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Abstract

This paper proposes a primal-dual interior point method for solving general

nonlinearly constrained optimization problems. The method is based on solving

the barrier Karush-Kuhn-Tucker conditions for optimality by the Newton method.

To globalize the iteration we introduce the barrier-penalty fucntion and the opti-

mality condition for minimizing this function. Our basic iteration is the Newton

iteration for solving the optimality conditions with respect to the barrier-penalty

function which coincides with the Newton iteration for the barrier Karush-Kuhn-

Tucker conditions if the penalty parameter is su�ciently large. It is proved that the

method is globally convergent from an arbitrary initial point that strictly satis�es

the bounds on the variables. Implementations of the given algorithm are done for

small dense nonlinear programs . The method solves all the problems in Hock and

Schittkowski's textbook e�ciently. Thus it is shown that the method given in this

paper possesses a good theoretical convergence property and is e�cient in practice.
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1 Introduction

In this paper we propose a primal-dual interior point method that solves general nonlin-

early constrained optimization problems. To obtain a fast algorithm for nonlinear opti-

mization problems it is fairly clear from various experiences (for example the well known

success of the SQP method) that we should eventually solve the Karush-Kuhn-Tucker

conditions for optimality by a Newton-like method. However, solving the optimality con-

ditions simply as a system of equations does not give an algorithm for solving optimization

problems in general except for convex problems. Therefore it is not appropriate to treat

the primal and dual variables equally to obtain globally convergent methods for general

nonlinear optimization problems. Observing that there is a nice relation between the pa-

rameterized optimality conditions (barrier KKT condition) and the classical logarithmic

barrier function of the primal variables, we can develop a globally convergent method for

general nonlinear optimization problems. To prevent the possible divergence of the dual

variables, we introduce the barrier penalty function and solve the optimality conditions

by a Newton-like method.

For nonlinear programs it has been believed long time that interior point methods are

not practical because of inevitable numerical di�culties which occur at the �nal stage

of iterations. See Fiacco and McCormick [4], Fletcher [5] and other standard textbooks

on nonlinear optimization. Thus the state of the art method for nonlinear programs

today is the SQP method (see Powell [7], Fletcher [5]) which can also be interpreted as

a Newton-like method for Karush-Kuhn-Tucker conditions near a solution. It is known

that the SQP method is e�cient and stable for wide range of problems. The SQP method

requires the quadratic programming subproblems which handle the combinatorial aspect

of the problem caused by inequality constraints. A solution of the quadratic programming

problem itself requires rather expensive cost especially for large scale problems. Therefore

it is desired to have an e�cient and stable interior point method for nonlinear problems in

the light of success of that in the �eld of large scale linear programs. This paper shows that

it is in fact possible to construct such a method that is globally convergent theoretically,

and e�cient and stable in practice. The method is tested on 115 test problems in Hock

and Schittkowski's collection [6]. For these problems our method solves all the problems

with 20 to 30 function evaluations per problem and about 20 iterations per problem.

Details are described in Section 5. A preliminary report of this paper has appeared in

[11].

In this paper, problems to be solved are restricted to small to medium ones because

we do not exploit the sparsity of the matrices here. However, recent report by Yamashita,

Yabe and Tanabe [13] studies a trust region type method to utilize the sparsity of the

Hessian of the Lagrangian. They report e�ciency of the method that uses the barrier

penalty function as in this paper. See also [1] for a trust region type interior point

method. It is to be noted that the recent studies by Yamashita and Yabe [12] and Yabe

and Yamashita [9] show the superlinear and/or quadratic convergence of a class of primal-

dual interior point methods that use the Newton or quasi-Newton iteration for solving

the barrier KKT conditions. Other reports on the local behavior of primal-dual interior

point methods include [2] and [3].

In Section 2, we describe basic concepts in the primal-dual interior point method. The
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barrier penalty function which plays a key role in the method of this paper is introduced in

Section 3, and analyzed there. A line search method that minimizes the barrier penalty

function is described in Section 4, and is proved to be globally convergent. Section 5

reports the results of numerical experiment.

Notation. The subscript k denotes an iteration count. Subscripts i and j denote

components of vectors and matrices. The superscript t denotes transposes of vectors

and matrices. The vector e denotes the vector of all ones and the matrix I the identity

matrix. For simplicity of description, we assume k � k denotes the l2 norm for vectors.

The symbol Rn denotes the n dimensional real vector space. The set Rn

+ is de�ned by

Rn

+ = fx 2 Rn jx > 0g.

2 Primal-dual interior point method

In this paper, we consider the following constrained optimization problem:

minimize f(x); x 2 Rn;

subject to g(x) = 0; x � 0;
(1)

where we assume that the functions f : Rn ! R1 and g : Rn ! Rm are twice continuously

di�erentiable.

Let the Lagrangian function of the above problem be de�ned by

L(w) = f(x)� ytg(x)� ztx;(2)

where w = (x; y; z)t, and y 2 Rm and z 2 Rn are the Lagrange multiplier vectors which

correspond to the equality and inequality constraints respectively. Then Karush-Kuhn-

Tucker (KKT) conditions for optimality of the above problem are given by

r0(w) �

0
B@
rxL(w)

g(x)

XZe

1
CA =

0
B@

0

0

0

1
CA(3)

and

x � 0; z � 0;(4)

where

rxL(w) = rf(x)� A(x)ty � z;

A(x) =

0
BB@
rg1(x)

t

...

rgm(x)
t

1
CCA ;

X = diag (x1; � � � ; xn) ;

Z = diag (z1; � � � ; zn) :

Now we approximate problem (1) by introducing the barrier function FB(�;�) : R
n

+ !

R1,

minimize FB(x;�) = f(x)� �
nP
i=1

log(xi); x 2 Rn

+

subject to g(x) = 0;
(5)
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where the barrier parameter � > 0 is a given constant. It is well known that, if �

is su�ciently small, problem (5) is a good approximation to original problem (1) (see

Fiacco and McCormick [4]). The optimality conditions for (5) are given by

rf (x)� A(x)ty � �X�1e = 0;(6)

g(x) = 0

and

x > 0;

where y 2 Rm is the Lagrange multiplier for the equality constraints. If we introduce

an auxiliary variable z 2 Rn which is to be equal to �X�1e, then the above conditions

become the conditions

r(w; �) �

0
B@

rxL(w)

g(x)

XZe� �e

1
CA =

0
B@

0

0

0

1
CA ;(7)

and

x > 0; z > 0:(8)

The introduction of the variable z is essential to the numerical success of the barrier based

algorithm in this paper.

In this paper we call conditions (7) the barrier KKT conditions, and a point w(�) =

(x(�); y(�); z(�)) that satis�es these conditions is called the barrier KKT point. We will

use an interior point method for searching a point that approximately satis�es the above

conditions, and �nally obtain a point that satis�es the Karush-Kuhn-Tucker conditions

by letting � # 0. This means that we force x and z be strictly positive during iterations.

Therefore we delete inequality conditions (8) hereafter, and always assume that x and z

are strictly positive in what follows. Here we note that

r(w; �) = r0(w)� �ê;(9)

where

ê =

0
B@

0

0

e

1
CA :

An algorithm of this paper approximately solves the sequence of conditions (7) with

a decreasing sequence of the barrier parameter � that tends to 0, and thus obtains an

approximate solution to KKT conditions. For de�niteness, we describe a prototype of

such algorithm as follows.

Algorithm IP

Step 0. (Initialize) Set " > 0, Mc > 0 and k = 0. Let a positive sequence f�kg ; �k # 0

be given.

Step 1. (Termination) If kr0(w)k � ", then stop.
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Step 2. (Approximate barrier KKT point) Find a point wk+1 that satis�es

kr(wk+1; �k)k �Mc�k:(10)

Step 3. (Update) Set k := k + 1 and go to Step 1. 2

The following theorem shows the global convergence property of Algorithm IP.

Theorem 1 Let fwkg be an in�nite sequence generated by Algorithm IP. Suppose that

the sequences fxkg and fykg are bounded. Then fzkg is bounded, and any accumulation

point of fwkg satis�es KKT conditions (3) and (4).

Proof. Assume that there exists an i such that (zk)i !1. Equation (10) yields

�����(rf(xk)� A(xk)
tyk)i

(zk)i
� 1

����� �Mc

�k�1

(zk)i
;

which is a contradiction because of the boundedness of fxkg and fykg. Thus the sequence

fzkg is bounded.

Let ŵ be any accumulation point of fwkg. Since the sequences fwkg and f�kg satisfy

(10) for each k and �k approaches zero, r0(ŵ) = 0 follows from the de�nition of r(w; �).

Therefore the proof is complete. 2

We note that the barrier parameter sequence f�kg in Algorithm IP need not be deter-

mined beforehand. The value of each �k may be set adaptively as the iteration proceeds.

An example of updating method of �k is described in Section 5. We call condition (10)

the approximate barrier KKT condition, and call a point that satis�es this condition the

approximate barrier KKT point.

To �nd an approximate barrier KKT point for a given � > 0, we use the Newton-like

method in this paper. Let �w = (�x;�y;�z)t be de�ned by a solution of

J(w)�w = �r(w; �);(11)

where

J(w) =

0
B@

G �A(x)t �I

A(x) 0 0

Z 0 X

1
CA :(12)

Then the basic iteration of the Newton-like method may be described as

wk+1 = wk + �k�wk;(13)

where �k = diag(�xkIn; �ykIm; �zkIn) is composed of step sizes in x, y and z variables.

If G = r2
x
L(w), then �w becomes Newton's direction for solving (7). To solve (11), we

split the equations into two groups. Thus we solve

 
G+X�1Z �A(x)t

�A(x) 0

! 
�x

�y

!
=

 
�rxL(w) + �X�1e� z

g(x)

!
;(14)
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for (�x;�y)t, then we obtain �z by the third equation in (11). If G+X�1Z is positive

de�nite and A(x) is of full rank, then the coe�cient matrix in (14) is nonsingular. It will

be useful to note that (14) can be written as

 
G+X�1Z �A(x)t

�A(x) 0

! 
�xey

!
=

 
�rf(x) + �X�1e

g(x)

!
;(15)

where

~y = y +�y:(16)

In this paper, we will deal with the case in which the matrix G can be assumed

nonnegative de�nite. Therefore, to solve the general nonlinear problems, we will use a

positive de�nite quasi-Newton approximation to the Hessian matrix of the Lagrangian

function to obtain the desired property of the matrix G.

3 Barrier penalty function

To globalize the convergence property of an interior point algorithm based on the above

iteration, we introduce two auxiliary problems. Firstly we de�ne the following problem:

minimize FP (x; ��) = f(x) + ��
mP
i=1

jgi(x)j; x 2 Rn;

subject to x � 0;
(17)

where the penalty parameter �� is a given positive constant. The necessary conditions for

optimality of this problem are (see 14.2 of Fletcher [5])

rxL(w) = 0;

y 2 �@

(
��

mX
i=1

jgi(x)j

)
;(18)

XZe = 0; x � 0; z � 0;

where the notation @ means the subdi�erential of the function in the braces with respect

to g. In our case the second condition in (18) is equivalent to

��� � yi � ��; gi(x) = 0;

yi = ���; gi(x) > 0;

yi = ��; gi(x) < 0;

(19)

for each i = 1; � � � ;m. This condition can be expressed as

�� jgi(x)j = �yigi(x); ��� � yi � ��; i = 1; � � � ;m;

or

jgi(x)j+
yigi(x)

��
= 0; ��� � yi � ��; i = 1; � � � ;m:
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Therefore conditions (18) can be written as

r0(w) =

0
B@
rxL(w)

rE(w)

XZe

1
CA =

0
B@

0

0

0

1
CA(20)

and
x � 0; z � 0;

��� � yi � ��; i = 1; � � � ;m;
(21)

where

rE(w)i = jgi(x)j+
yigi(x)

��
; i = 1; � � � ;m:

Note that we are using the same symbol r0(w) to denote the residual vector of the opti-

mality conditions as in Section 2 for simplicity. If kyk
1
< ��, conditions (18) are equivalent

to conditions (3) and (4). In this sense, problem (17) is equivalent to problem (1).

Next we introduce the barrier penalty function F (�;�; �) : Rn

+ ! R1 by

F (x;�; �) = f(x)� �
nX
i=1

log xi + �
mX
i=1

jgi(x)j ;(22)

where � and � are given positive constants. This function plays an essential role in the

method given in this paper. Let us approximate problem (17) by the following problem

minimize F (x;�; ��); x 2 Rn

+:(23)

The necessary conditions for optimality of a solution to the above problem are

rxL(w) = 0;

y 2 �@

(
��

mX
i=1

jgi(x)j

)
(24)

XZe = �e; x > 0; z > 0;

where we introduce an auxiliary variable z 2 Rn as in (7). As above, conditions (24) can

be written as

r(w; �) �

0
B@

rxL(w)

rE(w)

XZe� �e

1
CA =

0
B@

0

0

0

1
CA(25)

and
x > 0; z > 0;

��� � yi � ��; i = 1; � � � ;m;
(26)

where we use the same symbol r(w; �) as in Section 2 for simplicity. If �� > kyk
1
then con-

ditions (25) and (26) coincide with (7) and (8). We call a point w(�) = (x(�); y(�); z(�)) 2

Rn �Rm �Rn that satis�es (24) for a given � > 0 the barrier KKT point for this � as

before. We can use Algorithm IP to solve (17). The following theorem shows the global

convergence property of Algorithm IP for solving (17).
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Theorem 2 Let fwkg be an in�nite sequence generated by Algorithm IP for solving (17).

Suppose that the sequences fxkg is bounded. Then fzkg is bounded, and any accumulation

point of fwkg satis�es the optimality conditions (20) and (21) for problem (17). 2

Now we formulate a Newton-like iteration for solving the above conditions (25). Thus

we calculate the �rst order change of (24) with respect to a change in w. This gives

(G+X�1Z)�x�A(x)t�y = �rxL(w) + �X�1e� z;

~y � y +�y 2 �@

(
��

mX
i=1

���gi(x) +rgi(x)
t�x

���
)
;(27)

�z = �X�1Z�x+ �X�1e� z:

Following lemma gives a basic property of the iteration vector �w = (�x;�y;�z)t.

Lemma 1 Suppose that �w satis�es (27) at an interior point w.

(i) If �� > keyk
1
, then �w is identical to the one given by (11).

(ii) If �w = 0, then the point w is a barrier KKT point that satis�es (24).

(iii) If �x = 0, then the point (x; y + �y; z + �z) is a barrier KKT point that satis�es

(24). 2

If we consider the subproblem:

(28)

minimize
1

2
�xt(G+X�1Z)�x+(rf(x)��X�1e)t�x+��

mX
i=1

���gi(x) +rgi(x)
t�x

��� ; �x 2 Rn;

the solution vector �x and the corresponding multiplier vector ~y that satisfy the necessary

conditions for optimality also satisfy conditions (27). If G+X�1Z is positive de�nite we

can solve the problem (28) by a straightforward active set method which starts with an

active set that contains all the constraints gi(x)+rgi(x)
t�x = 0; i = 1; � � �m. An example

of the procedure is described in Fletcher [5]. It is important to note that, if the vectors

�x and ~y obtained by solving (15) satisfy �� > k~yk
1
, then the desired iteration vector

that satis�es (27) are also obtained.

The procedure described above is devised instead of the simple Newton iteration given

in Section 2 in order to show a way of preventing possible divergence of the dual variable y.

However for the practical purpose it seems su�cient to solve only equation (11) once per

iteration as shown in sections below in which practical experiences obtained by the author

on general nonlinear programming problems are described. Therefore this procedure is of

only theoretical importance at present.

As shown above, optimality conditions (20) and (21) are identical to optimality con-

ditions (3) and (4) if we set � = 1. Also, Newton-like iteration (27) coincides with

(11) when � = 1. Therefore we will regard that the method explained below includes a

method for solving (1) when � =1 for simplicity of exposition. We note that the penalty

parameter � which will appear below should be �nite even if � =1.

Another interesting point to be noted in the above iteration is that it can give a solution

to an infeasible problem. Even if the constraints in problem (1) are incompatible, the
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method described above will give a solution to problem (17) as shown below. A solution

to problem (17) with infeasible constraints may give useful information about problem

(1).

Now we proceed to an analysis of the properties of the barrier penalty function. The

directional derivative F 0(x;�; �; s) of the function F (x;�; �) along an arbitrary given di-

rection s is de�ned by

F 0(x;�; �; s) = lim
�#0

F (x+ �s;�; �)� F (x; �; �)

�

= rf(x)ts� �etX�1s+ �
X
+

rgi(x)
ts

+�
X
0

���rgi(x)ts���� �
X
�

rgi(x)
ts;

where the summations in the above equation are to be understood asX
+

ai =
X
gi>0

ai;
X
0

ai =
X
gi=0

ai;
X
�

ai =
X
gi<0

ai:

We introduce a �rst order approximation Fl of F (x+ s;�; �) by

Fl(x;�; �; s) � f(x) +rf (x)ts� �
nX
i=1

�
log(xi) +

si

xi

�
(29)

+�
mX
i=1

���gi(x) +rgi(x)
ts
���;

and an estimate of the �rst order change �Fl of F by

�Fl(x;�; �; s) � Fl(x;�; �; s)� F (x; �; �);(30)

= rf(x)ts� �etX�1s

+�
mX
i=1

jgi(x) +rgi(x)sj � �
mX
i=1

jgi(x)j

for an arbitrary given direction s.

We have following properties for the quantities de�ned above which give an extension

to the similar properties in the case of di�erentiable functions (see for example Yamashita

[10]).

Lemma 2 Let � > 0, � > 0 and s 2 Rn be given. Then the following assertions hold.

(i) The function Fl(x;�; �;�s) is convex with respect to the variable �.

(ii) There holds the relation

F (x;�; �) + F 0(x;�; �; s) � Fl(x;�; �; s):(31)

(iii) Further, there exists a � 2 (0; 1) such that

F (x+ s;�; �) � F (x;�; �) + F 0(x+ �s;�; �; s);(32)

whenever x+ s > 0.
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Proof. The �rst statement of the lemma is obvious. If � > 0 is su�ciently small, we have

Fl(x;�; �;�s) = F (x;�; �) + F 0(x;�; �;�s)

= F (x;�; �) + �F 0(x;�; �; s):

Since Fl(x;�; �;�s) is convex with respect to � and coincides with a linear function of

� > 0 when � is su�ciently small, we obtain (31). Now we show (32). If we consider

F 0(x + �s;�; �; s) as a function of the variable � 2 [0; 1], the number of discontinuous

points of F 0 is �nite. Therefore there exists a � 2 (0; 1) such that

F 0(x+ �s;�; �; s) �

1Z
0

F 0(x+ �s;�; �; s)d�

= F (x+ s;�; �)� F (x;�; �):

This completes the proof. 2

Lemma 3 Let "0 2 (0; 1) be a given constant and s 2 Rn be given. If �Fl(x; �; �; s) < 0,

then

F (x+ �s;�; �)� F (x;�; �) � "0��Fl(x; �; �; s);(33)

for su�ciently small � > 0.

Proof. From (32), there exists a � 2 (0; 1) such that

F (x+ �s; �; �)� F (x;�; �) � F 0(x+ ��s;�; �;�s)(34)

= �F 0(x+ ��s;�; �; s):

From (31) we have

F 0(x+ ��s;�; �; s) � �Fl(x+ ��s;�; �; s):(35)

Because �Fl(�;�; �; s) is continuous, and �Fl(x;�; �; s) < 0 by the assumption, we obtain

�Fl(x+ ��s;�; �; s) � "0�Fl(x;�; �; s);(36)

for su�ciently small k��sk. From (34) - (36) we obtain (33) for su�ciently small � > 0.

2

Lemma 4 Suppose that �w satis�es (27). If 0 < � � ��, then

�Fl(x;�; �; �x) � ��xt(G+X�1Z)�x�
mX
i=1

(�� j~yij)jgi(x)j:(37)

Further if, G is positive semide�nite and keyk
1
� �, then �Fl(x;�; �; �x) � 0, and

�Fl(x;�; �; �x) = 0 yields �x = 0.
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Proof. From (27) and (30) we have

�Fl(x;�; �; �x) = ��xt(G+X�1Z)�x+�xtA(x)t~y+�
mX
i=1

���gi(x) +rgi(x)
t�x

����� mX
i=1

jgi(x)j:

The i-th components in the summations in the last three terms give

~yirgi(x)
t�x+ �

���gi(x) +rgi(x)
t�x

���� � jgi(x)j(38)

� ~yirgi(x)
t�x+ ��

���gi(x) +rgi(x)
t�x

���� � jgi(x)j

= �~yigi(x)� � jgi(x)j ;

where the inequality in the second line follows from � � ��, and the equality in the third

line follows from the property

��� � ~yi � ��; gi(x) +rgi(x)
t�x = 0;

~yi = ���; gi(x) +rgi(x)
t�x > 0;

~yi = ��; gi(x) +rgi(x)
t�x < 0:

The relation (38) gives (37). 2

4 Line search algorithm

To obtain a globally convergent algorithm to a barrier KKT point for a �xed � > 0, it is

necessary to modify the basic Newton iteration with the unit step length somehow. Our

iterations consist of

xk+1 = xk + �xk�xk;

yk+1 = yk + �yk�yk;(39)

zk+1 = zk + �zk�zk;

where �xk, �yk and �zk are step sizes determined by the line search procedures described

below.

The main iteration is to decrease the value of the barrier penalty function for �xed �.

Thus the step size of the primal variable x is determined by the su�cient decrease rule

of the merit function. The step size of the dual variable z is determined so as to stabilize

the iteration. The explicit rules follow in order.

We adopt Armijo's rule as the line search rule for the variable x. At the point xk, we

calculate the maximum allowed step to the boundary of the feasible region by

�kmax = min
i

(
�

(xk)i

(�xk)i

����� (�xk)i < 0

)
;(40)

i.e., the step size �kmax gives an in�nitely large value of the barrier penalty function F

if it exists, because of the barrier terms, and a step size � 2 [0; �kmax) gives a strictly

feasible primal variable. A step to the next iterate is given by

�xk = ��k�
lk ; ��k = min f
�kmax; 1g ;(41)
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where 
 2 (0; 1) and � 2 (0; 1) are �xed constants and lk is the smallest nonnegative

integer such that

F (xk + ��k�
lk�xk;�; �)� F (xk;�; �) � "0��k�

lk�Fl(xk;�; �; �xk);(42)

where "0 2 (0; 1). Typical values of these parameters are � = 0:5, 
 = 0:9995 and

"0 = 10�6. Therefore we will try the sequence

xk + 0:9995�kmax�xk; xk + 0:5� 0:9995�kmax�xk; xk + 0:25� 0:9995�kmax�xk; � � �

for example, and will �nd a step size that satis�es (42). If G is positive semide�nite, then

�Fl(xk;�; �; �xk) � 0 by Lemma 4, and therefore the existence of such steps is assured

by Lemma 3.

For the variable z, we adopt the box constraints rule, i.e., we force x and z to satisfy

the condition

cLki � ((xk)i + �xk(�xk)i)((zk)i + �zk(�zk)i) � cUki; i = 1; � � � ; n(43)

at the end of each iteration, where the bounds cLk and cUk satisfy

0 < cLki < � < cUki; i = 1; � � � ; n:(44)

To this end, we let

cLki = min
n

�

ML

; ((xk)i + �xk(�xk)i)(zk)i
o
;

cUki = max fMU�; ((xk)i + �xk(�xk)i)(zk)ig ;
(45)

where ML > 1 and MU > 1 are given constants. The construction of the above bounds

shows that current z satis�es

cLki

((xk)i + �xk(�xk)i)
� (zk)i �

cUki

((xk)i + �xk(�xk)i)
; i = 1; � � � ; n:(46)

The step size �z is determined by

�zk = min

(
min
i

(
max
�i

(
�i

����� cLki

((xk)i + �xk(�xk)i)
(47)

� ((zk)i + �i(�zk)i)�
cUki

((xk)i + �xk(�xk)i)

))
; 1

)
:

The rule (47) means that the step size �z is the maximal allowed step that satis�es the

box constraints with the restriction of being not greater than the unit step length.

Lemma 5 Suppose that an in�nite sequence fwkg is generated for �xed � > 0. Then if

lim infk!1(xk)i > 0 and lim sup
k!1(xk)i <1, then lim infk!1(cLk)i > 0 and lim sup

k!1(cUk)i <

1 for i = 1; � � � ; n.
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Proof. Suppose that (cLk)i ! 0 for an i and some subsequence K � f0; 1; 2; � � �g. Then by

the de�nition of (cLk)i in (45), (zk)i ! 0; k 2 K. However, in order for a subsequence of

f(zk)ig to tend to 0, there must be an iteration k at which the lower bound (cLk)i=(xk+1)i
of (zk)i is arbitrary small and the value of (zk)i at the iteration is strictly larger than that

bound, i.e. at the iteration the value of (zk)i decreases to a strictly smaller value. This

means that at iteration k, (cLk)i = �=ML from the de�nition (45), and therefore the value

of (xk+1)i must be arbitrary large because �=ML < (xk+1)i(zk)i and (zk)i ! 0; k 2 K.

This is impossible because of the assumption of the lemma. The proof of the boundedness

of (cUk)i is similar. 2

In actual calculation we modify the direction �zk by

(�z0
k
)i =

8><
>:

0; if (zk)i = cLki=(xk+1)i and (�zk)i < 0;

0; if (zk)i = cUki=(xk+1)i and (�zk)i > 0;

(�zk)i; otherwise:

(48)

This modi�cation means that we project the direction along the boundary of the box

constraints if the point zk is on that boundary and the direction �zk points outward

of the box. This procedure is adopted because it gives better numerical results. The

global convergence results shown in the following are equally valid for both unmodi�ed

and modi�ed directions.

For the variable y, there exist three obvious choices for the step length:

�yk = 1 or �xk or �zk:(49)

The global convergence property given below holds for these choices. We choose �yk = �zk
from numerical experiments.

The following algorithm describes the iteration for �xed � > 0 and � > 0. We note

that this algorithm corresponds to Step 2 of Algorithm IP in Section 2.

Algorithm LS

Step 0. (Initialize) Let w0 2 Rn

+ �Rm �Rn

+, and � > 0, � > 0. Set "0 > 0, 
 2 (0; 1),

� 2 (0; 1), "0 2 (0; 1), ML > 1 and MU > 1. Let k = 0.

Step 1. (Termination) If kr(wk; �)k � "0; then stop.

Step 2. (Compute direction) Calculate the direction �wk by (27).

Step 3. (Stepsize) Set

�kmax = min
i

(
�

(xk)i

(�xk)i

����� (�xk)i < 0

)
; ��k = min f
�kmax; 1g :

Find the smallest nonnegative integer lk that satis�es

F (xk + ��k�
lk�xk; �; �)� F (xk; �; �) � "0��k�

lk�Fl(xk;�; �; �xk):

Calculate

�xk = ��k�
lk ;

13



cLki = min

�
�

ML

; (xk + �xk�xk)i(zk)i

�
;

cUki = max fMU�; (xk + �xk�xk)i(zk)ig ;

�zk = min

(
min
i

(
max
�i

(
�i

����� cLki

((xk)i + �xk(�xk)i)

� ((zk)i + �i(�zk)i)�
cUki

((xk)i + �xk(�xk)i)

))
; 1

)
;

�yk = �zk;

�k = diagf�xkIn; �ykIm; �zkIng:

Step 4. (Update variables) Set

wk+1 = wk + �k�wk:

Step 5. Set k := k + 1 and go to Step 1. 2

To prove global convergence of Algorithm LS, we need the following assumptions.

Assumption G

(1) The functions f and gi; i = 1; :::;m, are twice continuously di�erentiable.

(2) The level set of the barrier penalty function at an initial point x0 2 Rn

+, which is

de�ned by
n
x 2 Rn

+ jF (x;�; �) � F (x0;�; �)
o
, is compact for given � > 0.

(3) The matrix A(x) is of full rank on the level set de�ned in (2).

(4) The matrix Gk is positive semide�nite and uniformly bounded.

(5) The penalty parameter � satis�es � � � � kyk +�ykk1 for each k = 0; 1; ::: . 2

We note that if a quasi-Newton approximation is used for computing the matrix Gk,

then we need the continuity of only the �rst order derivatives of functions in Assumption

G-(1). We also note that if �Fl(xk;�; �; �xk) = 0, at an iteration k, then the step sizes

�xk = �yk = �zk = 1 are adopted and (xk+1; yk+1; zk+1) gives a barrier KKT point from

Lemma 1 and Lemma 4. The following theorem gives a convergence of an in�nite sequence

generated by Algorithm LS.

Theorem 3 Let an in�nite sequence fwkg be generated by Algorithm LS. Then there

exists at least one accumulation point of fwkg, and any accumulation point of the sequence

fwkg is a barrier KKT point.

14



Proof. First we note that each component of the sequence fxkg is bounded away from

zero and bounded above by the assumption and the existence of the log barrier term.

Therefore the sequence fxkg has at least one accumulation point. The sequence fzkg

also has these properties by Lemma 5. Thus there exists a positive number M such that

kpk
2

M
� pt(Gk +X�1

k
Zk)p � M kpk

2
; 8p 2 Rn;(50)

by the assumption. From (37) and (50), we have

�Fl(xk;�; �; �xk) � �
k�xkk

2

M
< 0;(51)

and from (42),

F (xk+1;�; �)� F (xk;�; �) � "0��k�
lk�Fl(xk;�; �; �xk)(52)

� �"0��k�
lk
k�xkk

2

M
< 0:

Because the sequence fF (xk;�; �)g is decreasing and bounded below, the left hand side of

(52) converges to 0. Since lim infk!1(xk)i > 0; i = 1; � � � ; n, we have lim infk!1 ��k > 0.

Suppose that there exists a subsequence K � f0; 1; � � �g and a � such that

lim inf
k!1

k�xkk � � > 0; k 2 K:(53)

Then we have lk ! 1; k 2 K from (52) because the left most expression tends to zero,

and therefore we can assume lk > 0 for su�ciently large k 2 K without loss of generality.

If lk > 0 then the point xk+�xk�xk=� does not satisfy the condition (42). Thus, we have

F (xk + �xk�xk=�;�; �)� F (xk;�; �) > "0�xk�Fl(xk;�; �; �xk)=�:(54)

By (32) and (31), there exists a �k 2 (0; 1) such that

(55)

F (xk + �xk�xk=�; �; �)� F (xk;�; �) � �xkF
0(xk + �k�xk�xk=�;�; �; �xk)=�

� �xk�Fl(xk + �k�xk�xk=�;�; �; �xk)=�; k 2 K:

Then, from (54) and (55), we have

"0�Fl(xk;�; �; �xk) < �Fl(xk + �k�xk�xk=�;�; �; �xk):

This inequality yields

�Fl(xk + �k�xk�xk=�;�; �; �xk)��Fl(xk;�; �; �xk)(56)

> ("0 � 1)�Fl(xk;�; �; �xk) > 0:

Because �xk is a solution of problem (28) and there holds (50), k�xkk is uniformly

bounded above. Then by the property lk ! 1, we have k�k�xk�xk=�k ! 0; k 2 K.
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Thus the left hand side of (56) and therefore �Fl(xk;�; �; �xk) converges to zero when

k ! 1; k 2 K. This contradicts the assumption (53) because we have �xk ! 0; k 2 K

from (51). Therefore we proved

lim
k!1;k2K

k�xkk = 0:(57)

Let an arbitrary accumulation point of the sequence fxkg be x̂ 2 Rn

+ and let xk ! x̂; k 2

K for K � f0; 1; � � �g. Thus

xk ! x̂; �xk ! 0; xk+1 ! x̂; k 2 K:(58)

Because
n
X�1

k
Zk

o
is bounded, we have

lim
k!1;k2K




zk +�zk � �X�1

k
e



 = 0

from (27). If we de�ne ẑ = �X̂�1e where X̂ = diag(x̂1; � � � ; x̂n), then we have

zk +�zk ! ẑ; k 2 K:

Hence from (45) we have

(cLk)i �
�

ML

� (xk+1)i(zk +�zk)i � MU� � (CUk)i; i = 1; � � � ; n

for k 2 K su�ciently large, which shows that the point zk + �zk is always accepted as

zk+1 for su�ciently large k 2 K.

Since �zk = 1 is accepted for k 2 K su�ciently large, so is �yk = 1. Therefore we

obtain

lim
k!1;k2K

rxL(x̂; yk +�yk; ẑ) = 0;

lim
k!1;k2K

yk +�yk 2 �@

(
��

nX
i=1

jgi(x̂)j

)
:

Because the matrix A(x̂) is of full rank, the sequence fyk +�ykg ; k 2 K converges to a

point ŷ 2 Rm which satis�es

rxL(x̂; ŷ; ẑ) = 0;

ŷ 2 �@

 
��

mX
i=1

jgi(x̂)j

!
;

X̂ẑ = �e; x̂ > 0; ẑ > 0:

This completes the proof because we proved that there exists at least one accumulation

point of fxkg, and for an arbitrary accumulation point x̂ of fxkg, there exist unique ŷ

and ẑ that satisfy the above. 2
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5 Numerical Result

In this section, we report numerical results of an implementation of the algorithm given in

this paper for nonlinear programming problems. We set � = 1 in this experiment. The

software is called NUOPT and the code is written by Takahito Tanabe. In order to have an

appropriate positive semide�nite matrix G by a reasonable cost for nonlinear problems, we

resort to a quasi-Newton approximation to the Hessian matrix of the Lagrangian function.

We use updating formula suggested by Powell[7] for the SQP method:

Gk+1 = Gk �
Gksks

t

k
Gk

st
k
Gksk

+
uku

t

k

st
k
uk

;

where uk is calculated by

sk = xk+1 � xk;

vk = rxL(xk+1; yk+1; zk+1)�rxL(xk; yk+1; zk+1);

uk = �kvk + (1� �k)Gksk;

�k =

8<
:

1; st
k
vk � 0:2st

k
Gksk;

0:8st
k
Gksk

s
t

k
Gksk�s

t

k
vk
; st

k
vk � 0:2st

k
Gksk;

to satisfy st
k
uk > 0 for the hereditary positive de�niteness of the update.

Method for updating the barrier parameter �k is as follows. Suppose we have an

approximate barrier KKT point wk+1 that satis�es

kr(wk+1; �k)k �Mc�k;

in Step 2 of Algorithm IP. Then �k+1 is de�ned by

�k+1 = max

(
kr(wk+1; �k)k

M�

;
�k

M0

)
;

where 0 < Mc < M� and M0 > 1 should be satis�ed. In our experiment we set

Mc = 30;M� = 40;M0 = 50.

As in the SQP method, we expect fast local convergence of the method if � is su�-

ciently small near a solution because it is based on the Newton iteration for the optimality

conditions and a quasi-Newton approximation to the second derivative matrix. As noted

in the above, this expectation is proved by Yamashita and Yabe [12]. Linear equation (14

) is solved by using the Bunch-Parlett factorization.

The test problems for nonlinear problems are adopted from the book by Hock and

Schittkowski [6]. The results are summarized in Table 1 at the end of this paper. Following

list explains the notations used in Table 1:

n= number of variables.

m=number of constraints.

obj=�nal objective function value.

res=norm of �nal KKT condition residual.

itr=iteration count.
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neval= number of function evaluations.

nfact=number of factorizations.

From the textbook [6] we adopt 115 problems. All the problems tried are solved by

our code from the starting point mentioned in the text book. Of these, one is solved by a

separate run because of the reason explained below. Accuracies listed in Table 1 for 110

test problems are obtained by an identical set of parameters:

� = 0:5; 
 = 0:9995; "0 = 1� 10�6;MLz = 2:5;MUz = 10;Mc = 175:

Of these problems we obtained local optimal points for 7 problems. Problem HS13 does

not satisfy the constraint quali�cations, but our code can solve it successfully. However

our code requires large number of iterations for this problem and therefore we list this

result separately. We obtained a correct approximation to the primal variables, but the

norm of Karush-Kuhn-Tucker conditions does not tend to 0.

From these experiments it can be said that the method given in this paper is e�cient

and stable. In the �rst consecutive tests for 114 problems the method requires 2576

function evaluations in 2094 iterations. It can be claimed that the globally convergent

algorithm given in this paper is e�cient and stable for small dense nonlinear programming

problems.
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Table 1. Numerical Results on Problems by Hock and Schit-
tkowski

problem n m obj res itr neval nfact

HS1 2 1 5.00995e-11 1.0e-07 37 50 37

HS2 2 1 4.94124 3.4e-07 16 18 16 *l

HS3 2 1 6.02158e-08 6.0e-08 11 13 11

HS4 2 1 2.66667 1.6e-08 6 8 6

HS5 2 1 -1.91322 2.2e-08 6 8 6

HS6 2 2 6.0196e-17 2.7e-08 9 11 9

HS7 2 2 -1.73205 5.8e-08 9 15 9

HS8 2 3 -1 1.8e-11 5 8 5

HS9 2 2 -0.5 7.7e-10 6 8 6

HS10 2 2 -1 1.1e-07 13 15 13

HS11 2 2 -8.49846 1.1e-06 7 9 7

HS12 2 2 -30 3.1e-08 9 11 9

HS14 2 3 1.39346 2.2e-09 6 8 6

HS15 2 3 306.5 5.3e-07 9 11 9

HS16 2 3 0.250033 3.4e-07 19 26 19

HS17 2 3 1.00003 2.8e-07 15 19 15

HS18 2 3 5 5.8e-09 14 16 14

HS19 2 3 -6961.81 1.2e-06 10 17 10

HS20 2 4 40.1989 6.3e-07 7 9 7 *l

HS21 2 2 -99.96 6.2e-07 7 9 7

HS22 2 3 1 1.0e-08 7 9 7

HS23 2 6 2 4.9e-07 11 13 11

HS24 2 4 -1 2.5e-07 13 16 13

HS25 3 1 1.81845e-16 1.7e-13 53 63 53 *t

HS26 3 2 2.24353e-11 1.1e-06 27 29 27

HS27 3 2 0.04 3.7e-07 20 22 20

HS28 3 2 3.76506e-17 2.4e-08 10 12 10

HS29 3 2 -22.6274 3.5e-07 14 17 14

HS30 3 2 1 3.7e-07 13 16 13

HS31 3 2 6 1.1e-06 7 9 7

HS32 3 3 1.00001 4.9e-07 9 11 9

HS33 3 3 -4.58579 2.1e-07 17 23 17

HS34 3 3 -0.834032 1.2e-06 9 11 9

HS35 3 2 0.111111 2.5e-07 8 10 8

HS36 3 2 -3300 1.2e-07 8 11 8

HS37 3 3 -3456 1.2e-07 8 10 8

HS38 4 1 6.42044e-07 8.7e-07 34 41 34

HS39 4 3 -1 1.8e-07 12 14 12

HS40 4 4 -0.25 2.4e-07 6 8 6

HS41 4 2 1.92593 1.5e-07 9 11 9

HS42 4 3 13.8579 1.8e-08 6 8 6

HS43 4 4 -44 4.1e-07 8 10 8

HS44 4 7 -15 5.5e-07 12 15 12

HS45 5 1 1 2.4e-07 13 15 13

HS46 5 3 5.66038e-10 1.3e-06 24 26 24
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problem n m obj res itr neval nfact

HS47 5 4 1.72265e-09 1.0e-06 22 27 22

HS48 5 3 9.18249e-12 5.7e-07 10 12 10

HS49 5 3 2.74891e-07 2.1e-07 28 30 28

HS50 5 4 1.94337e-10 3.9e-08 19 21 19

HS51 5 4 1.0279e-19 3.5e-07 3 5 3

HS52 5 4 5.32665 8.6e-09 8 10 8

HS53 5 4 4.09302 1.7e-07 7 9 7

HS54 6 2 -0.867409 1.1e-07 39 46 39

HS54 6 2 -0.903547 3.7e-11 80 87 80 *lt

HS55 6 7 6.66667 1.2e-08 7 9 7 *l

HS56 7 5 -3.456 4.1e-07 9 15 9

HS57 2 2 0.0284597 2.6e-11 34 36 34 *t

HS59 2 4 -6.7495 4.3e-07 18 27 18 *l

HS60 3 2 0.0325682 5.7e-08 8 10 8

HS61 3 3 -143.646 2.1e-09 7 9 7

HS62 3 2 -26272.5 4.3e-08 8 12 8

HS63 3 3 961.715 5.5e-08 8 10 8

HS64 3 2 6299.85 1.1e-06 29 31 29

HS65 3 2 0.953529 1.8e-07 15 17 15

HS66 3 3 0.518163 2.7e-07 8 10 8

HS67 3 15 -1162.12 1.1e-09 31 33 31 *b

HS68 4 3 -0.920425 9.5e-07 21 25 21

HS69 4 3 -956.713 4.8e-07 14 20 14

HS70 4 2 0.269086 1.2e-07 10 12 10 *l

HS71 4 3 17.014 1.1e-06 8 10 8

HS72 4 3 727.679 1.3e-06 43 49 43

HS73 4 4 29.8944 1.0e-07 12 16 12

HS74 4 6 5126.5 1.2e-06 11 13 11

HS75 4 6 5174.41 1.4e-10 12 20 12

HS76 4 4 -4.68182 1.0e-06 8 10 8

HS77 5 3 0.241505 9.2e-07 10 12 10

HS78 5 4 -2.9197 1.4e-06 7 9 7

HS79 5 4 0.0787768 1.3e-06 8 10 8

HS80 5 4 0.0539498 1.2e-07 6 8 6

HS81 5 4 0.0539498 9.0e-09 10 12 10

HS83 5 4 -30665.5 6.8e-09 16 21 16

HS84 5 4 -5280330 3.0e-10 21 25 21

HS85 5 22 -2.2156 9.8e-07 35 41 35 *b

HS86 5 11 -32.3487 2.2e-07 12 14 12

HS87 6 5 8927.6 6.4e-07 28 45 28

HS88 2 2 1.36266 6.9e-07 22 30 22

HS89 3 2 1.36266 7.0e-07 23 32 23

HS90 4 2 1.36266 1.6e-09 29 45 29

HS91 5 2 1.36266 5.9e-07 25 43 25

HS92 6 2 1.36266 9.9e-07 26 45 26

HS93 6 3 135.076 7.3e-07 29 34 29
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problem n m obj res itr neval nfact

HS95 6 5 0.0156327 7.0e-08 13 16 13

HS96 6 5 0.0156272 2.5e-07 12 17 12

HS97 6 5 3.13581 2.8e-07 22 26 22

HS98 6 5 3.13583 1.3e-07 20 24 20

HS99 7 3 -8.3108e+08 2.2e-07 10 12 10

HS100 7 5 680.63 1.3e-06 16 18 16

HS101 7 6 1809.76 6.1e-07 25 28 25

HS102 7 6 911.881 2.8e-07 27 34 27

HS103 7 6 543.668 5.0e-07 26 32 26

HS104 8 6 3.95116 1.7e-07 19 21 19

HS105 8 2 1044.61 3.6e-07 56 64 56 *b

HS106 8 7 7049.25 1.1e-07 39 42 39

HS107 9 7 5055.01 1.1e-06 10 13 10

HS108 9 14 -0.674981 1.4e-06 62 67 62 *l

HS109 9 11 5362.07 8.4e-07 21 23 21

HS110 10 1 -45.7785 4.1e-08 6 10 6

HS111 10 4 -47.7611 1.2e-06 57 64 57

HS112 10 4 -47.7611 8.4e-07 17 23 17 *b

HS113 10 9 24.3062 6.5e-07 25 27 25

HS114 10 12 -1768.81 7.5e-08 47 54 47

HS116 13 15 97.5875 2.6e-07 82 94 82

HS117 15 6 32.3487 4.4e-07 36 43 36

HS118 15 18 664.82 1.4e-08 34 54 34

HS119 16 9 244.9 5.6e-07 28 30 28

TOTAL(114 prob.) 2094 2576 2094

AVERAGE 4 4 4.2e-07 18.4 22.6 18.4

HS13*c 2 2 1.01967 2.1e+02 101 108 100 *i

*l: local optimum obtained

*t: tighter convergence criterion (eps=1.e-10) needed

*b: better solution obtained

*i: iteration limit reached

*c: constraint qualification not satisfied
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