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Abstract

In this paper, we are concerned with a primal-dual interior point method for solv-

ing nonlinearly constrained optimization problems, in which Newton-like methods

are applied to the shifted barrier KKT conditions. We propose a new primal-dual

merit function, which is called the primal-dual l2 barrier penalty function, within

the framework of line search methods, and show the global convergence property of

our method. Furthermore, by carefully controlling parameters in the algorithm, its

superlinear convergence property is shown.

1 Introduction

In this paper, we consider the following constrained optimization problem:

minimize f(x); x 2 Rn;

subject to g(x) = 0; xi � 0; i 2 IP ;
(1)

where we assume that the functions f : Rn ! R1 and g : Rn ! Rm are twice continuously

di�erentiable, and IP is a subset of the index set f1; 2; :::; ng. Let n0 = jIP j > 0 and E be

a n0 � n matrix whose rows consist of eti; i 2 IP , where ei 2 Rn denotes the i-th column

vector of the identity matrix. Then problem (1) is written as:

minimize f(x); x 2 Rn;

subject to g(x) = 0; Ex � 0:
(2)

In the sequel, we use the notation

x0 � Ex 2 Rn0
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for simplicity.

Let the Lagrangian function of the above problem be de�ned by

L(w) = f(x)� ytg(x)� ztEx = f(x)� ytg(x)� ztx0;(3)

where w = (x; y; z)t, and y 2 Rm and z 2 Rn0

are the Lagrange multiplier vectors which

correspond to the equality and inequality constraints respectively. Then Karush-Kuhn-

Tucker (KKT) conditions for optimality of the above problem are given by

r0(w) �

0
B@ rxL(w)

g(x)

X 0Ze

1
CA =

0
B@ 0

0

0

1
CA(4)

and

x0 � 0; z � 0;(5)

where

rxL(w) = rf(x)� A(x)ty � Etz;

A(x) =

0
BB@
rg1(x)

t

...

rgm(x)
t

1
CCA ;

X 0 = diag (x01; � � � ; x
0

n0) ;

Z = diag (z1; � � � ; zn0) ;

e = (1; � � � ; 1)t 2 Rn0

:

To solve the above problem by a primal-dual interior point method, Yamashita [15]

introduces the barrier penalty function F (�; �) : S ! R1 which is de�ned by

F (x; �) = f(x)� �
n0X
i=1

log x0i + �
mX
i=1

jgi(x)j ;(6)

where � and � are given positive constants, and S = fx 2 Rn jx0 > 0g . If � is su�-

ciently large, the necessary condition for the optimality of the barrier penalty function

minimization problem for a given � > 0 is

r(w; �) �

0
B@ rxL(w)

g(x)

X 0Ze� �e

1
CA =

0
B@ 0

0

0

1
CA ;(7)

and x0 > 0; z > 0. The above conditions are called the barrier KKT conditions. The

search direction of the proposed method is based on the Newton step for solving the

equality part of the barrier KKT conditions. Let �w = (�x;�y;�z)t be de�ned by a

solution of

J(w)�w = �r(w; �)(8)
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and

J(w) =

0
B@ G �A(x)t �Et

A(x) 0 0

ZE 0 X 0

1
CA ;(9)

where we use the relation X 0Ze = X 0z = ZEx. The matrix G is r2
xL(w) or a quasi-

Newton approximation to the Hessian matrix.

Let �Fl(x; �; s) be a �rst order approximation to the quantity F (x+ s; �)� F (x; �),

i.e.,

�Fl(x; �; s) � rf(x)ts� �et(X 0)�1Es+ �
mX
i=1

���gi(x) +rgi(x)ts���� �
mX
i=1

jgi(x)j :(10)

Then it is possible to prove that

�Fl(x; �; �x) � ��xt(G+Et(X 0)�1ZE)�x�
mX
i=1

(�� jyi +�yij)jgi(x)j :

The above inequality shows that the direction �x which is derived from (8) can be a

descent direction of the barrier penalty function F (x; �) if G is positive de�nite and �

is su�ciently large. Based on this observation, the line search algorithm and the trust

region algorithm for the primal variable are proposed by Yamashita[15] and Yamashita et

al.[16, 18] respectively. For the variable z, the step size is controlled by a box constraint.

The step size for the variable y is usually taken equal to the one for z. Both algorithms

are shown to be quite e�cient. Some researchers have dealt with other primal merit

functions within the framework of line search strategies or trust region strategies (See for

example, Breit�eld and Shanno[4], Dennis, Heinkenschloss and Vicente[8], Byrd, Gilbert

and Nocedal[5], and Akrotirianakis and Rustem[1, 2]). Superlinear convergence properties

of primal-dual methods based on solving the barrier KKT conditions have been also

studied by several authors, for example, Martinez, Parada and Tapia[12], El-Bakry, Tapia,

Tsuchiya and Zhang[9], Yamashita and Yabe[17], Yabe and Yamashita[13], Yamashita,

Yabe and Tanabe[18], and Byrd, Liu and Nocedal[7].

In this paper, we consider a more conventional merit function:

F0(x; �) = f(x)� �
n0X
i=1

log x0i +
1

2�

mX
i=1

gi(x)
2;(11)

which is extensively described in a book by Fiacco and McCormick [10]. We also call this

function the barrier penalty function. To discriminate this function from (6), we may call

this the l2 barrier penalty function. Whereas the function de�ned in (6) may be called

the l1 barrier penalty function.

The necessary condition for the optimality of the problem

minimize F0(x; �); x 2 S

is

rF0(x; �) = rf(x)� �Et(X 0)�1e+
1

�

mX
i=1

gi(x)rgi(x) = 0(12)
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and x0 > 0. As in [15], we introduce the variables y and z by y = �g(x)=� and z =

�(X 0)�1e. Then the above conditions are written as

r(w; �) �

0
B@
rf(x)� A(x)ty � Etz

g(x) + �y

X 0Ze� �e

1
CA =

0
B@

0

0

0

1
CA(13)

and x0 > 0; z > 0. We call these conditions the shifted barrier KKT (SBKKT) conditions.

These conditions are also considered by Forsgren and Gill [11]. We do not consider the

interior conditions x0 > 0; z > 0 hereafter assuming these conditions are always satis�ed.

In what follows, the subscript k denotes an iteration count in the inner iteration or

in the outer iteration. Let k � k denote the l2 norm for vectors and the operator norm

induced from the l2 vector norm for matrices. Let Rn0

+ = fz 2 Rn0

j z > 0g.

2 Algorithm and its global convergence

2.1 Outer iteration

A prototype of the algorithm that uses the SBKKT conditions is described as follows.

Algorithm IP

Step 0. (Initialize) Set " > 0, Mc > 0 and k = 0. Let a positive sequence f�kg ; �k # 0
be given.

Step 1. (Termination) If kr0(wk)k � ", then stop.

Step 2. (Approximate SBKKT point) Find a point wk+1 that satis�es

kr(wk+1; �k)k �Mc�k:(14)

Step 3. (Update) Set k := k + 1 and go to Step 1. 2

We note that the barrier parameter sequence f�kg in Algorithm IP need not be deter-

mined beforehand. The value of each �k may be set adaptively as the iteration proceeds.

We call condition (14) the approximate SBKKT condition, and call a point that satis�es

this condition the approximate SBKKT point.

The following theorem shows the global convergence property of Algorithm IP.

Theorem 1 Let fwkg be an in�nite sequence generated by Algorithm IP. Suppose that

the sequences fxkg and fykg are bounded. Then fzkg is bounded, and any accumulation

point of fwkg satis�es KKT conditions (4) and (5).
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Proof. Assume that there exists an i such that (Etzk)i !1. Equation (14) yields

�����(rf(xk)� A(xk)
tyk)i

(Etzk)i
� 1

����� � Mc

�k�1

(Etzk)i
;

which is a contradiction because of the boundedness of fxkg and fykg. Thus the sequence
fzkg is bounded.

Let ŵ be any accumulation point of fwkg. Since the sequences fwkg and f�kg satisfy
(14) for each k and �k approaches zero, r0(ŵ) = 0 follows from the de�nition of r(w; �).

Therefore the proof is complete. 2

2.2 Solving the shifted barrier KKT conditions

In this subsection we consider a method for solving the SBKKT conditions approximately

for a given � > 0 (Step 2 of Algorithm IP). Therefore the index k denotes the inner

iteration count for a given � > 0 in this subsection. The Newton-like iteration for solving

(13) is de�ned by

Jk�wk = �r(wk; �);(15)

where the Jacobian matrix Jk is given by

Jk =

0
B@ Gk �A(xk)

t �Et

A(xk) �I 0

ZkE 0 X 0

k

1
CA ;(16)

and the matrixGk isr
2
xL(wk) or its approximation. The following lemma gives a su�cient

condition for equation (15) to be solvable.

Lemma 1 If Gk is positive de�nite, then the matrix Jk is nonsingular.

Proof. Consider the equation

Jk

0
B@ �x

�y

�z

1
CA = 0;

for (�x; �y; �z)t 2 Rn �Rm �Rn0

. Then we have

(Gk + Et(X 0

k)
�1ZkE +

1

�
A(xk)

tA(xk))�x = 0;

�y = ���1A(xk)�x;

�z = �(X 0

k)
�1ZkE�x:

By the assumption we obtain �x = 0, and therefore �y = 0 and �z = 0. This proves the

lemma. 2

We note that by eliminating �yk and �zk from the �rst set of equations (15):

Gk�xk �A(xk)
t�yk �Et�zk = �rxL(wk);(17)

5



using the second and third sets of the equations:

A(xk)�xk + ��yk = �g(xk)� �yk;(18)

ZkE�xk +X 0

k�zk = �e�X 0

kzk;(19)

we have

(Gk + Et(X 0

k)
�1ZkE +

1

�
A(xk)

tA(xk))�xk = �rF0(xk; �):(20)

Therefore it is easy to see that under appropriate assumptions the function F0(x; �) can

be used as a merit function as in [15]. Because F0(x; �) depends only on the primal

variables, we should use a method similar to the one which is given in [15] for controlling

the step sizes for dual variables. Instead of following this possibility, we consider a merit

function in the primal-dual space in this paper. Some primal-dual merit functions have

been proposed (See for example, Argaez and Tapia[3], and El-Bakry, Tapia, Tsuchiya and

Zhang[9] for solving the barrier KKT conditions (7), and Forsgren and Gill[11] for solving

the SBKKT conditions (13)).

To have a merit function which has a minimum point at the SBKKT point, and which

gives a descent direction with a Newton step, it is natural to consider

F0(x; �) +
�

2
kg(x) + �yk2 +

�

2
kX 0z � �ek

2
;

where � is a positive constant. We note that the second and third terms correspond to

the second and third components in r(w; �) respectively. However, this function does not

prevent each component of the variable z tend to 0, and therefore cannot give a globally

convergent algorithm unless an appropriate procedure is devised. Thus we need a sort of

the barrier term for the variable z. In this paper we propose the following function which

is called the primal-dual barrier penalty function:

F (w; �) = F0(x; �) + � log
f(x0)tzg�=n0 + kg(x) + �yk2 + kX 0z � �ek2 

n0Q
i=1

x0izi

!�=n0
;(21)

where � > 0 and � 2 (0; 2) are constants, which is a modi�cation of the primal-dual merit

function proposed by Yamashita[14]. The denominator in the second term is to prevent

zi tend to 0 for each i. For notational convenience we denote the expression in the last

term in (21) by ��(w), i.e.,

�(w) � log
f(x0)tzg�=n0 + kg(x) + �yk2 + kX 0z � �ek2 

n0Q
i=1

x0izi

!�=n0
(22)

= log
�
f(x0)tzg�=n0 + kg(x) + �yk2 + kX 0z � �ek

2
�
�

�

n0

n0X
i=1

log x0izi:

For later convenience we quote two well known relations

(x0)tz

n0
�

0
@ n0Y
i=1

x0izi

1
A
1=n0

;(23)
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n0X
i=1

1

n0x0izi
�

1 
n0Q
i=1

x0izi

!1=n0
:(24)

In the above inequalities, the equalities hold if and only if x01z1 = � � � = x0n0zn0 .

From (23), it is easy to prove the following lemma.

Lemma 2 There hold:

(i) �(w) � 0:

(ii) �(w) = 0 if and only if g(x) + �y = 0 and X 0z � �e = 0. 2

Now we calculate the derivatives of the merit function:

rF (w; �) =

0
B@ rF0(x; �) + �rx�(w)

�ry�(w)

�rz�(w)

1
CA ;(25)

where

rx�(w) =
�f(x0)tzg��1Etz=n0 + 2A(x)t(g(x) + �y) + 2EtZ(X 0z � �e)

f(x0)tzg�=n0 + kg(x) + �yk2 + kX 0z � �ek2
�
�Et(X 0)�1e

n0
;

ry�(w) =
2�(g(x) + �y)

f(x0)tzg�=n0 + kg(x) + �yk2 + kX 0z � �ek2
;

rz�(w) =
�f(x0)tzg��1x0=n0 + 2X 0(X 0z � �e)

f(x0)tzg�=n0 + kg(x) + �yk2 + kX 0z � �ek2
�
�Z�1e

n0
:

Lemma 3 There hold the following relations:

r(w; �) = 0 () rF0(x; �) = 0; g(x) + �y = 0; X 0z � �e = 0(26)

() rF (w; �) = 0:

Proof. The �rst equivalence is obvious from (12).

The second relation comes from (25). IfrF0(x; �) = 0; g(x)+�y = 0 andX 0z��e = 0,

then we have rF (w; �) = 0. Conversely assume that rF (w; �) = 0. Then it follows from

the relations ry�(w) = 0 and rz�(w) = 0 that

g(x) + �y = 0

and
�f(x0)tzg��1x0=n0 + 2X 0(X 0z � �e)

f(x0)tzg�=n0 + kX 0z � �ek2
�
�Z�1e

n0
= 0:(27)

Equation (27) yields

�f(x0)tzg��1z=n0 + 2Z(X 0z � �e)

f(x0)tzg�=n0 + kX 0z � �ek2
�
�(X 0)�1e

n0
= 0;
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which implies rx�(w) = 0 and we have

rF0(x; �) = rxF (w; �) = 0:

Equation (27) also yields

2(X 0z � �e) =
�

n0

 
f(x0)tzg�

n0
+ kX 0z � �ek2

!
(X 0Z)�1e�

�f(x0)tzg��1

n0
e:

Multiplying (X 0z � �e)t to both sides of the above equality, we have

2kX 0z � �ek2 = �

 
f(x0)tzg�

n0
+ kX 0z � �ek2

!
�
�f(x0)tzg�

n0

�
��

n0

 
f(x0)tzg�

n0
+ kX 0z � �ek2

!
et(X 0Z)�1e+ ��f(x0)tzg��1

= �kX 0z � �ek2 + ��f(x0)tzg��1 �
��

n0

 
f(x0)tzg�

n0
+ kX 0z � �ek2

!
et(X 0Z)�1e:

Thus there holds

(2� �)kX 0z � �ek2 = ��f(x0)tzg��1 �
��

n0

 
f(x0)tzg�

n0
+ kX 0z � �ek2

!
et(X 0Z)�1e:

By (23) and (24), we have

�
2� � +

��

n0
et(X 0Z)�1e

�
kX 0z � �ek2 = ��f(x0)tzg��1 � ��

f(x0)tzg�

n0
et(X 0Z)�1e

n0

� ��f(x0)tzg��1 � ��f(x0)tzg��1

�Qn0

i=1 x
0

izi
�1=n0

�Qn0

i=1 x
0

izi
�1=n0

= 0;

which implies X 0z � �e = 0.

Therefore the proof is complete. 2

In the following, we set �x0 = E�x. To derive an upper bound on the directional

derivative of F , we �rst calculate the one for �.

(28)

r�(w)t�w

=
�f(x0)tzg��1 (zt�x0 + (x0)t�z) =n0 + 2(A(x)�x+ ��y)t(g(x) + �y) + 2 (Z�x0 +X 0�z)

t
(X 0z � �

f(x0)tzg�=n0 + kg(x) + �yk2 + kX 0z � �ek2

�
�

n0

n0X
i=1

zi�x
0

i + x0i�zi

x0izi
:
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Lemma 4 If �wk solves (15), then we have

r�(wk)
t�wk � �(2� �)

kg(xk) + �ykk
2
+ kX 0

kzk � �ek2

f(x0k)
tzkg�=n0 + kg(xk) + �ykk

2
+ kX 0

kzk � �ek2
:(29)

Proof. From (28), we have

r�(wk)
t�wk =

�f(x0)tzg��1(�� (x0k)
tzk=n

0)� 2 kg(xk) + �ykk
2 � 2 kX 0

kzk � �ek2

f(x0)tzg�=n0 + kg(xk) + �ykk
2
+ kX 0

kzk � �ek2

��
n0X
i=1

�� (x0k)i(zk)i

n0(x0k)i(zk)i

=
��f(x0)tzg��1 � (2� �) kg(xk) + �ykk

2 � (2� �) kX 0

kzk � �ek2

f(x0)tzg1+�=n0 + kg(xk) + �ykk
2
+ kX 0

kzk � �ek2

�
n0X
i=1

��

n0(x0k)i(zk)i
:

From relations (23) and (24), we obtain

��f(x0)tzg��1 � (2� �) kg(xk) + �ykk
2 � (2� �) kX 0

kzk � �ek2

f(x0)tzg�=n0 + kg(xk) + �ykk
2
+ kX 0

kzk � �ek2
�

n0X
i=1

��

n0(x0k)i(zk)i

�
n0��

(x0k)
tzk

�
�� 

n0Q
i=1

(x0k)i(zk)i

!1=n0
� (2� �)

kg(xk) + �ykk
2
+ kX 0

kzk � �ek2

(x0k)
tzk=n0 + kg(xk) + �ykk

2
+ kX 0

kzk � �ek2

� �(2� �)
kg(xk) + �ykk

2
+ kX 0

kzk � �ek2

(x0k)
tzk=n0 + kg(xk) + �ykk

2
+ kX 0

kzk � �ek2
:

This proves the lemma. 2

Lemma 5 If �wk solves (15), then we have

rF (wk; �)
t�wk � ��xtk(Gk + Et(X 0

k)
�1ZkE +

1

�
A(xk)

tA(xk))�xk

��(2� �)
kg(xk) + �ykk

2
+ kX 0

kzk � �ek2

(x0k)
tzk=n0 + kg(xk) + �ykk

2
+ kX 0

kzk � �ek2
:

Proof. From (20) and (25), we obtain

rF (wk; �)
t�wk = ��xtk(Gk + Et(X 0

k)
�1ZkE +

1

�
A(xk)

tA(xk))�xk

+�r�(wk)
t�wk

which proves the lemma from (29). 2
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Lemma 6 Assume that �wk solves (15). If �xk = 0; g(xk)+�yk = 0 and X 0

kzk��e = 0,

then wk is an SBKKT point.

Proof. �xk = 0 means rF0(xk; �) = 0 from (20). Thus from (26), r(wk; �) = 0 follows.

2

We note that this lemma shows that if Gk is positive de�nite and wk is not an SBKKT

point, then the direction �wk is a descent direction for the primal-dual barrier penalty

function from Lemma 5.

2.3 Line search algorithm

To obtain a globally convergent algorithm to an SBKKT point for a �xed � > 0, it is

necessary to modify the basic Newton iteration with the unit step size somehow. Our

iterations consist of

wk+1 = wk + �k�wk;

where �k is a step size determined by the line search procedure described below.

The main iteration is to decrease the value of the primal-dual barrier penalty function

F (w; �) for �xed �. Thus the step size is determined by the su�cient decrease rule of

the merit function. We adopt Armijo's rule. At the point wk, we calculate the maximum

allowed step to the boundary of the feasible region by

�kmax = min

(
min
i

(
�

(x0k)i

(�x0k)i

����� (�x0k)i < 0

)
;min

i

(
�

(zk)i

(�zk)i

����� (�zk)i < 0

))
:

A step to the next iterate is given by

�k = ��k�
lk ; ��k = min f
�kmax; 1g ;

where 
 2 (0; 1) and � 2 (0; 1) are �xed constants and lk is the smallest nonnegative

integer such that

F (wk + ��k�
lk�wk; �)� F (wk; �) � "0��k�

lkrF (wk; �)
t�wk;

where "0 2 (0; 1).

Now we give the line search algorithm, which is called Algorithm LS. This algorithm

can be regarded as the inner iteration of Algorithm IP (see Step 2 of Algorithm IP).

Algorithm LS

Step 0. (Initialize) Let w0 2 S � Rm � Rn0

+ , and � > 0, � > 0. Set "0 > 0, 
 2 (0; 1),

� 2 (0; 1), "0 2 (0; 1). Let k = 0.

Step 1. (Termination) If kr(wk; �)k � "0; then stop.

Step 2. (Compute direction) Calculate the direction �wk by (15).
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Step 3. (Step size) Calculate

(30)

�kmax = min

(
min
i

(
�

(x0k)i

(�x0k)i

����� (�x0k)i < 0

)
;min

i

(
�

(zk)i

(�zk)i

����� (�zk)i < 0

))
;

��k = min f
�kmax; 1g :(31)

Find the smallest nonnegative integer lk that satis�es

F (wk + ��k�
lk�wk; �)� F (wk; �) � "0��k�

lkrF (wk; �)
t�wk:(32)

Calculate

�k = ��k�
lk :

Step 4. (Update variables) Set

wk+1 = wk + �k�wk:

Step 5. Set k := k + 1 and go to Step 1. 2

To prove global convergence of Algorithm LS, we need the following assumptions.

Assumption G

(G1) The functions f and gi; i = 1; :::;m, are twice continuously di�erentiable.

(G2) The level set of the primal-dual barrier penalty function F (w; �) at an initial point

w0 2 S �Rm�Rn0

+ , which is de�ned by
n
w 2 S �Rm�Rn0

+ j F (w; �) � F (w0; �)
o
,

is compact for given � > 0.

(G3) The matrix Gk is uniformly positive de�nite and uniformly bounded. 2

We note that if a quasi-Newton approximation is used for computing the matrix Gk,

then we need the continuity of only the �rst order derivatives of functions in Assumption

(G1). We also note that for the case of n0 = n, Assumption (G3) can be replaced by the

following weaker condition:

(G3)0 The matrix Gk is positive semi-de�nite and uniformly bounded.

The following theorem gives a convergence of an in�nite sequence generated by Algo-

rithm LS.

Theorem 2 Let an in�nite sequence fwkg be generated by Algorithm LS. Then there

exists at least one accumulation point of fwkg, and any accumulation point of the sequence

fwkg is an SBKKT point.

11



Proof. Since the sequence fF (wk; �)g is decreasing, each component of the sequence fx
0

kg
is bounded away from zero and bounded above by the existence of the log barrier term

and the assumption. The sequence fzkg also has these properties. Thus there exists a

positive number M such that

kvk2

M
� vt(Gk + Et(X 0

k)
�1ZkE)v �M kvk2 ; 8v 2 Rn;(33)

by the assumption. From Lemma 5 and (33), we have

rF (wk; �)
t�wk � �

k�xkk
2

M
+ �r�(wk)

t�wk < 0;(34)

and from (32),

F (wk+1; �)� F (wk; �) � "0��k�
lkrF (wk; �)

t�wk(35)

� �"0��k�
lk

 
k�xkk

2

M
� �r�(wk)

t�wk

!

< 0:(36)

Because the sequence fF (wk; �)g is decreasing and bounded below, the left hand side of

(35) converges to 0. From (33) and (20), k�xkk is uniformly bounded above. Then from

(18) and (19) for �yk and �zk, we conclude that k�wkk is uniformly bounded above.

Since lim infk!1(x
0

k)i > 0; lim infk!1(zk)i > 0; i = 1; � � � ; p, we have lim infk!1 ��k > 0.

Suppose that there exists a subsequence K � f0; 1; � � �g and a � such that

lim inf
k!1

���rF (wk; �)
t�wk

��� � � > 0; k 2 K:(37)

Then we have lk ! 1; k 2 K from (35) because the left most expression tends to zero,

and therefore we can assume lk > 0 for su�ciently large k 2 K without loss of generality.

If lk > 0 then the point wk + �k�wk=� does not satisfy condition (32). Thus, we have

F (wk + �k�wk=�; �)� F (wk; �) > "0�krF (wk; �)
t�wk=�:(38)

By the mean value theorem, there exists a �k 2 (0; 1) such that

F (wk + �k�wk=�; �)� F (wk; �) = �krF (wk + �k�k�wk=�; �)
t�wk=�:(39)

Then, from (38) and (39), we have

"0rF (wk; �)
t�wk < rF (wk + �k�k�wk=�; �)

t�wk:

This inequality yields

rF (wk + �k�k�wk=�; �)
t�wk �rF (wk; �)

t�wk(40)

> ("0 � 1)rF (wk; �)
t�wk > 0:

Thus by the property lk ! 1, we have k�k�k�wk=�k ! 0; k 2 K, because k�wkk is

uniformly bounded above. Thus the left hand side of (40) and therefore rF (wk; �)
t�wk

12



converges to zero when k ! 1; k 2 K. This contradicts assumption (37). Therefore we

proved

lim
k!1

rF (wk; �)
t�wk = 0:(41)

This implies that

�xk ! 0; g(xk) + �yk ! 0; X 0

kzk � �e! 0;(42)

from (34). We should note that the existence of an accumulation point of the sequence

fwkg is assured by Assumption (G2). Let an arbitrary accumulation point of the sequence
fwkg be ŵ = (x̂; ŷ; ẑ)t 2 S �Rm �Rn0

+ . Then from (42), we have

ŷ = �
g(x̂)

�
; ẑ = �(X̂ 0)�1e;

where X̂ 0 = diag(x̂01; � � � ; x̂
0

n0). Because �xk ! 0 implies rF0(x̂; �) = 0 from (20), we

have r(ŵ; �) = 0 from (26). 2

3 Superlinear Convergence

In the previous section, we have proved the global convergence property of Algorithm IP.

In this section, we discuss under which condition Algorithm IP can possess the superlinear

convergence property. For this purpose, we �rst consider the following local algorithm,

which is called Algorithm IPlocal. By appropriately controlling the parameters �k and


k at each step near a KKT point, we can show that the unit Newton-like step from an

approximate SBKKT point yields a next approximate SBKKT point that corresponds to

the new updated barrier parameter, and that the sequence fwkg generated by Algorithm

IPlocal converges superlinearly to the KKT point.

Algorithm IPlocal

Step 0. (Initialize) Set w0 2 S �Rm �Rn0

+ , �0 > 0, 0 < 
0 < 1 and " > 0. Let k = 0.

Step 1. (Termination) If kr0(wk)k � "; then stop.

Step 2. (Update the parameters) Choose the parameters �k > 0 and 0 < 
k < 1.

Step 3. (Compute direction) Calculate the direction �wk by the linear system of equa-

tions

Jk�wk = �r(wk; �k);(43)

where the matrix Jk is given by

Jk =

0
B@

Gk �A(xk)
t �Et

A(xk) �kI 0

ZkE 0 X 0

k

1
CA :(44)

13



Step 4. (Step size) Set

�kmax = min

(
min
i

(
�

(x0k)i

(�x0k)i

����� (�x0k)i < 0

)
;min

i

(
�

(zk)i

(�zk)i

����� (�zk)i < 0

))
;

�k = min f
k�kmax; 1g :

Step 5. (Update variables) Set

wk+1 = wk + �k�wk:

Step 6. Set k := k + 1 and go to Step 1. 2

Denote the Jacobian matrix of r(w; �) by

rr(w; �) =

0
B@ r2

xL(w) �A(x)t �Et

A(x) �I 0

ZE 0 X 0

1
CA :

Let w� = (x�; y�; z�)t be a KKT point of (1). In the following, we assume that k is

su�ciently large and �k is su�ciently close to 0. In order to prove superlinear convergence,

we need Assumption L.

Assumption L

(L1) The sequence fwkg converges to w
�.

(L2) The second derivatives of the functions f and g are Lipschitz continuous at x�.

(L3) The linear independence of active constraint gradients, the second order su�cient

condition for optimality and the strict complementarity condition hold at w�.

(L4) �k and 
k are updated by the rules

�k = �kkr0(wk)k
1+�1 and 1� 
k = ��kkr0(wk)k

�2

for positive constants �1, �2 and � such that min(1; �2) > �1 and 0 < � < 1, and for

a positive number �k such that 1
M 0
� �k � M 0, where M 0 is a positive constant.

(L5) The matrix Gk satis�es at each k,

kGk �r
2
xL(w

�)k < �

for su�ciently small � > 0, and

k(Gk �r
2
xL(wk))�xkk = O(k�wkk

1+�3)

for some positive constant �3 such that �3 > �1. 2

14



First we should note that by (L3), the Jacobian matrix rr0(w
�) is nonsingular. Then

by (L2), (L4) and (L5), we have

kJk �rr0(w
�)k � krr0(wk)�rr0(w

�)k+ kGk �r
2
xL(w

�)k+ �k

� krr0(wk)�rr0(w
�)k+ � +M 0kr0(wk)k

1+�1 :

Since for su�ciently large k and su�ciently small �, there holds

krr0(w
�)�1kkJk �rr0(w

�)k < 1;

Jk is nonsingular and we have

kJ�1k k � �

for a positive constant � by Banach perturbation lemma. Thus the linear system of

equations (43) has a unique solution.

Now we give the following theorem, which is very important for proving the superlinear

convergence property of Algorithm IPlocal. This theorem shows that if wk satis�es the

approximate SBKKT condition for �k�1, then �k is set to be unit in Step 4 of Algorithm

IPlocal and wk +�wk also satis�es the approximate SBKKT condition for �k.

Theorem 3 Let Mc be a constant such that 0 < Mc <
p
n0.

(1) If a point ŵ = (x̂; ŷ; ẑ)t 2 S �Rm �Rn0

+ satis�es kr(ŵ; �k)k �Mc�k, then

�1kr0(wk)k
1+�1 � kr0(ŵ)k � �2kr0(wk)k

1+�1(45)

for positive constants �1 and �2.

(2) If kr(wk; �k�1)k �Mc�k�1, then �k = 1:

(3) There holds

kr(wk +�wk; �k)k � Mc�k:(46)

Proof. (1) Since kr(ŵ; �k)k �Mc�k, we have

kr0(ŵ)k =








r(ŵ; �k) + �k

0
B@ 0

�ŷ
e

1
CA







 = O(�k) = O(kr0(wk)k

1+�1):

Furthermore we obtain

kr0(ŵ)k =








r(ŵ; �k) + �k

0
B@ 0

�ŷ
e

1
CA







 � �k









0
B@ 0

�ŷ
e

1
CA







� kr(ŵ; �k)k

= �k

q
kŷk2 + kek2 � kr(ŵ; �k)k � (

p
n0 �Mc)�k

�

p
n0 �Mc

M 0
kr0(wk)k

1+�1 :

(2) We will show that


kmin
i

(
�

(x0k)i

(�x0k)i

����� (�x0k)i < 0

)
� 1:(47)
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For i such that (Ex�)i > 0, it follows from (�x0k)i ! 0 and 
k ! 1 that

�
k
(x0k)i

(�x0k)i
> 1 for (�x0k)i < 0:

Now we consider an index i such that (Ex�)i = 0. In this case we note that (z�)i > 0 by

Assumption (L3). By (43), we have

(x0k)i + (�x0k)i =
�k

(zk)i
�

(x0k)i(�zk)i

(zk)i
:(48)

Since kr(wk; �k�1)k �Mc�k�1, we have

�k �
1

M 0
kr0(wk)k

1+�1 �
�1+�11

M 0
kr0(wk�1)k

(1+�1)
2

(49)

by result (1), and

j(x0k)i(zk)i � �k�1j �Mc�k�1:

The latter yields

(x0k)i �
(1 +Mc)�k�1

(zk)i
=

1 +Mc

(zk)i
�k�1kr0(wk�1)k

1+�1 :

Since

(�zk)i � k�wkk = O(kr(wk; �k)k) = O(kr0(wk)k) = O(kr0(wk�1)k
1+�1);

we have

(x0k)i(�zk)i = O
�
kr0(wk�1)k

2(1+�1)
�
:(50)

Assumption (L4) implies (1 + �1)
2 < 2(1 + �1). Thus it follows from (48), (49) and (50)

that

(x0k)i + (�x0k)i > �
�k

(zk)i
;(51)

where � is given by (L4). Since (x0k)i(zk)i � kr0(wk)k, Assumption (L4) guarantees

�k

(zk)i
=

�kkr0(wk)k
1+�1

(zk)i
� �k(x

0

k)ikr0(wk)k
�1

� �k(x
0

k)ikr0(wk)k
�2 =

1

�
(x0k)i(1� 
k);

then we have

�
�k

(zk)i
� (x0k)i(1� 
k):(52)

Thus by (51) and (52) we obtain

(x0k)i + (�x0k)i > (1� 
k)(x
0

k)i;

which implies


k

 
�

(x0k)i

(�x0k)i

!
> 1 for (�x0k)i < 0:
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Hence (47) holds.

In the same way as above, we can prove that


k min
i

(
�

(zk)i

(�zk)i

����� (�zk)i < 0

)
� 1:

Therefore the result follows.

(3) From Assumptions (L4) and (L5), we directly obtain

kr(wk +�wk; �k)k = kr(wk; �k) +rr(wk; �k)�wk +O(k�wkk
2)k

� kr(wk; �k) + Jk�wkk+O(k�wkk
2)

+k(Jk �rr(wk; �k))�wkk

= k(Gk �r
2
xL(wk))�xkk+O(k�wkk

2)

= O(k�wkk
min(1+�3; 2))

= O(kr(wk; �k)k
min(1+�3; 2))

= O(kr0(wk)k
min(1+�3; 2))

= o(kr0(wk)k
1+�1)

= o(�k)

� Mc�k:

This proves (46).

Therefore the proof of this theorem is complete. 2

4 Global and superlinear convergence

Theorem 2 assures the global convergence of Algorithm LS to an SBKKT point for a

�xed � and therefore the global convergence of Algorithm IP to a KKT point of problem

(1), while Theorem 3 implies the superlinear convergence of Algorithm IPlocal to a KKT

point of problem (1). Speci�cally Theorem 3 shows that if wk satis�es the approximate

SBKKT condition for �k�1, then �k is set to be unit in Step 4 of Algorithm IPlocal and

wk +�wk also satis�es the approximate SBKKT condition for �k. Thus by result (1) of

Theorem 3, the superlinear convergence property of Algorithm IPlocal can be obtained if

we choose an approximate SBKKT point for �0 as an initial point.

However this does not necessarily imply the superlinear convergence of Algorithm IP,

because the Armijo line search criterion required in the inner iteration (Algorithm LS)

may prevent from choosing a unit step size even if the iterates are near a KKT point.

This phenomenon is known as the Maratos e�ect. However if we adopt a unit step size

when the current point wk (the initial point for the k-th inner iteration) satis�es the

approximate SBKKT condition for su�ciently small �k�1, and wk + �wk (the �rst step

for the k-th inner iteration) satis�es the approximate SBKKT condition for �k�1, even

when the merit function value does not satisfy the Armijo rule, then Theorems 2 and

3 assure that we can have the global and superlinear convergence of Algorithm IP by

appropriately controlling the parameters �k and 
k at the �nal stage of iterations.
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We could devise an algorithm for avoiding the Maratos e�ect explicitly. For this

purpose, we could use a nonmonotone strategy like the primal-dual interior point trust

region method given by Yamashita, Yabe and Tanabe[18] for example. However we did

not adopt the technique just for simplicity of exposition of the algorithm in this paper.
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