A�(x)X(x)�1

 �Mc�

1=2; X(x) � 0;

holds, where Mc > 0 is a given constant, and

X(x�) +
nX
i=1

(xi � x�i )Ai(x�) � "
��=2I (62)
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holds, where " > 0 is a given constant, we have


�1 (krxL(x; Z)k+ kX(x)Zk) � dist((x; Z); (x�; Ẑ))

� 

�
krxL(x; Z)k+ kX(x)Zk+ jminf0; 'min(Z)gj+ ��=2

�
;

where 'min(Z) is the smallest eigenvalue of Z.

The next theorem is from the results of Theorems 1, 2 and 4. In this theorem we use
the fact

��1� � kX(x)Zk � ��
which can be obtained from the assumption kX(x)Z � �Ik �Mc�

1+� below.

Theorem 6 Assume that X(x) is analytic, and that the second order su�cient condition,
the MFCQ condition and the strict complementarity condition hold at x�. Then there exist
a neighborhood N of (x�;�(x�)), and constants 
 > 0 and �� > 0 with the property that
for each (x; Z) 2 N , and for each � 2 (0; ��] such that

kX(x)Z � �Ik �Mc�
1+� ; � �M��min(X(x));

holds, where Mc > 0;M� > 0 and � > 0 are given constants, and

X(x�) +
nX
i=1

(xi � x�i )Ai(x�) � "

�
krxL(x; Z)k+ ��=2 +Mc�

�
�
I (63)

holds, where " > 0 is a given constant, we have


�1 (krxL(x; Z)k+ �) � dist((x; Z); (x�; Ẑ))

� 

�
krxL(x; Z)k+ jminf0; 'min(Z)gj+ ��=2 +Mc�

�
�
;

where 'min(Z) is the smallest eigenvalue of Z.

As mentioned in the previous section, conditions on the quantity X(x�) +
Pn

i=1(xi �
x�i )Ai(x

�) can be represented di�erently when X(x) is a concave function.
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