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Abstract

In this paper, we consider a primal-dual interior point method for solving non-
linear semidefinite programming problems. We propose primal-dual interior point
methods based on the unscaled and scaled Newton methods, which correspond to
the AHO, HRVW/KSH/M and NT search directions in linear SDP problems. We
analyze local behavior of our proposed methods and show their local and superlinear
convergence properties.
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1 Introduction

We consider the following nonlinear semidefinite programming (SDP) problem:

minimize f(x), x ∈ Rn,
subject to g(x) = 0, X(x) ≽ 0

(1)

where the functions f : Rn → R, g : Rn → Rm and X : Rn → Sp are sufficiently smooth,
and Sp denotes the set of p-th order real symmetric matrices. By X(x) ≽ 0 and X(x) ≻ 0,
we mean that the matrix X(x) is positive semidefinite and positive definite, respectively.

If all the functions f and g are linear and the matrix X(x) is defined by

X(x) =
n∑

i=1

xiAi − B
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with given matrices Ai ∈ Sp, i = 1, . . . , n, and B ∈ Sp, then problem (1) reduces to the
linear SDP problem. The linear SDP problems include linear programming problems,
convex quadratic programming problems and second order cone programming problems,
and they have many applications. As numerical methods for linear SDP problems, interior
point methods have been studied extensively by many researchers, see for example [19, 22]
and the references therein.

On the other hand, researches on theoretical properties and numerical methods for
nonlinear SDP are much more recent. Nonlinear SDP problems also have been attracting
a great deal of research attention, because such problems arise from several application
fields, which include control theory, eigenvalue problems, finance and so forth. For this
reason, it is desired to develop a numerical method for solving nonlinear SDP problems.
Recently Yamashita, Yabe and Harada [23] proposed a primal-dual interior point method
for solving problem (1) and proved its global convergence. Their computational experi-
ments show that the proposed method performs well in practice.

In this paper, we analyze local behavior of primal-dual interior point methods based
on the unscaled and scaled Newton methods, which correspond to the AHO direction [1],
the HRVW/KSH/M direction [7, 10, 12] and the NT direction [13, 14] in the linear SDP
problems. Researches on the rate of convergence of the primal-dual interior point methods
for linear SDP problems can be found in [8, 9, 10, 11, 15]. However, in our knowledge,
there are few similar researches for nonlinear SDP problems. Existing literatures include
[5] and [6] both of which analyze SQP type method.

The present paper is organized as follows. In Section 2, the optimality conditions for
problem (1) and some notations are described. In Section 3, we briefly review the primal-
dual interior point method proposed by Yamashita et al. [23], and introduce the AHO,
HRVW/KSH/M and NT directions. In Section 4, we present some definitions that are
necessary for analysis in the subsequent sections. Sections 5 and 6 are devoted to showing
local and superlinear convergence properties of our proposed methods. Specifically, in
Section 5, we prove local and superlinear convergence of the primal-dual interior point
method based on the unscaled Newton method, which corresponds to the AHO search
direction. In Sections 6.1 and 6.2, we prove local and two-step superlinear convergence
properties of the primal-dual interior point methods based on the scaled Newton methods,
which correspond to the HRVW/KSH/M and the NT search directions, respectively.

2 Optimality conditions and notations

In this section, we define some notations used in this paper, and we give optimality
conditions for problem (1).

We first define the inner product 〈X,Z〉 by 〈X,Z〉 = tr(XZ) for any matrices X and
Z in Sp, where tr(M) denotes the trace of the matrix M . Let the Lagrangian function of
problem (1) be defined by

L(w) = f(x) − yT g(x) − 〈X(x), Z〉 ,

where w = (x, y, Z), and y ∈ Rm and Z ∈ Sp are the Lagrange multiplier vector and matrix
which correspond to the equality and positive semidefiniteness constraints, respectively.
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We also define matrices

Ai(x) =
∂X

∂xi

for i = 1, . . . , n. Then Karush-Kuhn-Tucker (KKT) conditions for optimality of problem
(1) are given by the following (see [4]):

r0(w) ≡

 ∇xL(w)
g(x)

X(x)Z

 =

 0
0
0

(2)

and
X(x) ≽ 0, Z ≽ 0.(3)

Here ∇xL(w) is given by

∇xL(w) = ∇f(x) − A0(x)T y −A∗(x)Z,

A0(x) =

 ∇g1(x)T

...
∇gm(x)T

 ∈ Rm×n

and A∗(x) is an operator which yields

A∗(x)Z =

 〈A1(x), Z〉
...

〈An(x), Z〉

 .

We call w = (x, y, Z) satisfying X(x) ≻ 0 and Z ≻ 0 the interior point. The algorithm
of this paper will generate such interior points. To construct an interior point algorithm,
we introduce a positive parameter µ, and replace the complementarity condition X(x)Z =
0 by X(x)Z = µI, where I denotes the identity matrix. Then we try to find a point that
satisfies the barrier KKT (BKKT) conditions:

r(w, µ) ≡

 ∇xL(w)
g(x)

X(x)Z − µI

 =

 0
0
0

(4)

and
X(x) ≻ 0, Z ≻ 0.(5)

To obtain a symmetrized form, we use the multiplication X(x) ◦ Z as follows

X(x) ◦ Z =
X(x)Z + ZX(x)

2
,

which will be used in the Newton method discussed later. It is known that X(x)◦Z = µI
is equivalent to the relation X(x)Z = ZX(x) = µI for any µ ≥ 0. By using this
multiplication, we also define the notation rS(w) by

rS(w, µ) =

 ∇xL(w)
g(x)

X(x) ◦ Z − µI

 ,(6)
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and we denote rS(w, 0) by r0S(w).
For U ∈ Sp, nonsingular P ∈ Rp×p and Q ∈ Rp×p, we define the operator

(P ⊙ Q)U =
1

2
(PUQT + QUP T )

and the symmetrized Kronecker product

(P ⊗S Q)svec(U) = svec((P ⊙ Q)U),

where the operator svec is defined by

svec(U) = (U11,
√

2U21, . . . ,
√

2Up1, U22,
√

2U32, . . . ,
√

2Up2, U33, . . . , Upp)
T ∈ Rp(p+1)/2.

We note that, for any U, V ∈ Sp,

〈U, V 〉 = tr(UV ) = svec(U)T svec(V )

and
∥U∥F = ∥svec(U)∥2

hold.
In the following, (v)i denotes the i-th element of the vector v. Let {ak} and {bk}

be sequences of vectors or matrices. If there exists a positive constant ξ0 such that
∥ak∥ ≤ ξ0∥bk∥ for all k and for some vector norm or some matrix norm, then we write
ak = O(∥bk∥). If there exist positive constants ξ1 and ξ2 such that ξ1∥bk∥ ≤ ∥ak∥ ≤ ξ2∥bk∥
for all k, then we write ak = Θ(∥bk∥). If ∥ak∥ → 0, ∥bk∥ → 0 and ∥ak∥/∥bk∥ → 0, we write
ak = o(∥bk∥). For vectors v, v1, v2 and matrices G,G1, G2, if v = v1 +v2 with ∥v2∥ = O(h)
or G = G1 +G2 with ∥G2∥ = O(h), we write v = v1 +O(h) or G = G1 +O(h) respectively.

3 Algorithm for finding a KKT point

In this section, we briefly describe a procedure for finding a KKT point by using the
BKKT conditions (4) and (5). We define the norms ∥r(w, µ)∥ and ∥rS(w, µ)∥ by

∥r(w, µ)∥ =

√∥∥∥∥(
∇xL(w)

g(x)

)∥∥∥∥2

2

+ ∥X(x)Z − µI∥2
F

and

∥rS(w, µ)∥ =

√∥∥∥∥(
∇xL(w)

g(x)

)∥∥∥∥2

2

+ ∥X(x) ◦ Z − µI∥2
F ,

respectively, where ∥ · ∥2 denotes the l2 norm for vectors and ∥ · ∥F denotes the Frobenius
norm for matrices. We also note that ∥rS(w, µ)∥ ≤ ∥r(w, µ)∥ is satisfied because of
∥X(x) ◦Z − µI∥F ≤ ∥X(x)Z − µI∥F . In what follows, we denote X(x) simply by X if it
is not confusing.

In the paper [23], the authors used the following algorithm SDPIP as an outer iteration
for solving the nonlinear SDP problem (1).

Algorithm SDPIP
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Step 0. (Initialize) Set ε > 0, Mc > 0 and k = 0. Let a positive sequence {µk} , µk ↓ 0
be given.

Step 1. (Termination) If ∥r0(wk)∥ ≤ ε, then stop.

Step 2. (Approximate BKKT point) Find an interior point wk+1 that satisfies the ap-
proximate BKKT condition

∥r(wk+1, µk)∥ ≤ Mcµk.

Step 3. (Update) Set k := k + 1 and go to Step 1. 2

In Step 2 of Algorithm SDPIP, an approximate BKKT point can be found by applying
the Newton-like method. As in the case of linear SDP problems, we define a scaling matrix
T ∈ Rp×p and scale the primal-dual pair (X(x), Z) by

X̃ = TXT T and Z̃ = T−T ZT−1

respectively. Let the Newton directions for the primal and dual variables by ∆x ∈ Rn

and ∆Z ∈ Sp, respectively, at the point w. We define ∆X =
∑n

i=1 ∆xiAi(x) and note
that ∆X ∈ Sp. We also scale ∆X and ∆Z by

∆X̃ = T∆XT T and ∆Z̃ = T−T ∆ZT−1.

Following [23], we consider the following scaled Newton equations

∇2
xL(w)∆x − A0(x)T ∆y −A∗(x)∆Z = −∇xL(x, y, Z)(7)

A0(x)∆x = −g(x)(8)
1

2
(∆X̃Z̃ + Z̃∆X̃ + X̃∆Z̃ + ∆Z̃X̃) = µI − 1

2
(X̃Z̃ + Z̃X̃).(9)

We denote the Newton equations above by

J̃S(w)∆w = −r̃S(w, µ),(10)

where J̃S(w) is a linear operator from Rn × Rm × Sp to Rn × Rm × Sp and r̃S(w, µ) is

obtained from (6) by replacing X ◦ Z by X̃ ◦ Z̃. If we choose T = I, we call the above

equations the unscaled Newton equations and use JS(w) instead of J̃S(w) in this case.

By using the operator ⊙ defined in Section 2, the matrices X̃, Z̃, ∆X̃ and ∆Z̃ can be
represented by

X̃ = (T ⊙ T )X, Z̃ = (T−T ⊙ T−T )Z,

∆X̃ = (T ⊙ T )∆X and ∆Z̃ = (T−T ⊙ T−T )∆Z.

We note that equation (9) can also rewritten by the expression

(Z̃ ⊙ I)∆X̃ + (X̃ ⊙ I)∆Z̃ = µI − X̃ ◦ Z̃.
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Thus, by using the operator svec and the symmetrized Kronecker product, the Newton
equations (7) – (9) are represented by the form ∇2

xL(w) −A0(x)T −A(x)T

A0(x) 0 0

(Z̃ ⊗S I)(T ⊗S T )A(x) 0 (X̃ ⊗S I)(T−T ⊗S T−T )

 ∆x
∆y

svec(∆Z)

(11)

=

 −∇xL(x, y, Z)
−g(x)

svec(µI − X̃ ◦ Z̃)

 ,

where
A(x) = [svec(A1(x)), . . . , svec(An(x))] ∈ Rp(p+1)/2×n.

We use the same notation J̃S(w) for the coefficient matrix in (11) for convenience. In

particular, we denote J̃S(w) by JS(w) in case of T = I.

In [23], it is shown that the direction ∆Z̃ ∈ Sp is given by the form

∆Z̃ = µX̃−1 − Z̃ − (X̃ ⊙ I)−1(Z̃ ⊙ I)∆X̃,

or equivalently

∆Z = µX−1 − Z − (T T ⊙ T T )(X̃ ⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )∆X,(12)

and the directions (∆x, ∆y) ∈ Rn × Rm satisfy(
∇2

xL(w) + H −A0(x)T

−A0(x) 0

) (
∆x
∆y

)
= −

(
∇f(x) − A0(x)T y − µA∗(x)X−1

−g(x)

)
,

where the elements of the matrix H are represented by the form

Hij =
〈
Ãi(x), (X̃ ⊙ I)−1(Z̃ ⊙ I)Ãj(x)

〉
(13)

with Ãi(x) = TAi(x)T T .
In [23], the authors also proposed the primal-dual merit function

F (x, Z) = FBP (x) + νFPD(x, Z)(14)

with

FBP (x) = f(x) − µ log(detX) + ρ∥g(x)∥1,

FPD(x, Z) = 〈X,Z〉 − µ log(detXdetZ),

where ν and ρ are positive parameters and ∥g(x)∥1 denotes the l1-norm of g(x), and
they proved the global convergence property within the line search strategy under the
assumption that the scaling matrix T was chosen so that X̃Z̃ = Z̃X̃ was satisfied.

In this paper, we are interested in the local behavior of the above Newton method.
For this purpose, we consider the three kinds of choices of the scaling matrix T , which
are given as follows:
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Choices of T
(i) We first consider the choice T = I, which corresponds to the AHO direction for linear
SDP problems [1]. We will discuss its superlinear convergence property in Section 5.

(ii) If we set T = X−1/2, then we have X̃ = I and Z̃ = X1/2ZX1/2, which corresponds to
HRVW/KSH/M direction for linear SDP problems [7, 10, 12]. We will discuss its two-step
superlinear convergence property in Section 6.1.

(iii) If we set T = W−1/2 with W = X1/2(X1/2ZX1/2)−1/2X1/2, then we have X̃ =

W−1/2XW−1/2 = W 1/2ZW 1/2 = Z̃, which corresponds to the NT direction for linear
SDP problems [13, 14]. We will discuss its two-step superlinear convergence property in
Section 6.2.

4 Preliminaries for analysis of local behavior

In this section, we briefly present some definitions that are necessary for analysis of local
behavior of our proposed methods.

First we introduce the definitions of the stationary point, the Mangasarian-Fromovitz
constraint qualification condition, the quadratic growth condition, the strict complemen-
tarity condition and the nondegeneracy condition, and then we give the second order
necessary / sufficient conditions for optimality. More comprehensive description can be
found in [2, 16, 17].

A point x∗ is said to be a stationary point of problem (1) if there exist Lagrange
multipliers (y, Z) such that (x∗, y, Z) satisfies the KKT conditions (2) and (3). Let Λ(x∗)
denote the set of Lagrange multipliers (y, Z) such that (x∗, y, Z) satisfies the KKT condi-
tions. We say that the Mangasarian-Fromovitz constraint qualification (MFCQ) condition
holds at a point x∗ if the matrix A0(x

∗) is of full rank and there exists a nonzero vector
v ∈ Rn such that

A0(x
∗)v = 0 and X(x∗) +

n∑
i=1

viAi(x
∗) ≻ 0

The second order necessary condition for local optimality of x∗ under the MFCQ
condition is given by

sup
(y,Z)∈Λ(x∗)

hT (∇2
xL(x∗, y, Z) + Ĥ(x∗, Z))h ≥ 0

for all h ∈ C(x∗). Here Ĥ(x, Z) is a matrix whose (i, j)-th element is

(Ĥ(x, Z))ij = 2tr(Ai(x)X(x)†Aj(x)Z)(15)

and † denotes the Moore-Penrose generalized inverse, and C(x∗) denotes the critical cone
of (1) at x∗, which is defined by

C(x∗) =

{
h | A0(x

∗)h = 0,
n∑

i=1

hiAi(x
∗) ∈ TSp

+
(X(x∗)), ∇f(x∗)T h = 0

}
,
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and TSp
+
(X(x∗)) denotes the tangent cone of Sp at X(x∗), which is defined by

TSp(X(x∗)) = {D | dist(X(x∗) + tD, Sp
+) = o(t), t ≥ 0},

where dist(P, Sp
+) = inf{∥P − Q∥F , Q ∈ Sp

+}, and Sp
+ denotes the set of p-th order sym-

metric positive semidefinite matrices.
It is said that the quadratic growth condition holds at a feasible point x∗ of problem

(1) if there exists c > 0 such that the following inequality holds

f(x) ≥ f(x∗) + c∥x − x∗∥2
2

for any feasible point x in a neighborhood of x∗. The quadratic growth condition implies
that x∗ is a strict local optimal solution of problem (1). Suppose that the MFCQ condition
holds. Then the quadratic growth condition holds if and only if the following second order
sufficient conditions for optimality are satisfied

sup
(y,Z)∈Λ(x∗)

hT (∇2
xL(x∗, y, Z) + Ĥ(x∗, Z))h > 0(16)

for all h ∈ C(x∗)\{0}.
We say that the strict complementarity condition holds at x∗ if there exists (y∗, Z∗) ∈

Λ(x∗) such that
rank(X(x∗)) + rank(Z∗) = p

is satisfied. Since the matrices X(x∗) and Z∗ commute, they can be simultaneously
diagonalized. Thus if the strict complementarity condition holds at x∗, we can assume
without loss of generality that the matrix X(x∗) and Z∗ are represented by

X(x∗) =

(
X∗

B 0
0 0

)
and Z∗ =

(
0 0
0 Z∗

N

)
(17)

respectively, where X∗
B and Z∗

N are diagonal and positive definite matrices with rank(X∗
B)+

rank(Z∗
N) = p. Corresponding to (17), we partition the matrices X(x) and Z as

X(x) =

(
XB XU

XT
U XN

)
and Z =

(
ZB ZU

ZT
U ZN

)
in the neighborhood of w∗ = (x∗, y∗, Z∗). Similarly, we partition the matrix Ai(x) as

Ai(x) =

(
ABi(x) AUi(x)
AUi(x)T ANi(x)

)
for i = 1, . . . , n. Then the critical cone at x∗ can be specifically represented by

C(x∗) =

{
h | A0(x

∗)h = 0,
n∑

i=1

hiANi(x
∗) = 0

}
.

We say that the nondegeneracy condition holds at x∗ if the n dimensional vectors

∇gi(x
∗), i = 1, . . . ,m and

 (AN1(x
∗))ij

...
(ANn(x∗))ij

 , i, j = 1, . . . , |N |
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are linearly independent, where |N | denotes the size of Z∗
N . If the strict complementarity

condition holds at x∗, then Λ(x∗) is a singleton if and only if the nondegeneracy condition
is satisfied. It is known that the nondegeneracy condition is stronger than the MFCQ
condition, i.e., if the nondegeneracy condition holds at x∗, then the MFCQ condition also
holds at x∗.

Throughout this paper, we make the following assumptions.

Assumptions

(A1) The second derivatives of the functions f , gi, i = 1, ...,m, and X are Lipschitz
continuous at x∗.

(A2) The second order sufficient condition (16) for optimality of problem (1) holds at
x∗.

(A3) The strict complementarity condition holds at x∗.

(A4) The nondegeneracy condition is satisfied at x∗.

2

We note that the set Λ(x∗) becomes a singleton, i.e., Λ(x∗) = {(y∗, Z∗)}, under as-
sumptions (A3) and (A4). In the following, we denote a KKT point (x∗, y∗, Z∗) by w∗.

Under assumptions (A1)-(A4), we can show the nonsingularity of the matrix JS(w) at
w∗ as follows.

Theorem 1 Suppose that assumptions (A1)-(A4) hold. Then the matrix JS(w∗) is non-
singular.

Proof. We prove this theorem by showing that JS(w∗)∆w = 0 implies ∆w = 0 for
∆w = (∆x, ∆y, ∆Z)T ∈ Rn × Rm × Sp instead of showing that

JS(w∗)

 ∆x
∆y

svec(∆Z)

 =

 0
0
0


implies that (∆x, ∆y, svec(∆Z))T = (0, 0, 0)T , because they are equivalent. For this
purpose, we consider the linear system of equations

∇2
xL(w∗)∆x − A0(x

∗)T ∆y −A∗(x∗)∆Z = 0(18)

A0(x
∗)∆x = 0(19)

∆XZ∗ + Z∗∆X + X∗∆Z + ∆ZX∗ = 0,(20)

where ∆X =
n∑

i=1

(∆x)iAi(x
∗). Following (17), we define diagonal and positive definite

matrices X∗
B and Z∗

N , and we denote ∆X and ∆Z by

∆X =

(
∆XB ∆XU

∆XT
U ∆XN

)
and ∆Z =

(
∆ZB ∆ZU

∆ZT
U ∆ZN

)
9



Then equation (20) can be written by the form(
X∗

B∆ZB + ∆ZBX∗
B ∆XUZ∗

N + X∗
B∆ZU

Z∗
N∆XT

U + ∆ZT
U X∗

B ∆XNZ∗
N + Z∗

N∆XN

)
= 0.(21)

Since
(X∗

B)−1∆ZBX∗
B = −∆ZB = −∆ZT

B = X∗
B∆ZB(X∗

B)−1,

we have
∆ZB(X∗

B)2 = (X∗
B)2∆ZB,

which implies that ∆ZBX∗
B = X∗

B∆ZB. Thus the (1,1) block of equation (21) yields
∆ZB = 0. Similarly we have ∆XN = 0 from the (2,2) block of (21), which implies that

n∑
i=1

(∆x)iANi(x
∗) = 0. Since A0(x

∗)∆x = 0 is satisfied, we have ∆x ∈ C(x∗).

Furthermore by the (1,2) block of (21), we obtain

∆ZU = −(X∗
B)−1∆XUZ∗

N .(22)

By premultiplying (18) by ∆xT and using (19), we have

∆xT∇2
xL(w∗)∆x − ∆xTA∗(x∗)∆Z = 0(23)

Since the following relations hold

∆xTA∗(x∗)∆Z = tr(∆X∆Z)

= tr

(
∆XB ∆XU

∆XT
U 0

)(
0 ∆ZU

∆ZT
U ∆ZN

)
= 2tr(∆XU∆ZT

U ),

equation (22) implies

∆xTA∗(x∗)∆Z = −2tr(∆XUZ∗
N∆XT

U (X∗
B)−1).

On the other hand, the definition of Ĥ(x, Z) in (15) gives

∆xT Ĥ(x∗, Z∗)∆x = 2
n∑

i=1

n∑
j=1

tr(Ai(x
∗)X(x∗)†Aj(x

∗)Z∗)(∆x)i(∆x)j

= 2tr(∆XX(x∗)†∆XZ∗)

= 2tr

(
0 ∆XB(X∗

B)−1∆XUZ∗
N

0 ∆XT
U (X∗

B)−1∆XUZ∗
N

)
= 2tr(∆XUZ∗

N∆XT
U (X∗

B)−1).

Then equation (23) yields

∆xT
(
∇2

xL(w∗) + Ĥ(x∗, Z∗)
)

∆x = 0.
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Since ∆x ∈ C(x∗), the second order sufficient condition (16) yields ∆x = 0, which implies
∆ZU = 0. By (18), we have

A0(x
∗)T ∆y + A∗(x∗)

(
0 0
0 ∆ZN

)
= 0,

which implies that

m∑
i=1

(∆y)i∇gi(x
∗) +

|N |∑
i,j=1

(∆ZN)ji

 (AN1(x
∗))ij

...
(ANn(x∗))ij

 = 0,

because the l -th element of the vector A∗(x∗)

(
0 0
0 ∆ZN

)
is given by tr(ANl(x

∗)∆ZN) =∑|N |
i,j=1(ANl(x

∗))ij(∆ZN)ji. Thus the nondegeneracy condition yields ∆y = 0 and ∆ZN =
0. Therefore we obtain (∆x, ∆y, ∆Z) = (0, 0, 0), and then we prove the theorem. 2

In the following, we will discuss local behavior of the unsymmetric residual r0(w) in
(2) or r(w, µ) in (4). For this purpose, we define a linear operator J : Rn × Rm × Sp →
Rn × Rm × Rp×p at w by

J(w)∆w =

 ∇2
xL(w)∆x − A0(x)T ∆y −A∗(x)∆Z

A0(x)∆x
∆XZ + X∆Z


for ∆w = (∆x, ∆y, ∆Z) ∈ Rn ×Rm ×Sp, which is an estimate of the first order change of
r0(w + ∆w) or r(w + ∆w, µ). We note that J(w)∆w can be represented by the matrix-
vector form:

J(w)∆w =

 ∇2
xL(w) −A0(x)T −A(x)T

A0(x) 0 0
(Z ⊗ I)MT A(x) 0 (I ⊗ X)MT

  ∆x
∆y

svec(∆Z)

 ,(24)

where Z ⊗ I ∈ Rp2×p2
and I ⊗X ∈ Rp2×p2

denote the Kronecker products of Z and I, and
I and X, respectively, and M is an p(p + 1) × p2 matrix such that Mvec(U) = svec(U)
and MT svec(U) = vec(U) hold for all U ∈ Sp (see Appendix of [20]). Here the operator
vec is defined by

vec(U) = (U11, U21, . . . , Up1, U12, . . . , Upp)
T ∈ Rp2

.

We also use the same notation J(w) for the rectangular coefficient matrix in (24) for
convenience.

In the same way as the proof of the preceding theorem, we can show the nonsingularity
of the linear operator J(w) at w∗.

Corollary 1 Suppose that assumptions (A1)-(A4) hold. Then the matrix J(w∗) is left
invertible.

11



We note that the related analysis can be found in [3] and [18].

The following lemma will be a useful tool in the subsequent sections.

Lemma 1 Suppose that assumptions (A1)-(A4) hold and that w is sufficiently close to
w∗. Let µ be zero or a sufficiently small positive number. Then there exists a continuously
differentiable function w̄(µ) = (x̄(µ), ȳ(µ), Z̄(µ)) such that

w̄(0) = w∗, r(w̄(µ), µ) = rS(w̄(µ), µ) = 0 for µ ≥ 0,(25)

and
X̄(µ) ≻ 0 and Z̄(µ) ≻ 0 for µ > 0,(26)

where X̄(µ) =
n∑

i=1

(x̄(µ))iAi(x̄(µ)).

Furthermore, if w is sufficiently close to w̄(µ), then the following relation holds

r(w, µ) = Θ(∥w − w̄(µ)∥) and rS(w, µ) = Θ(∥w − w̄(µ)∥) for µ ≥ 0.(27)

Proof. Since JS(w∗) is nonsingular by Theorem 1, the implicit function theorem and
assumption (A1) guarantee (25), and JS(w̄(µ)) is nonsingular. Furthermore, the facts
X̄(µ)Z̄(µ) = µI, X̄(0) = X(x∗) and Z̄(0) = Z∗ guarantee (26), where X(x∗) and Z∗ are
defined in (17).

It follows that

rS(w, µ) = rS(w̄(µ), µ) + JS(w̄(µ))(w − w̄(µ)) + O(∥w − w̄(µ)∥2)

= JS(w̄(µ))(w − w̄(µ)) + O(∥w − w̄(µ)∥2),

and then the nonsingularity of JS(w̄(µ)) guarantees rS(w, µ) = Θ(∥w− w̄(µ)∥). Similarly
we obtain r(w, µ) = Θ(∥w − w̄(µ)∥).

Therefore the proof is complete. 2

We note that the preceding lemma also implies r0(w) = Θ(∥r0S(w)∥).

5 Superlinear convergence of unscaled Newton method

In this section, we consider the local behavior of the unscaled Newton method, which is
the case Tk = I. Then the Newton equations (10) can be represented by

JS(w)∆w = −rS(w, µ).(28)

In the following, we present our algorithm and show its superlinear convergence prop-
erty.

Algorithm unscaledSDPIP

Step 0. (Initialize) Set ε > 0 and 0 < τ < 1. Choose w0 ∈ Rn × Rm × Sp (X(x0) ≻
0, Z0 ≻ 0). Set k = 0.

12



Step 1. (Termination) If ∥r0(wk)∥ ≤ ε, then stop.

Step 2. (Newton step) Choose a barrier parameter µk such that

µk = ξk∥r0(wk)∥1+τ(29)

with ξk = Θ(1). Calculate the direction ∆wk by solving the Newton equations (28).
Set wk+1 = wk + ∆wk.

Step 3. (Update) Set k := k + 1 and go to Step 1.

By Theorem 1, if the iterate wk is sufficiently close to w∗, the Jacobian matrix JS(wk)
is nonsingular and its inverse is uniformly bounded. Thus the Newton equations have a
unique solution and the following relations hold

∆wk = Θ(∥rS(wk, µk)∥) = O(∥r0S(wk)∥) + O(µk) = O(∥r0(wk)∥),(30)

where the last equality can be obtained by equation (29).
We give a lemma which plays an important role in showing superlinear convergence

property of Algorithm unscaledSDPIP.

Lemma 2 Suppose that assumptions (A1)-(A4) hold. Assume that w is an interior
point which is sufficiently close to w∗ and satisfies the approximate BKKT condition
∥r(w, µ−)∥ ≤ Mcµ− for a given positive number µ−, where Mc is a constant satisfying
0 < Mc < 1. Let µ be a positive number defined by

µ = ξ∥r0(w)∥1+τ

with ξ = Θ(1), where τ is a constant satisfying 0 < τ < 1. If ∆w satisfies the Newton
equations (28), then the new iterate w + ∆w satisfies

∥r(w + ∆w, µ)∥ ≤ Mcµ, X(x + ∆x) ≻ 0 and Z + ∆Z ≻ 0.(31)

Proof. Let the eigenvalues of the matrix X(x+α∆x)◦ (Z +α∆Z) be λ1(α) ≤ . . . ≤ λp(α)
for any α ∈ [0, 1]. Since ∆X = O(∥r0(w)∥) and ∆Z = O(∥r0(w)∥) hold by (30), we have

X(x + α∆x) ◦ (Z + α∆Z) = (X(x) + α∆X + α2O(∥r0(w)∥2)) ◦ (Z + α∆Z)

= X(x) ◦ Z + α(∆X ◦ Z + X(x) ◦ ∆Z) + α2O(∥r0(w)∥2)

= X(x) ◦ Z + α(µI − X(x) ◦ Z) + α2O(∥r0(w)∥2)

= (1 − α)X(x) ◦ Z + αµI + α2O(∥r0(w)∥2).

Thus we have that

∥X(x + α∆x) ◦ (Z + α∆Z) − ((1 − α)µ− + αµ)I∥F

≤ (1 − α)∥X(x) ◦ Z − µ−I∥F + α2O(∥r0(w)∥2)

≤ (1 − α)∥X(x)Z − µ−I∥F + α2O(∥r0(w)∥2)

≤ (1 − α)Mcµ− + α2O(∥r0(w)∥2)

≤ Mc((1 − α)µ− + αµ).(32)

13



The last inequality follows from the definition of µ. By combining (32) and the following
relation

∥X(x + α∆x) ◦ (Z + α∆Z) − ((1 − α)µ− + αµ)I∥2
F =

p∑
i=1

(λi(α) − ((1 − α)µ− + αµ))2,

we have

(λi(α) − ((1 − α)µ− + αµ))2 ≤ M2
c ((1 − α)µ− + αµ)2 for i = 1, . . . , p.

Then we obtain

0 < (1 − Mc)((1 − α)µ− + αµ)) ≤ λi(α) for i = 1, . . . , p.

Thus the matrix X(x+α∆x)◦ (Z +α∆Z) is symmetric positive definite for all α ∈ [0, 1].
Since the matrices X(x) and Z are symmetric positive definite, the above results imply
that the matrices X(x + α∆x) and Z + α∆Z are also symmetric positive definite for all
α ∈ [0, 1]. This guarantees that w + ∆w is an interior point.

It follows from the Newton equation and equation (30) that

∥rS(w + ∆w, µ)∥ = Θ(∥rS(w, µ) + JS(w)∆w + O(∥∆w∥2)∥)
= O(∥∆w∥2)

= O(∥r0(w)∥2).

Thus Lemma 1 yields

∥r(w + ∆w, µ)∥ = O(∥r0(w)∥2)

= o(∥r0(w)∥1+τ )

= o(µ)

≤ Mcµ,

which proves (31).
Therefore the proof of this theorem is complete. 2

We note that in the previous lemma, a positive number µ− can be arbitrarily chosen.
Now we show the superlinear convergence of Algorithm unscaledSDPIP in the following

theorem.

Theorem 2 Suppose that assumptions (A1)-(A4) hold. Assume that an initial inte-
rior point w0 is sufficiently close to w∗ such that the approximate BKKT condition
∥r(w0, µ−1)∥ ≤ Mcµ−1 is satisfied for given µ−1 > 0 and 0 < Mc < 1. Then the se-
quence {wk} generated by Algorithm unscaledSDPIP satisfies

∥r(wk, µk−1)∥ ≤ Mcµk−1, X(xk) ≻ 0 and Zk ≻ 0(33)

for all k ≥ 0 and converges locally and superlinearly to w∗.
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Proof. To prove this theorem by the mathematical induction, we assume that (33) holds
at wk. Then it follows directly from Lemma 2 that the next point wk+1 also satisfies (33).
Thus we have

∥r0(wk+1)∥ =

∥∥∥∥∥∥r(wk+1, µk) +

 0
0

µkI

∥∥∥∥∥∥ ≤ (Mc +
√

n)µk.

Similarly we have

∥r0(wk+1)∥ ≥

∥∥∥∥∥∥
 0

0
µkI

∥∥∥∥∥∥ − ∥r(wk+1, µk)∥ ≥ (
√

n − Mc)µk.

The above two inequalities and (29) imply that

∥r0(wk+1)∥ = Θ(∥r0(wk)∥1+τ ).

It follows from (27) and (30) that if wk is sufficiently close to w∗, then the following hold

∥wk+1 − w∗∥ ≤ ∥wk − w∗∥ + ∥∆wk∥
= ∥wk − w∗∥ + O(∥r0(wk)∥)
= O(∥wk − w∗∥).

Thus wk+1 is also sufficiently close to w∗, and we obtain by (27)

∥wk+1 − w∗∥ = Θ(∥r0(wk+1)∥) = Θ(∥r0(wk)∥1+τ ) = Θ(∥wk − w∗∥1+τ ).

Therefore the local and superlinear convergence property is proved. 2

6 Two-step superlinear convergence of scaled New-

ton method

In this section, we discuss local and superlinear convergence properties of interior point
methods that use the scaled Newton equations. Specifically we show local and two-step
superlinear convergence properties of two kinds of primal-dual interior point methods
which use the HRVW/KSH/M and the NT directions.

We first prove the following lemma that estimates the inverse matrices of X(x) and
Z.

Lemma 3 Suppose that assumptions (A1) – (A4) hold and that w is an interior point
which is sufficiently close to w∗. Assume that ∥r(w, µ)∥ = o(µ) is satisfied for a positive
number µ. Then the following relations hold

X(x) =

(
XB XU

XT
U XN

)
=

(
Θ(1) O(µ)
O(µ) Θ(µ)

)
,
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Z =

(
ZB ZU

ZT
U ZN

)
=

(
Θ(µ) O(µ)
O(µ) Θ(1)

)
,

X(x)−1 =

(
Θ(1) O(1)
O(1) Θ(µ−1)

)
= O(µ−1) and Z−1 =

(
Θ(µ−1) O(1)
O(1) Θ(1)

)
= O(µ−1).

Proof. Since X(x) and Z are sufficiently close to X(x∗) =

(
X∗

B 0
0 0

)
and Z∗ =

(
0 0
0 Z∗

N

)
,

respectively, it is clear that XB = Θ(1) and ZN = Θ(1). Since the following hold

w − w∗ = J(w∗)−1r0(w) + O(∥w − w∗∥2)

= O(∥r(w, µ)∥) + O(µ) + O(∥w − w∗∥2)

= O(µ) + O(∥w − w∗∥2),

we have
w − w∗ = O(µ),

and then we obtain

X(x) =

(
Θ(1) O(µ)
O(µ) O(µ)

)
and Z =

(
O(µ) O(µ)
O(µ) Θ(1)

)
.

It follows from the relation r(w, µ) = o(µ) that

XBZB + XUZT
U − µI = o(µ),

which yields
XBZB = µI + o(µ).

Thus we obtain
ZB = µX−1

B + o(µ) = Θ(µ).

Similarly we have
XN = Θ(µ).

Therefore we obtain

X(x) =

(
Θ(1) O(µ)
O(µ) Θ(µ)

)
and Z =

(
Θ(µ) O(µ)
O(µ) Θ(1)

)
.

Next we estimate the inverse matrices X(x)−1 and Z−1. Setting

R = XN − XT
U X−1

B XU ,

we have

X(x)−1 =

(
X−1

B + X−1
B XUR−1XT

U X−1
B −X−1

B XUR−1

−R−1XT
U X−1

B R−1

)
.

Noting that R = Θ(µ) + Θ(1)O(µ2) = Θ(µ) and then R−1 = Θ(µ−1), we obtain

X(x)−1 =

(
Θ(1) + O(µ2)Θ(µ−1) Θ(µ−1)O(µ)

Θ(µ−1)O(µ) Θ(µ−1)

)
=

(
Θ(1) O(1)
O(1) Θ(µ−1)

)
= O(µ−1).
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Similarly we have

Z−1 =

(
Θ(µ−1) O(1)
O(1) Θ(1)

)
= O(µ−1).

Therefore the proof is complete. 2

In the following, we present the algorithm called scaledSDPIP which calculates a KKT
point by using the scaled Newton method.

Algorithm scaledSDPIP

Step 0. (Initialize) Set ε > 0 and 0 < τ < 1. Choose w0 ∈ Rn × Rm × Sp (X(x0) ≻
0, Z0 ≻ 0). Set k = 0.

Step 1. (Termination) If ∥r0(wk)∥ ≤ ε, then stop.

Step 2. (Scaled Newton steps)

Step 2.1 Choose µk = ξk∥r0(wk)∥1+τ with ξk = Θ(1).

Step 2.2 Calculate the direction ∆wk by solving the scaled Newton equations
J̃S(wk)∆wk = −r̃S(wk, µk) at wk. Set wk+ 1

2
= wk + ∆wk.

Step 2.3 Calculate the direction ∆wk+ 1
2

by solving the scaled Newton equations

J̃S(wk+ 1
2
)∆wk+ 1

2
= −r̃S(wk+ 1

2
, µk) at wk+ 1

2
. Set wk+1 = wk+ 1

2
+ ∆wk+ 1

2
.

Step 3. (Update) Set k := k + 1 and go to Step 1.

Now we prove two-step superlinear convergence of Algorithm scaledSDPIP. In the
following, we will consider two kinds of scaled Newton methods. In Section 6.1, we first
deal with the scaled Newton method with Tk = X

−1/2
k (HRVW/KSH/M direction), and

then in Section 6.2, we deal with the scaled Newton method with Tk = W
−1/2
k (NT

direction).

6.1 Scaled Newton method with Tk = X
−1/2
k

For the choice of Tk = X
−1/2
k , we have

X̃k = I, Z̃k = X
1/2
k ZkX

1/2
k

and (12) and (13) reduce to

∆Zk = µkX
−1
k − Zk −

1

2
(X−1

k ∆XkZk + Zk∆XkX
−1
k ).(34)

and
(Hk)ij = tr

(
Ai(xk)X

−1
k Aj(xk)Zk

)
.

The following lemma estimates the Newton step ∆wk near the solution w∗.

17



Lemma 4 Suppose that assumptions (A1)–(A4) hold. Let τ ′ be a positive constant. Sup-
pose that w is an interior point which is sufficiently close to w∗ and that r(w, µ−) =
O(µ1+τ ′

− ) is satisfied for a positive number µ−. Let µ be a positive number. Then the
Newton step from J̃S(w)∆w = −r̃S(w, µ) satisfies

∆w = O(∥r(w, µ)∥).

Proof. By letting E = XZ − µ−I, we have

XZ∆XX−1 = ∆XZ + E∆XX−1 − ∆XX−1E.

Thus equation (34) yields

X∆Z = µI − XZ − 1

2
(∆XZ + XZ∆XX−1)

= µI − XZ − ∆XZ − 1

2
(E∆XX−1 − ∆XX−1E),

which implies that

X∆Z + ∆XZ = µI − XZ − 1

2
(E∆XX−1 − ∆XX−1E).(35)

By transposing the matrices in the both sides above, we have

Z∆X + ∆ZX = µI − ZX − 1

2
(X−1∆XET − (X−1E)T ∆X).

By adding the above two equations, we obtain

X∆Z + ∆XZ + Z∆X + ∆ZX

= 2µI − (XZ + ZX) − 1

2
(E∆XX−1 + X−1∆XET ) +

1

2
(∆XX−1E + (X−1E)T ∆X)),

which implies that

X∆Z + ∆XZ + Z∆X + ∆ZX + (E ⊙ X−1)∆X − (I ⊙ X−1E)∆X(36)

= 2µI − (XZ + ZX).

We write equations (7), (8) and (36) by

J ′
S(w)∆w = −rS(w, µ).(37)

We note that any solution to the Newton equations J̃S(w)∆w = −r̃S(w, µ) satisfies the
linear system of equations (37).

Now we prove the nonsingularity of J ′
S(w). Since equation (36) implies

J ′
S(w) − JS(w) =

 0 0 0
0 0 0

(E ⊗S X−1 − I ⊗S X−1E)A(x) 0 0

 ,
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we have

∥J ′
S(w) − JS(w)∥F ≤ ∥(E ⊗S X−1)A(x)∥F + ∥(I ⊗S X−1E)A(x)∥F .

Since Lemma 3 and the definition of E imply X−1 = O(µ−1
− ) and E = O(µ1+τ ′

− ), and each
Ai(x) is bounded, we have

∥(E ⊗S X−1)A(x)∥F ≤ ∥E ⊗S X−1∥F∥A(x)∥F

= O(∥E ⊗ X−1 + X−1 ⊗ E∥F )

= O(∥E∥F )∥O(∥X−1∥F )

= O(µ1+τ ′

− )O(µ−1
− )

= O(µτ ′

−).

Similarly we have
∥(I ⊗S X−1E)A(x)∥F = O(µτ ′

−).

Thus it follows from the inequalities above that

∥J ′
S(w) − JS(w)∥F = O(µτ ′

−).

Since w is sufficiently close to w∗, the matrix JS(w) is nonsingular and its inverse matrix
is uniformly bounded, so is the matrix J ′

S(w). Thus equation (37) guarantees that ∆w =
Θ(∥rS(w, µ)∥) = O(∥r(w, µ)∥) hold. Therefore the lemma is proved. 2

We give the following theorem, which plays an important role in showing superlinear
convergence property of Algorithm scaledSDPIP.

Lemma 5 Suppose that assumptions (A1)-(A4) hold and that w is an interior point which
is sufficiently close to w∗. Let Mc be a positive constant, and let τ and τ ′ be positive
constants that satisfy

1 > τ ′ > τ and τ ′ >
2τ

1 − τ
.

Let µ− be a given number that satisfies(
1

2Mc

)1/τ ′

≥ µ− > 0.(38)

Assume that w satisfies the approximate BKKT condition

∥r(w, µ−)∥ ≤ Mcµ
1+τ ′

− .(39)

Let µ be a positive number defined by

µ = ξ∥r0(w)∥1+τ(40)

with ξ = Θ(1). If ∆w is obtained by solving the scaled Newton equations J̃S(w)∆w =
−r̃S(w, µ), then the iterate w 1

2
= w + ∆w satisfies

r(w 1
2
, µ) = O(µ1+ τ ′−τ

1+τ ), X(x 1
2
) ≻ 0 and Z 1

2
≻ 0.
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Furthermore, if ∆w 1
2

is obtained by solving the scaled Newton equations J̃S(w 1
2
)∆w 1

2
=

−r̃S(w 1
2
, µ), then the iterate w+ = w 1

2
+ ∆w 1

2
satisfies

∥r(w+, µ)∥ ≤ Mcµ
1+τ ′

, X(w+) ≻ 0 and Z+ ≻ 0.(41)

Proof. We first note that condition (39) yields r0(w) = Θ(µ−). We let the eigenvalues of
the matrix X(x + α∆x) ◦ (Z + α∆Z) be λ1(α) ≤ . . . ≤ λp(α) for each α ∈ [0, 1]. Since
∥X ◦ Z − µ−I∥F ≤ ∥XZ − µ−I∥F ≤ Mcµ

1+τ ′

− , we have

(λi(0) − µ−)2 ≤
p∑

j=1

(λj(0) − µ−)2 ≤ (Mcµ
1+τ ′

− )2,

which implies by (38)

λi(0) ≥ µ− − Mcµ
1+τ ′

− ≥ 1

2
µ− > 0, i = 1, . . . , p.(42)

Let E = XZ − µ−I. Then condition (39) and Lemma 3 guarantee

E = O(µ1+τ ′

− ), X−1 = O(µ−1
− )

and Lemma 4 and (40) imply

∆X = O(∥r(w, µ)∥) = O(∥r0(w)∥) + O(µ) = O(∥r0(w)∥) = O(µ−).

Similarly we have
∆Z = O(µ−).

Since equation (35) yields

X(x + α∆x)(Z + α∆Z)

= (X(x) + α∆X + α2O(µ2
−))(Z + α∆Z)

= X(x)Z + α(∆XZ + X(x)∆Z) + α2O(µ2
−)

= X(x)Z + α(µI − X(x)Z) + αO(∥E∥F )O(∥X−1∥F )O(∥∆X∥F ) + α2O(µ2
−)

= (1 − α)X(x)Z + αµI + αO(µ1+τ ′

− ) + α2O(µ2
−)

= (1 − α)X(x)Z + αµI + αO(µ1+τ ′

− ),(43)

we have

∥X(x + α∆x) ◦ (Z + α∆Z) − (1 − α)X ◦ Z − αµI∥F = αO(µ1+τ ′

− ).

By considering the eigenvalues λ1(α) ≤ . . . ≤ λp(α) of the matrix X(x + α∆x) ◦ (Z +
α∆Z) and the eigenvalues (1 − α)λ1(0) + αµ ≤ . . . ≤ (1 − α)λp(0) + αµ of the matrix
(1 − α)X ◦ Z + αµI, we obtain the following inequality

p∑
i=1

|λi(α) − (1 − α)λi(0) − αµ|2

≤ ∥X(x + α∆x) ◦ (Z + α∆Z) − (1 − α)X ◦ Z − αµI∥2
F
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by the Hoffman and Wielandt theorem (see p.104 of [21] for example). Thus the above
relations yield

αO(µ1+τ ′

− ) = ∥X(x + α∆x) ◦ (Z + α∆Z) − (1 − α)X ◦ Z − αµI∥F(44)

≥ |λi(α) − (1 − α)λi(0) − αµ|
≥ (1 − α)λi(0) + αµ − |λi(α)|

for i = 1, . . . , p. In order to prove λ1(α) > 0 for all α ∈ (0, 1], we suppose that there
exists α̂ satisfying λ1(α̂) = 0 and α̂ ∈ (0, 1]. Then by (42), we have

1

2
(1 − α̂)µ− + α̂µ ≤ (1 − α̂)λ1(0) + α̂µ − |λ1(α̂)| ≤ α̂O(µ1+τ ′

− ),

which yields a contradiction because of µ = Θ(∥r0(w)∥1+τ ) = Θ(µ1+τ
− ) and 1 > τ ′ > τ .

Thus we obtain X(x+α∆x)◦(Z+α∆Z) ≻ 0, and then X(x+α∆x) ≻ 0 and Z+α∆Z ≻ 0
for all α ∈ [0, 1]. By setting α = 1 in (43), we have

∥X 1
2
Z 1

2
− µI∥F = O(µ1+τ ′

− ) = O(µ1+ τ ′−τ
1+τ ),(45)

where X 1
2

= X(x 1
2
). Furthermore, the Newton equations yield

∇xL(w + ∆w) = O(∥∆w∥2) and g(w + ∆w) = O(∥∆w∥2).(46)

On the other hand, Lemma 4 and the definition of µ yield ∆w = O(∥r(w, µ)∥) =
O(∥r0(w)∥). Thus equations (45) and (46) imply that the following relation holds

r(w 1
2
, µ) = O(µ1+ τ ′−τ

1+τ ),(47)

which proves the first part of this theorem.
Next we show that (41) is satisfied. In the same way as above, we can show the

second part of this theorem. In fact, µ and τ ′−τ
1+τ

in (47) correspond to µ− and τ ′ in (39),
respectively. Let the eigenvalues of the matrix X(x 1

2
+ α∆x 1

2
) ◦ (Z 1

2
+ α∆Z 1

2
) be λ′

1(α) ≤

. . . ≤ λ′
p(α) for each α ∈ [0, 1]. Since ∥X 1

2
◦ Z 1

2
− µI∥F ≤ ∥X 1

2
Z 1

2
− µI∥F ≤ ηµ1+ τ ′−τ

1+τ for
some positive number η, we have

λ′
i(0) ≥ 1

2
µ > 0, i = 1, . . . , p(48)

as described in (42). Let E 1
2

= X 1
2
Z 1

2
− µI. Equation (45) and Lemma 3 imply

E 1
2

= O(µ1+ τ ′−τ
1+τ ) and X−1

1
2

= O(µ−1), and Lemma 4 and equation (47) imply

∆w 1
2

= O(∥r(w 1
2
, µ)∥) = O(µ1+ τ ′−τ

1+τ ).

Thus equation (35) yields

X(x 1
2

+ α∆x 1
2
)(Z 1

2
+ α∆Z 1

2
)

= X(x 1
2
)Z 1

2
+ α(µI − X(x 1

2
)Z 1

2
) + αO(∥E 1

2
∥F )O(∥X−1

1
2

∥F )O(∥∆X 1
2
∥F )

+α2O(µ2(1+ τ ′−τ
1+τ

))

= (1 − α)X(x 1
2
)Z 1

2
+ αµI + αO(µ1+2 τ ′−τ

1+τ ) + α2O(µ2(1+ τ ′−τ
1+τ

))

= (1 − α)X(x 1
2
)Z 1

2
+ αµI + αO(µ1+2 τ ′−τ

1+τ ),(49)
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which corresponds to (43). Thus as in (44), we have

αO(µ1+2 τ ′−τ
1+τ ) ≥ (1 − α)λ′

i(0) + αµ − |λ′
i(α)|

for i = 1, . . . , p. In order to prove λ′
1(α) > 0 for all α ∈ (0, 1], we suppose that there

exists α̂ satisfying λ′
1(α̂) = 0 and α̂ ∈ (0, 1]. Then by (48), we have

1

2
(1 − α̂)µ + α̂µ ≤ O(µ1+2 τ ′−τ

1+τ ),

which yields a contradiction. Thus the fact X(x 1
2

+ α∆x 1
2
) ◦ (Z 1

2
+ α∆Z 1

2
) ≻ 0 implies

X(x 1
2

+ α∆x 1
2
) ≻ 0 and Z 1

2
+ α∆Z 1

2
≻ 0 for all α ∈ [0, 1], which means that w+ is an

interior point. Setting α = 1 in (49) and using the condition τ ′ > 2τ/(1 − τ) yield

∥X(x 1
2

+ ∆x 1
2
)(Z 1

2
+ ∆Z 1

2
) − µI∥F = O(µ1+2 τ ′−τ

1+τ ) = o(µ1+τ ′
) ≤ Mcµ

1+τ ′
.(50)

Furthermore, the Newton equations yield

∇xL(w 1
2

+ ∆w 1
2
) = O(∥∆w 1

2
)∥2) = O(µ2(1+ τ ′−τ

1+τ
))(51)

and
g(w 1

2
+ ∆w 1

2
) = O(∥∆w 1

2
)∥2) = O(µ2(1+ τ ′−τ

1+τ
)).(52)

Thus equations (50) - (52) imply that the following relation holds

∥r(w+, µ)∥ ≤ Mcµ
1+τ ′

,

which proves the second part of this theorem.
Therefore the proof of this theorem is complete. 2

Now we show the two-step superlinear convergence of Algorithm scaledSDPIP in the
following theorem.

Theorem 3 Suppose that assumptions (A1)-(A4) hold. Let Mc be a positive constant,
and let τ and τ ′ be positive constants that satisfy

1 > τ ′ > τ and τ ′ >
2τ

1 − τ
.

Let µ−1 be a given number that satisfies(
1

2Mc

)1/τ ′

≥ µ−1 > 0.

Assume that an initial interior point w0 is sufficiently close to w∗ such that the approx-
imate BKKT condition ∥r(w0, µ−1)∥ ≤ Mcµ

1+τ ′

−1 is satisfied. Then the sequence {wk}
generated by Algorithm scaledSDPIP with Tk = X

−1/2
k satisfies

∥r(wk, µk−1)∥ ≤ Mcµ
1+τ ′

k−1 , X(xk) ≻ 0 and Zk ≻ 0

for all k ≥ 0 and converges two-step superlinearly to w∗ in the sense that

∥wk + ∆wk + ∆wk+ 1
2
− w∗∥ = O(∥wk − w∗∥1+τ ′

) for all k.

We can prove this theorem in the same way as the proof of Theorem 2, so we omit it.
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6.2 Scaled Newton method with Tk = W
−1/2
k

Next we consider the case Tk = W
−1/2
k given in Section 3, where the matrix Wk is defined

by
Wk = X

1/2
k (X

1/2
k ZkX

1/2
k )−1/2X

1/2
k .

We will also show that the point wk+1 = wk + ∆wk + ∆wk+ 1
2

satisfies ∥r(wk+1, µk)∥ ≤
Mcµ

1+τ ′

k if ∥r(wk, µk−1)∥ ≤ Mcµ
1+τ ′

k−1 holds. This implies the two-step superlinear conver-
gence.

For the choice of Tk, we have

X̃k = Z̃k (i.e. W−1
k XkW

−1
k = Zk)

and (12) and (13) reduce to

∆Zk = µkX
−1
k − Zk − W−1

k ∆XkW
−1
k(53)

and
(Hk)ij = tr

{
Ai(xk)W

−1
k Aj(xk)W

−1
k

}
.

The following lemma estimates the Newton step ∆wk near the solution w∗.

Lemma 6 Suppose that assumptions (A1)–(A4) hold. Let τ ′ be a positive constant. Sup-
pose that w is an interior point which is sufficiently close to w∗ and that r(w, µ−) =
O(µ1+τ ′

− ) is satisfied for a positive number µ−. Let µ be a positive number. Then the
Newton step of J̃S(w)∆w = −r̃S(w, µ) satisfies the following relation

∆w = O(∥r(w, µ)∥).

Proof. By letting E = XZ − µ−I, we have

X−1 = µ−1
− (Z − X−1E).(54)

It follows from the definition of W that

W−1 = X−1/2(X1/2ZX1/2)1/2X−1/2

= µ
1/2
− X−1/2(I + µ−1

− X−1/2EX1/2)1/2X−1/2

= µ
1/2
− X−1/2

(
I +

1

2
µ−1
− X−1/2EX1/2 + M

)
X−1/2

= µ
1/2
− X−1 +

1

2
µ
−1/2
− X−1E + µ

1/2
− X−1/2MX−1/2,(55)

where
M = O(µ−2

− ∥X−1/2EX1/2∥2
F ) = O(µ−2

− ∥E∥2
F ).

The last equality can be obtained from the fact ∥X−1/2EX1/2∥F = ∥E∥F . Substituting
(54) into (55) yields

W−1 = µ
−1/2
− Z − 1

2
µ
−1/2
− X−1E + µ

1/2
− X−1/2MX−1/2.(56)

23



Since we have by (54) and (56)

XW−1∆XW−1

=

(
µ−∆X +

1

2
E∆X + µ−X1/2MX−1/2∆X

)(
µ−1
− Z − 1

2
µ−1
− X−1E + X−1/2MX−1/2

)
,

equation (53) yields

X∆Z = µI − XZ − XW−1∆XW−1

= µI − XZ − {∆XZ − 1

2
∆XX−1E + µ−∆X(X−1/2MX1/2)X−1 +

1

2
µ−1
− E∆XZ

−1

4
µ−1
− E∆XX−1E +

1

2
E∆X(X−1/2MX1/2)X−1 + (X1/2MX−1/2)∆XZ

−1

2
(X1/2MX−1/2)∆XX−1E + µ−(X1/2MX−1/2)∆X(X−1/2MX1/2)X−1}

= µI − XZ − ∆XZ + O(µτ ′

−)O(∥∆X∥F ),

because Lemma 3 implies X−1 = O(µ−1
− ), and we have E = O(µ1+τ ′

− ) and M = O(µ2τ ′
− ).

This implies that

X∆Z + ∆XZ = µI − XZ + O(µτ ′

−)O(∥∆X∥F ).

Thus we obtain

X∆Z + ∆XZ + Z∆X + ∆ZX = 2µI − (XZ + ZX) + O(µτ ′

−)O(∥∆X∥F ).(57)

We write equations (7), (8) and (57) by

J ′
S(w)∆w = −rS(w, µ),

which corresponds to (37). Therefore the lemma can be proved in the same way as the
proof of Lemma 4. 2

Since we obtain the same lemma as Lemma 5, we can show the following theorem in
the same way as Theorem 3.

Theorem 4 Suppose that assumptions (A1)-(A4) hold. Let Mc be a positive constant,
and let τ and τ ′ be positive constants that satisfy

1 > τ ′ > τ and τ ′ >
2τ

1 − τ
.

Let µ−1 be a given number that satisfies(
1

2Mc

)1/τ ′

≥ µ−1 > 0.

Assume that an initial interior point w0 is sufficiently close to w∗ such that the approx-
imate BKKT condition ∥r(w0, µ−1)∥ ≤ Mcµ

1+τ ′

−1 is satisfied. Then the sequence {wk}
generated by Algorithm scaledSDPIP with Tk = W

−1/2
k satisfies

∥r(wk, µk−1)∥ ≤ Mcµ
1+τ ′

k−1 , X(xk) ≻ 0 and Zk ≻ 0

for all k ≥ 0 and converges two-step superlinearly to w∗ in the sense that

∥wk + ∆wk + ∆wk+ 1
2
− w∗∥ = O(∥wk − w∗∥1+τ ′

) for all k.
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7 Concluding Remarks

In this paper, we have analyzed local behavior of primal-dual interior point methods for
solving nonlinear semidefinite programming problems. We have first proposed a primal-
dual interior point method based on the unscaled Newton method, called Algorithm
unscaledSDPIP, and have showed its local and superlinear convergence. Next we have
proposed two kinds of primal-dual interior point methods based on the scaled Newton
method, called Algorithm scaledSDPIP, and have proved their local and two-step super-
linear convergence properties.

In order to obtain a globally and superlinearly convergent method, we can combine
Algorithm SDPIP described in Section 3 and the proposed methods in Sections 5 and 6.
Specifically we propose the following method for modifying Algorithm unscaledSDPIP.

Algorithm unscaledSDPIP(Global)

Step 0. (Initialize) Set ε > 0, 0 < Mc < 1, µ−1 > 0, 0 < δ < 1, 0 < τ < 1 and 0 < τ ′ < 1
that satisfy

1 > τ ′ > τ and τ ′ >
2τ

1 − τ
.

Choose w0 ∈ Rn × Rm × Sp (X(x0) ≻ 0, Z0 ≻ 0). Set k = 0.

Step 1. (Termination) If ∥r0(wk)∥ ≤ ε, then stop.

Step 2. (Trial Newton step) If ∥r0(wk)∥ is sufficiently small (i.e. wk is close to a KKT
point), execute the following steps. Otherwise go to Step 3.

Step 2.1 Choose µk = ξk∥r0(wk)∥1+τ with ξk = Θ(1). Calculate the direction ∆wk

by solving the Newton equations JS(wk)∆wk = −rS(wk, µk).

Step 2.2 If ∥r(wk + ∆wk, µk)∥ ≤ Mcµk, X(xk + ∆xk) ≻ 0 and Zk + ∆Zk ≻ 0, then
set wk+1 = wk + ∆wk and go to Step 4. Otherwise go to Step 3.

Step 3. (Approximate BKKT point) Choose µk ∈ (0, δµk−1). Find an interior point wk+1

that satisfies
∥r(wk+1, µk)∥ ≤ Mcµk.

Step 4. (Update) Set k := k + 1 and go to Step 1. 2

Next we propose the following method for Algorithm scaledSDPIP.

Algorithm scaledSDPIP(Global)

Step 0. (Initialize) Set ε > 0, Mc > 0, µ−1 > 0, 0 < δ < 1, 0 < τ < 1 and 0 < τ ′ < 1
that satisfy

1 > τ ′ > τ and τ ′ >
2τ

1 − τ
.

Choose w0 ∈ Rn × Rm × Sp (X(x0) ≻ 0, Z0 ≻ 0). Set k = 0.
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Step 1. (Termination) If ∥r0(wk)∥ ≤ ε, then stop.

Step 2. (Scaled Newton step) If ∥r0(wk)∥ is sufficiently small (i.e. wk is close to a KKT
point), execute the following steps. Otherwise go to Step 3.

Step 2.1 Choose µk = ξk∥r0(wk)∥1+τ with ξk = Θ(1).

Step 2.2 Calculate the direction ∆wk by solving the scaled Newton equations
J̃S(wk)∆wk = −r̃S(wk, µk) at wk. If X(xk +∆xk) ≻ 0 and Zk +∆Zk ≻ 0, then
set wk+1 = wk + ∆wk and go to Step 2.3. Otherwise go to Step 3.

Step 2.3 Set wk+ 1
2

= wk + ∆wk. Calculate the direction ∆wk+ 1
2

by solving the

scaled Newton equations J̃S(wk+ 1
2
)∆wk+ 1

2
= −r̃S(wk+ 1

2
, µk) at wk+ 1

2
. If ∥r(wk+ 1

2
+

∆wk+ 1
2
, µk)∥ ≤ Mcµ

1+τ ′

k , X(xk+ 1
2

+ ∆xk+ 1
2
) ≻ 0 and Zk+ 1

2
+ ∆Zk+ 1

2
≻ 0, then

set wk+1 = wk+ 1
2

+ ∆wk+ 1
2

and go to Step 4. Otherwise go to Step 3.

Step 3. (Approximate BKKT point) Choose µk ∈ (0, δµk−1). Find an interior point wk+1

that satisfies
∥r(wk+1, µk)∥ ≤ Mcµ

1+τ ′

k .

Step 4. (Update) Set k := k + 1 and go to Step 1. 2

We can expect the global convergence property of both algorithms because of the existence
of Step 3 as a safeguard. See [23]. At the same time, we also expect that Step 3 is skipped
near a KKT point and the superlinear convergence property is obtained as discussed in
this paper.
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