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Abstract

In this paper, we are concerned with nonlinear minimization problems with sec-
ond order cone constraints. A primal-dual interior point method is proposed for
solving the problems. We also propose a new primal-dual merit function by com-
bining the barrier penalty function and the potential function within the framework
of the line search strategy, and show the global convergence property of our method.
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1 Introduction

In this paper, we consider the following constrained optimization problem with the second
order cone constraints:

minimize f(x), x ∈ Rn,
subject to g(x) = 0, x ∈ K,

(1)

where we assume that the functions f : Rn → R and g : Rn → Rm are sufficiently
smooth, and K is the Cartesian product of socond order cones: K = K1 ×K2 × · · · × Ks,
and Ki is an ni dimensional second order cone which is define by

Ki = {(xi
0, x̄

i)t ∈ Rni | xi
0 ≥ ‖x̄i‖, xi

0 ∈ R, x̄i ∈ Rni−1},

and n1 + n2 + · · ·+ ns = n, and ‖ · ‖ denotes the l2 vector norm. Let x = (x1, x2, . . . , xs)t

where xi = (xi
0, x̄

i)t ∈ Rni . By x ∈ K, we mean

xi ∈ Ki ⊂ Rni , i = 1, . . . , s.
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We denote the conditions xi ∈ Ki, xi ∈ intKi, x ∈ K, x ∈ intK by xi º 0, xi Â 0, x º
0, x Â 0, respectively. If there exists a constraint like h(x) º 0, h : Rn → Rn′ in the
problem to be solved, we transform the constraint to h(x)− v = 0, v º 0 by introducing
a slack variable v ∈ Rn′ which results in the above form (1).

Various examples of SOCP (second order cone programming) problems are described
in [10]. Examples in the paper are linear SOCPs, i.e., the functions f(x) and g(x) above
are linear. However it is easy to extend these examples to nonlinear cases. For example,
there is no reason that the robust optimization problem which is often referred to as a
typical example of linear SOCP should not include a nonlinear objective function.

It is known that linear SOCP problems include linear and convex quadratic program-
ming problems as special cases, and are special cases of SDP (semidefinite programming)
problems. Interior point methods for solving these problems have been studied by many
researchers in the past. On the other hand, some researchers have studied numerical
methods for solving nonlinear SOCP or SDP problems. For example, Kocvara and Stingl
[9] developed a computer program PENNON for solving nonlinear SDP, in which the
augmented Lagrangian function method was used. Correa and Ramirez [4] proposed an
algorithm for nonlinear SDP which modified the sequentially semidefinite programming
method by using a nondifferentiable merit function. Kato and Fukushima [8] proposed
an SQP-type algorithm for nonlinear SOCP problems. Related researches include Jarre
[7], Freund and Jarre [6] and Bonnans and Ramirez [2]. However, there are not so much
research has been done on interior point methods for solving nonlinear SOCP problems
yet.

In this paper, we propose a primal-dual interior point method for solving nonlinear
SOCP problems. The method is based on a line search algorithm in the primal-dual space.
We show its global convergence. The present paper is organized as follows. In Section
2, the optimality condition for problem (1) and basic Jordan algebra are introduced. In
Sections 3 and 4, our primal-dual interior point method is discussed. Specifically, in
Section 4.1, we describe the Newton method for solving nonlinear equations that are
obtained by modifying the optimality conditions given in Section 2. In Section 4.2, we
propose a new primal-dual merit function that consists of the barrier penalty function and
the potential function. Then Section 4.3 presents the algorithm called SOCPLS based on
the line search strategy, and Section 4.4 shows its global convergence property. Finally,
we give some concluding remarks in Section 5.

2 Optimality conditions and basic Jordan algebra

Let the Lagrangian function of problem (1) be defined by

L(w) = f(x)− ytg(x)− ztx,

where w = (x, y, z)t, and y ∈ Rm and z ∈ Rn are the Lagrange multiplier vectors which
correspond to the equality and second order cone constraints respectively. Then Karush-
Kuhn-Tucker (KKT) conditions for optimality of problem (1) are given by the following
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(see [3]):

r0(w) ≡


∇xL(w)

g(x)
x ◦ z


 =




0
0
0


(2)

and
x º 0, z º 0.(3)

Here ∇xL(w) is given by

∇xL(w) = ∇f(x)− A(x)ty − z,

A(x) =




∇g1(x)t

...
∇gm(x)t


 ,

and the multiplication x ◦ z is defined by

x ◦ z =




x1 ◦ z1

...
xs ◦ zs


 ,

where

xi ◦ zi =

(
(xi)tzi

xi
0z̄

i + zi
0x̄

i

)
.

The Jordan algebra used in this paper is surveyed in the paper by Alizadeh and
Goldfarb [1] (see also [5]). We first define the following notations:

Arw(x) = Arw(x1)⊕ Arw(x2)⊕ · · · ⊕ Arw(xs),

Arw(xi) =

(
xi

0 (x̄i)t

x̄i xi
0I

)
∈ Rni×ni ,

e = (e1, . . . , es)t,

ei = (1, 0)t ∈ Rni with 0 ∈ Rni−1,

det(xi) = (xi
0)

2 − ‖x̄i‖2,

Ri =




1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1


 ∈ Rni×ni .

Here det(xi) is called the determinant of the vector xi. We note that det(xi) > 0 for
xi Â 0. We also note that xi Â 0 if and only if the matrix Arw(xi) is positive definite.
By using the notation above, the multiplication xi ◦ zi can be expressed as

xi ◦ zi = Arw(xi)zi = Arw(xi)Arw(zi)e.(4)

The vector ei is the unique identity in the sense that v ◦ ei = v holds for any v ∈ Rni .
It is known that there exists a unique inverse (xi)−1 for any xi Â 0 in the sense that
xi ◦ (xi)−1 = ei. Let

x−1 = ((x1)−1, (x2)−1, . . . , (xs)−1)t.
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In this case, x and xi are said to be nonsingular. We note that the inverse of xi is written
as

(xi)−1 =
Rix

i

det(xi)
.

In the following, we also use the relation

x−1 = Arw(x)−1e,

which can be proved by confirming Arw(x−1)e = Arw(x)−1e.
We next introduce the so-called spectral decomposition of a vector xi ∈ Rni , which is

given by
xi = λi

1c
i
1 + λi

2c
i
2,

where λi
1, λ

i
2 are called the eigenvalues and ci

1, c
i
2 are called the Jordan frame of the vector

xi, respectively. They are defined by

λi
1 = xi

0 + ‖x̄i‖, λi
2 = xi

0 − ‖x̄i‖

and

ci
1 =

1

2

(
1
x̄i

‖x̄i‖

)
, ci

2 =
1

2

(
1

− x̄i

‖x̄i‖

)
.

We note that the Jordan frame {ci
1, c

i
2} satisfies the relations

ci
1 ◦ ci

2 = 0, ci
1 ◦ ci

1 = ci
1, ci

2 ◦ ci
2 = ci

2, ci
1 + ci

2 = ei, ci
1 = Ric

i
2 and ci

2 = Ric
i
1.

Eigenvalues have the properties λi
1 ≥ 0, λi

2 ≥ 0 for xi º 0 and λi
1 > 0, λi

2 > 0 for xi Â 0.
The inverse of a nonsingular vector xi can be written as

(xi)−1 = (λi
1)
−1ci

1 + (λi
2)
−1ci

2.

Furthermore, for xi Â 0, we can define

(xi)1/2 = (λi
1)

1/2ci
1 + (λi

2)
1/2ci

2

and
(xi)−1/2 = (λi

1)
−1/2ci

1 + (λi
2)
−1/2ci

2,

which satisfy the properties (xi)1/2 ◦ (xi)1/2 = xi and (xi)−1/2 ◦ (xi)−1/2 = (xi)−1.
We call w = (x, y, z) satisfying x Â 0 and z Â 0 an interior point. The algorithm of

this paper will generate such interior points. To construct an interior point algorithm, we
introduce a positive parameter µ, and try to find a point that satisfies the barrier KKT
(BKKT) conditions:

r(w, µ) ≡



∇xL(w)
g(x)

x ◦ z − µe


 =




0
0
0


(5)

and
x Â 0, z Â 0.(6)
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In applying the Newton method to the system of equations (5), we usually consider an
effective scaling of the primal-dual pair (x, z) (Tsuchiya [11]). For this purpose, we define
the transformations

Tp = Tp1 ⊕ Tp2 ⊕ · · · ⊕ Tps ,

Tpi = 2Arw2(pi)− Arw((pi)2)

with respect to pi Â 0, i = 1, . . . , s. The matrix Tp is nonsingular if and only if the inverse
of p exists. Using this transformation, we scale x and z by

x̃ = Tpx and z̃ = T−1
p z.

Then we obtain (see Theorem 8 in [1])

x̃−1 = T−1
p x−1 and z̃−1 = Tpz

−1.(7)

Throughout this paper, we choose the transformation Tp such that the matrices Arw(x̃)
and Arw(z̃) commute. In this case, the vectors x̃i and z̃i share a Jordan frame {ci

1, c
i
2},

that is, they can be represented by

x̃i = λi
1c

i
1 + λi

2c
i
2 and z̃i = τ i

1c
i
1 + τ i

2c
i
2,

where λi
1, λ

i
2 and τ i

1, τ
i
2 are the eigenvalues of x̃i and z̃i, respectively.

As examples of the transformation that makes Arw(x̃) and Arw(z̃) commute, the
following choices of p are well known:

p = z1/2, p = x−1/2(8)

and
p =

[
Tx1/2(Tx1/2z)−1/2

]−1/2
=

[
Tz−1/2(Tz1/2x)1/2

]−1/2
.(9)

For the first two choices, we have

z̃ = T−1
z1/2z = e and x̃ = Tx−1/2x = e,

respectively. The third choice (9) is the Nesterov-Todd direction and this yields x̃ = z̃.
See the paper by Alizadeh and Goldfarb [1] for more detailed exposition and references.

3 A procedure for satisfying KKT conditions

We first describe a procedure for finding a KKT point using the BKKT conditions. In
this section, the subscript k denotes an iteration count of the outer iterations.

Algorithm SOCPIP

Step 0. (Initialize) Set ε > 0, Mc > 0 and k = 0. Let a positive sequence {µk} , µk ↓ 0
be given.
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Step 1. (Approximate BKKT point) Find an interior point wk+1 that satisfies

‖r(wk+1, µk)‖ ≤ Mcµk.(10)

Step 2. (Termination) If ‖r0(wk+1)‖ ≤ ε, then stop.

Step 3. (Update) Set k := k + 1 and go to Step 1. 2

We note that the barrier parameter sequence {µk} in Algorithm SOCPIP needs not
be determined beforehand. The value of each µk may be set adaptively as the iteration
proceeds. We call condition (10) the approximate BKKT condition, and call a point that
satisfies this condition the approximate BKKT point.

The following theorem shows the convergence property of Algorithm SOCPIP.

Theorem 1 Assume that the functions f and g are continuously differentiable. Let {wk}
be an infinite sequence generated by Algorithm SOCPIP. Suppose that the sequences {xk}
and {yk} are bounded. Then {zk} is bounded, and any accumulation point of {wk} satisfies
KKT conditions (2) and (3).

Proof. Assume that {zk} is not bounded, i.e., that there exists an i such that (zk)i →∞.
Equation (10) yields

∣∣∣∣
(∇f(xk)− A(xk)

tyk)i

(zk)i

− 1

∣∣∣∣ ≤ Mc
µk−1

(zk)i

.

The sequences {xk} and {yk} are bounded, and f and g are continuously differentiable,
and µk → +0 as k → ∞. This implies that 1 ≤ 0, which is a contradiction. Thus the
sequence {zk} is bounded.

Let ŵ be any accumulation point of {wk}. Since the sequences {wk} and {µk} satisfy
(10) for each k and µk approaches zero, r0(ŵ) = 0 follows from the definition of r(w, µ).

Therefore the proof is complete. 2

4 An algorithm for finding a barrier KKT point

Using the transformation Tp described in Section 2, we replace the equation x ◦ z = µe
by an equivalent form x̃ ◦ z̃ = µe, and deal with the modified BKKT conditions

r̃(w, µ) ≡



∇xL(w)
g(x)

x̃ ◦ z̃ − µe


 =




0
0
0


(11)

instead of (5) to form Newton directions as described below.
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4.1 The Newton method

In this subsection we consider a method for solving the BKKT conditions approximately
for a given µ > 0 (Step 1 of Algorithm SOCPIP). Throughout this section, the index k
denotes the inner iteration count for a given µ > 0. We note again that xk Â 0 and zk Â 0
for all k in the following.

For the above purpose, we apply a Newton-like method to the system of equations (11).
Let the Newton directions for the primal and dual variables by ∆x and ∆z, respectively.
Since x̃◦ z̃ = µe can be written as (Tpx)◦ (T−1

p z) = µe, the equation Tp(x+∆x)◦T−1
p (z +

∆z) = µe yields

(Tpx) ◦ (T−1
p z) + (Tpx) ◦ (T−1

p ∆z) + (Tp∆x) ◦ (T−1
p z) + (Tp∆x) ◦ (T−1

p ∆z) = µe.

By neglecting the nonlinear part (Tp∆x) ◦ (T−1
p ∆z), we have the equation

(Tpx) ◦ (T−1
p z) + (Tpx) ◦ (T−1

p ∆z) + (Tp∆x) ◦ (T−1
p z) = µe.(12)

Then using (4), the Newton equations for solving (11) are defined by

G∆x− A(x)t∆y −∆z = −∇xL(w),(13)

A(x)∆x = −g(x),(14)

Arw(z̃)Tp∆x + Arw(x̃)T−1
p ∆z = µe− Arw(x̃)Arw(z̃)e,(15)

or equivalently
J(w)∆w = −r̃(w, µ),(16)

where the matrix J(w) is given by

J(w) =




G −A(x)t −I
A(x) 0 0

Arw(z̃)Tp 0 Arw(x̃)T−1
p


 ,

and the matrix G is ∇2
xL(w) or an approximation to ∇2

xL(w). We recommend to use a
quasi-Newton approximation for G if∇2

xL(w) is indefinite, because we will assume positive
semidefiniteness of G in this paper. Since equation (15) was derived for a transformation
Tp where p denpends on the current w at the k-th iteration, equations (16) are not the
Newton equations, strictly speaking. However, in this paper, we call (16) the Newton
equations for simplicity.

The following lemma gives a sufficient condition for equation (16) to be solvable.

Lemma 1 If the matrix G+TpArw(x̃)−1Arw(z̃)Tp is positive definite and the matrix A(x)
is of full rank, then the matrix J(w) is nonsingular.

Proof. Consider the equation

J(w)




vx

vy

vz


 = 0,
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for (vx, vy, vz)
t ∈ Rn ×Rm ×Rn. Since the equation above gives

vz = −TpArw(x̃)−1Arw(z̃)Tpvx,

by eliminating vz, we have

vx = (G + TpArw(x̃)−1Arw(z̃)Tp)
−1A(x)tvy.

The condition A(x)vx = 0 yields

A(x)(G + TpArw(x̃)−1Arw(z̃)Tp)
−1A(x)tvy = 0.

Since the matrix G + TpArw(x̃)−1Arw(z̃)Tp is positive definite and the matrix A(x) is of
full rank, we have vy = 0. This implies that vx = vz = 0. Therefore the proof is complete.
2

It is known that if pk is chosen to make Arw(x̃k) and Arw(z̃k) commute, then the matrix
Tpk

Arw(x̃k)
−1Arw(z̃k)Tpk

becomes symmetric positive definite. In this case, if we choose
a symmetric positive semidefinite matrix Gk, the matrix Gk +Tpk

Arw(x̃k)
−1Arw(z̃k)Tpk

is

symmetric positive definite. This is true for the choices of pk = x
−1/2
k and pk = z

1/2
k , which

are introduced in Section 2. Furthermore, if pk is chosen to be the Nesterov-Todd direc-
tion (9), then we have Arw(x̃k)

−1Arw(z̃k) = I and the matrix Tpk
Arw(x̃k)

−1Arw(z̃k)Tpk

becomes the symmetric positive definite matrix T 2
pk

. These facts justify the assumption
of the previous lemma.

The following lemma claims that a BKKT point is obtained if the Newton direction
satisfies ∆x = 0.

Lemma 2 Assume that ∆w solves (16). If ∆x = 0, then (x, y + ∆y, z + ∆z) is a BKKT
point.

Proof. It follows from the Newton equations that

∇f(x)− A(x)t(y + ∆y)− (z + ∆z) = 0,

g(x) = 0,

(Tpx) ◦ (T−1
p ∆z) = µe− (Tpx) ◦ (T−1

p z).

Since the last equation yields Tpx ◦ T−1
p (z + ∆z) = µe, we have that x ◦ (z + ∆z) = µe,

and then z +∆z = µx−1 Â 0. Therefore the point (x, y +∆y, z +∆z) satisfies the BKKT
conditions. 2

4.2 The primal-dual merit function

To force the global convergence of the algorithm described in this paper, we use a merit
function in the primal-dual space. For this purpose, we propose the following merit
function:

F (x, z) = FBP (x) + νFP (x, z),(17)
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where FBP (x) and FP (x, z) are the barrier penalty function and the potential function,
respectively, and they are given by

FBP (x) = f(x)− µ

2

s∑
i=1

log(det(xi)) + ρ‖g(x)‖1,(18)

FP (x, z) = (s + σ) log(
xtz

s
+ |x

tz

s
− µ|)− 1

2

s∑
i=1

log(det(xi)det(zi)),(19)

where ν, ρ and σ are positive parameters. The following lemma gives a lower bound on
the value of the potential function, and the behavior of the function when xtz ↓ 0 and
xtz ↑ ∞.

Lemma 3 The potential function satisfies

FP (x, z) ≥ σ log µ.(20)

The equality holds in (20) if and only if the vectors x and z satisfies the relation x◦z = µe.
Furthermore

lim
xtz↓0

FP (x, z) = ∞, lim
xtz↑∞

FP (x, z) = ∞(21)

Proof. Noting that x̃tz̃ = xtz and det(x̃i)det(z̃i) = det(pi)2det(xi) · det(pi)−2det(zi) =
det(xi)det(zi) (see Theorem 8 in [1]), we have FP (x̃, z̃) = FP (x, z). Let the eigenvalues
of x̃i and z̃i be λi

1, λ
i
2 and τ i

1, τ
i
2, respectively. Since x̃ Â 0 and z̃ Â 0 are satisfied and

Arw(x̃) and Arw(z̃) commute, these eigenvalues are positive and the Jordan frame of x̃i

and z̃i, ci
1 and ci

2 say, is shared as stated in Section 2. Then x̃i and z̃i are written as

x̃i = λi
1c

i
1 + λi

2c
i
2 and z̃i = τ i

1c
i
1 + τ i

2c
i
2,

and we have x̃tz̃ =
∑s

i=1(x̃
i)tz̃i = 1

2

∑s
i=1(λ

i
1τ

i
1 + λi

2τ
i
2), det(x̃i) = λi

1λ
i
2 and det(z̃i) = τ i

1τ
i
2.

Thus it follows from the algebraic and geometric mean

s∑
i=1

λi
1τ

i
1 + λi

2τ
i
2

2s
≥

(
s∏

i=1

λi
1τ

i
1λ

i
2τ

i
2

) 1
2s

that

xtz

s
≥

(
s∏

i=1

det(xi)det(zi)

) 1
2s

.(22)

The equality holds in (22) if and only if the equality holds in the algebraic and geometric
mean. This implies that

λ1
1τ

1
1 = λ1

2τ
1
2 = · · · = λs

1τ
s
1 = λs

2τ
s
2 .(23)

From (19) and (22), we have

FP (x, z) ≥ (s + σ) log(
xtz

s
+ |x

tz

s
− µ|)− s log(

xtz

s
).(24)
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To see the behavior of the function in the right hand side, we introduce the variable
t = xtz/s, and define

φ(t) = (s + σ) log(t + |t− µ|)− s log t, t > 0.

For 0 < t ≤ µ, we have
φ(t) = (s + σ) log µ− s log t.(25)

In this region, φ(t) is convex and monotonically decreasing. We note φ(µ) = σ log µ. For
t > µ, we have

φ(t) = (s + σ) log(2t− µ)− s log t,

and

φ′(t) =
2(s + σ)

2t− µ
− s

t
=

2σt + µs

t(2t− µ)
> 0.

Thus φ(t) is monotonically increasing in this region. Therefore φ(t) attains its unique
minimum at t = µ, and the minimum value is φ(µ) = σ log µ. This means that

FP (x, z) ≥ σ log µ.

The equality holds if and only if xtz/s = µ and (23) hold. These two conditions are
equivalent to

λ1
1τ

1
1 = λ1

2τ
1
2 = · · · = λs

1τ
s
1 = λs

2τ
s
2 = µ.(26)

The condition (26) means

x̃i ◦ z̃i = λi
1τ

i
1c

i
1 ◦ ci

1 + λi
2τ

i
2c

i
2 ◦ ci

2 = µ(ci
1 + ci

2) = µei

which implies that x ◦ z = µe. Conversely, if we assume x ◦ z = µe, then we have
x̃i ◦ z̃i = µei for each i, i.e.,

x̃i ◦ z̃i = λi
1τ

i
1c

i
1 + λi

2τ
i
2c

i
2 = µei = µ(ci

1 + ci
2),

and then (26).
The limits (21) are apparent, because of (25) for 0 < t ≤ µ, and

φ(t) = σ log(2t− µ) + s log(2− µ

t
)

for t > µ.
This completes the proof. 2

It is known that
∇v(log det(v)) = 2v−1 for v Â 0.

Then we introduce the first order approximation Fl of the merit function by

Fl(x, z; ∆x, ∆z) = F (x, z) + ∆Fl(x, z; ∆x, ∆z),(27)
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where

∆Fl(x, z; ∆x, ∆z) = ∆FBPl(x; ∆x) + ν∆FPl(x, z; ∆x, ∆z),

∆FBPl(x; ∆x) = ∇f(x)t∆x− µ(x−1)t∆x(28)

+ρ (‖g(x) + A(x)∆x‖1 − ‖g(x)‖1) ,

∆FPl(x, z; ∆x, ∆z) = (s + σ)

{
(zt∆x + xt∆z)

s
+

∣∣∣∣
(xtz + zt∆x + xt∆z)

s
− µ

∣∣∣∣(29)

−
∣∣∣∣
xtz

s
− µ

∣∣∣∣
}

/

{
xtz

s
+

∣∣∣∣
xtz

s
− µ

∣∣∣∣
}

− (
(x−1)t∆x + (z−1)t∆z

)
.

We now show that the search direction is a descent direction for both the barrier
penalty function and the potential function. We first give an estimate of ∆FBPl(x; ∆x)
for the barrier-penalty function.

Lemma 4 Assume that ∆w solves (16). Then the following holds

∆FBPl(x; ∆x) ≤ −∆xt
(
G + TpArw(x̃)−1Arw(z̃)Tp

)
∆x(30)

−(ρ− ‖y + ∆y‖∞)‖g(x)‖1.

Proof. It is clear from (14) and (28) that

∆FBPl(x; ∆x) = ∇f(x)t∆x− µ(x−1)t∆x− ρ‖g(x)‖1.(31)

It follows from (13) that

∇f(x)t∆x = −∆xtG∆x + ∆xtA(x)t(y + ∆y) + ∆xt(z + ∆z).

Since TpArw(x̃)−1e = x−1 holds from (7), equation (15) implies that

z + ∆z = TpArw(x̃)−1(µe− Arw(z̃)Tp∆x)

= µx−1 − TpArw(x̃)−1Arw(z̃)Tp∆x.

Then we have

∇f(x)t∆x = −∆xt
(
G + TpArw(x̃)−1Arw(z̃)Tp

)
∆x− g(x)t(y + ∆y) + µ∆xtx−1.

Therefore equation (31) yields

∆FBPl(x; ∆x) = −∆xt
(
G + TpArw(x̃)−1Arw(z̃)Tp

)
∆x− g(x)t(y + ∆y)

+µ∆xtx−1 − µ(x−1)t∆x− ρ‖g(x)‖1

≤ −∆xt
(
G + TpArw(x̃)−1Arw(z̃)Tp

)
∆x

−(ρ− ‖y + ∆y‖∞)‖g(x)‖1.

The proof is complete. 2

Next we estimate the difference ∆FPl(x, z; ∆x, ∆z) for the potential function.
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Lemma 5 Assume that ∆w solves (16). Then the following holds

∆FPl(x, z; ∆x, ∆z) ≤ 0.(32)

The equality holds in (32) if and only if the vectors x and z satisfies the relation x◦z = µe.

Proof. Equation (12) yields

(T−1
p z)tTp∆x + (Tpx)tT−1

p ∆z = µs− (Tpx)tT−1
p z

and
zt∆x + xt∆z = µs− xtz.

Since matrices Arw(x̃) and Arw(z̃) commute, premultiplying (15) by etArw(x̃)−1Arw(z̃)−1

implies

etArw(x̃)−1Tp∆x + etArw(z̃)−1T−1
p ∆z = µetArw(x̃)−1Arw(z̃)−1e− ete.

Using (7) this yields

(T−1
p x−1)tTp∆x + (Tpz

−1)tT−1
p ∆z = −s + µ(T−1

p x−1)tTpz
−1,

and then
(x−1)t∆x + (z−1)t∆z = −s + µ(x−1)tz−1.

Thus from (29) we obtain

∆FPl(x, z; ∆x, ∆z) = (s + σ)
(−xtz/s + µ)− |xtz/s− µ|

xtz/s + |xtz/s− µ| − (−s + µ(x−1)tz−1
)

= −σ +
(s + σ)µ

xtz/s + |xtz/s− µ| − µ(x−1)tz−1.(33)

We use the spectral decomposition of x̃i and z̃i as in the proof of Lemma 3. Then (x̃i)−1

and (z̃i)−1 are written as

(x̃i)−1 = (λi
1)
−1ci

1 + (λi
2)
−1ci

2 and (z̃i)−1 = (τ i
1)
−1ci

1 + (τ i
2)
−1ci

2.

Therefore we obtain

(x−1)tz−1

s
=

(x̃−1)tz̃−1

s
=

s∑
i=1

((x̃i)−1)t(z̃i)−1

s

=
s∑

i=1

(λi
1τ

i
1)
−1 + (λi

2τ
i
2)
−1

2s
≥

(
s∏

i=1

λi
1τ

i
1λ

i
2τ

i
2

)−1/2s

≥ 2s∑s
i=1 λi

1τ
i
1 + λi

2τ
i
2

=
s

x̃tz̃
=

s

xtz
.
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Thus from (33)

∆FPl(x, z; ∆x, ∆z) ≤ −σ +
(s + σ)µ

xtz/s + |xtz/s− µ| −
µs2

xtz

= −σ +
(s + σ)µ

t + |t− µ| −
µs

t
, where t = xtz/s > 0

= −σ
(t− µ) + |t− µ|

t + |t− µ| − µs

(
1

t
− 1

t + |t− µ|
)
≤ 0.

The equalities hold if and only if λ1
1τ

1
1 = λ1

2τ
1
2 = · · · = λs

1τ
s
1 = λs

2τ
s
2 and xtz/s = µ as in

the proof of Lemma 3.
Therefore the proof is complete. 2

Now we obtain the following theorem by using the two lemmas given above. This
theorem shows that the Newton direction ∆w becomes a descent search direction for the
proposed primal-dual merit function in (17).

Theorem 2 Assume that ∆w solves (16) and that the matrix G + TpArw(x̃)−1Arw(z̃)Tp

is positive definite. Suppose that the penalty parameter ρ satisfies ρ > ‖y + ∆y‖∞. Then
the following hold:
(i) The direction ∆w becomes a descent search direction for the primal-dual merit function
F (x, z), i.e. ∆Fl(x, z; ∆x, ∆z) ≤ 0.
(ii) If ∆x 6= 0, then ∆Fl(x, z; ∆x, ∆z) < 0.
(iii) ∆Fl(x, z; ∆x, ∆z) = 0 holds if and only if (x, y + ∆y, z) is a BKKT point.

Proof. (i) and (ii) : It follows directly from Lemmas 4 and 5 that

∆Fl(x, z; ∆x, ∆z) ≤ −∆xt
(
G + TpArw(x̃)−1Arw(z̃)Tp

)
∆x(34)

−(ρ− ‖y + ∆y‖∞)‖g(x)‖1

≤ 0.

The last inequality becomes a strict inequality if ∆x 6= 0. Therefore the results hold.
(iii) If ∆Fl(x, z; ∆x, ∆z) = 0 holds, then ∆FBPl(x; ∆x) = 0 and ∆FPl(x, z; ∆x, ∆z) = 0
are satisfied, and equation (34) yields

∆x = 0, g(x) = 0.(35)

Since ∆FPl(x, z; ∆x, ∆z) = 0, Lemma 5 gives x ◦ z = µe. Since equation (15) yields
Arw(x̃)T−1

p ∆z = 0, we have ∆z = 0. Then equation (13) implies that ∇f(x)−A(x)t(y +
∆y)− z = 0. Hence (x, y + ∆y, z) is a BKKT point.

Conversely, suppose that (x, y+∆y, z) is a BKKT point. The Newton equations imply
that

G∆x−∆z = 0, and Arw(z̃)Tp∆x + Arw(x̃)T−1
p ∆z = 0.

It follows that (G + TpArw(x̃)−1Arw(z̃)Tp)∆x = 0 holds, which yields ∆x = 0. Using
equation (31) and Lemma 5, we have

∆FBPl(x; ∆x) = 0 and ∆FPl(x, z; ∆x, ∆z) = 0,

13



which implies ∆Fl(x, z; ∆x, ∆z) = 0. Therefore, the theorem is proved. 2

We close this subsection by giving a lemma that gives a basis for Armijo’s line search
rule and its convergence described in the next section. This lemma corresponds to Lemma
2 and Lemma 3 of the paper by Yamashita [12], so we omit the proof.

Lemma 6 Let dx ∈ Rn and dz ∈ Rn be given. Define F ′(x, z; dx, dz) by

F ′(x, z; dx, dz) = lim
t↓0

F (x + tdx, z + tdz)− F (x, z)

t
.

Then the following hold:
(i) The function Fl(x, z; αdx, αdz) is convex with respect to the variable α.
(ii) The relation

F (x, z) + F ′(x, z; dx, dz) ≤ Fl(x, z; dx, dz)

holds.
(iii) There exists a θ ∈ (0, 1) such that

F (x + dx, z + dz) ≤ F (x, z) + F ′(x + θdx, z + θdz; dx, dz),

whenever x + dx Â 0 and z + dz Â 0.
(iv) Let ε0 ∈ (0, 1) be given. If ∆Fl(x, z; dx, dz) < 0, then

F (x + αdx, z + αdz)− F (x, z) ≤ ε0α∆Fl(x, z; dx, dz),

for sufficiently small α > 0. 2

4.3 The line search algorithm

To obtain a globally convergent algorithm to a BKKT point for a fixed µ > 0, we modify
the basic Newton iteration. Our iterations take the form

xk+1 = xk + αk∆xk, zk+1 = zk + αk∆zk and yk+1 = yk + ∆yk

where αk is a step size determined by the line search procedure described below.
The main iteration is to decrease the value of the merit function F (x, z) for fixed µ.

Thus the step size is determined by the sufficient decrease rule of the merit function. We
adopt Armijo’s rule. At the point (xk, zk), we calculate the maximum allowed step to the
boundary of the feasible region by

αxkmax = argmin
{
det(xi

k + α∆xi
k) = 0, (xi

k)0 + α(∆xi
k)0 ≥ 0, i = 1, . . . , s, α > 0

}

and

αzkmax = argmin
{
det(zi

k + α∆zi
k) = 0, (zi

k)0 + α(∆zi
k)0 ≥ 0, i = 1, . . . , s, α > 0

}
.

14



Specifically, the equation det(xi
k + α∆xi

k) = 0 implies the quadratic equation of α

det(∆xi
k)α

2 + 2(xi
k)

tRi∆xi
kα + det(xi

k) = 0.

Thus we can easily get αxkmax, and we obtain αzkmax in a similar way. The step sizes are
set to be infinity if there is no step size that satisfies these conditions.

A step to the next iterate is given by

αk = ᾱkβ
lk , ᾱk = min {γαxkmax, γαzkmax, 1} ,

where γ ∈ (0, 1) and β ∈ (0, 1) are fixed constants and lk is the smallest nonnegative
integer such that

F (xk + ᾱkβ
lk∆xk, zk + ᾱkβ

lk∆zk) ≤ F (xk, zk) + ε0ᾱkβ
lk∆Fl(xk, zk; ∆xk, ∆zk),(36)

where ε0 ∈ (0, 1).
Now we give a line search algorithm called Algorithm SOCPLS below. This algorithm

should be regarded as the inner iteration of Algorithm SOCPIP (see Step 1 of Algorithm
SOCPIP). We also note that ε′ given below corresponds to Mcµ in Algorithm SOCPIP.

Algorithm SOCPLS

Step 0. (Initialize) Let w0 ∈ Rn ×Rm ×Rn (x0 Â 0, z0 Â 0), and µ > 0, ρ > 0, ρ′ > 0,
ν > 0. Set ε′ > 0, γ ∈ (0, 1), β ∈ (0, 1) and ε0 ∈ (0, 1). Let k = 0.

Step 1. (Termination) If ‖r(wk, µ)‖ ≤ ε′, then stop.

Step 2. (Compute direction) Calculate the matrix Gk and the vector pk. Determine the
direction ∆wk by solving (16).

Step 3. (Step size) Find the smallest nonnegative integer lk that satisfies the criterion
(36), and calculate

αk = ᾱkβ
lk .

Step 4. (Update variables) Set

(
xk+1

zk+1

)
=

(
xk

zk

)
+ αk

(
∆xk

∆zk

)
,

yk+1 = yk + ∆yk.

Step 5. Set k := k + 1 and go to Step 1. 2
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4.4 Global convergence

Now we prove global convergence of Algorithm SOCPLS. For this purpose, we make the
following assumptions.

Assumptions

(A1) The functions f and gi, i = 1, ..., m, are twice continuously differentiable.

(A2) The sequence {xk} generated by Algorithm SOCPLS remains in a compact set Ω
of Rn.

(A3) The matrix A(xk) is of full rank for all xk in Ω.

(A4) The matrix Gk is positive semidefinite and uniformly bounded.

(A5) The vector pk is so chosen that Arw(x̃k) and Arw(z̃k) commute. The sequence {pk}
is bounded, and lim infk→∞ det(pk) > 0.

(A6) The penalty parameter ρ is sufficiently large so that ρ > ‖yk + ∆yk‖∞ holds for all
k. 2

Remarks (i) The compactness of the generated sequence {xk} in (A2) is derived if we
assume the compactness of the level set of the function FBP (x) at the initial point, for ex-
ample, because the iterates give decreasing merit function values, and FP (x, z) ≥ σ log µ.
Another case which automatically assures the compactness of {xk} is when all primal
variables have finite upper bounds. This is not so uncommon in practical applications.

(ii) We should note that if a quasi-Newton approximation is used for computing the
matrix Gk, then we only need the continuity of the first order derivatives of functions in
Assumption (A1).

(iii) It will be shown after Lemma 7 that Assumption (A5) is valid for well known
examples of pk.

(iv) In practice, the value of ρ should be updated in the course of computation to
satisfy the condition in Assumption (A6). One such procedure is described in 5.1.7 of [14]
in which a primal-dual interior point method for general nonlinear optimization problems
is proposed and tested numerically. In this paper we assume the above for simplicity of
exposition. 2

Lemma 7 Let an infinite sequence {wk} be generated by Algorithm SOCPLS. Suppose
that Assumptions (A1), (A2) and (A6) hold. Then the following hold.
(i) lim infk→∞ det(xk) > 0 and lim infk→∞ det(zk) > 0.
(ii) The sequence {wk} is bounded.
Suppose further that Assumptions (A3), (A4) and (A5) hold. Then the following hold.
(iii) There exists a positive constant M such that

1

M
‖v‖2 ≤ vt(Gk + Tpk

Arw(x̃k)
−1Arw(z̃k)Tpk

)v ≤ M‖v‖2(37)
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for any v ∈ Rn.
(iv) The sequence {∆wk} is bounded.

Proof. (i) Since {FP (xk, zk)} is bounded below from Lemma 3, {FBP (xk)} is bounded
above because of descent property of {F (xk, zk)}. Therefore det(xk) is bounded away
from zero because of the log barrier term in FBP (x), and lim infk→∞ det(xk) > 0. Then
we also have lim infk→∞ det(zk) > 0, because {FP (xk, zk)} is bounded above and below.

(ii) Let the spectral decomposition of zi
k be

zi
k = κi

k1c
i
k1 + κi

k2c
i
k2,

where κi
1k, κ

i
2k are the eigenvalues and ci

k1, c
i
k2 are the Jordan frame of the vector zi

k. We
have

xt
kzk =

s∑
i=1

(κi
k1x

t
kc

i
k1 + κi

k2x
t
kc

i
k2)

=
1

2

s∑
i=1

κi
k1

(
xk0 +

x̄t
kz̄

i
k

‖z̄i
k‖

)
+

1

2

s∑
i=1

κi
k2

(
xk0 − x̄t

kz̄
i
k

‖z̄i
k‖

)
.(38)

From Cauchy-Schwarz inequality, we have

xk0 ± x̄t
kz̄

i
k

‖z̄i
k‖
≥ xk0 −

∥∥x̄i
k

∥∥ =
det(xk)

xk0 + ‖x̄i
k‖

.

As shown above, the right hand side of the above inequality is strictly bounded away from
zero. If lim supk→∞ ‖zk‖ = ∞, then lim supk→∞ κi

k1 = lim supk→∞(zi
k0 + ‖z̄i

k‖) = ∞ for
some i. Then from (38), we have lim supk→∞ xt

kzk → ∞. This is impossible because the
merit function is decreasing and lim supk→∞ Fp(xk, zk) = ∞ from Lemma 3. Therefore
{‖zk‖} is bounded. From Assumption (A6), the sequence {yk} is bounded, and therefore
the sequence {wk} is bounded.

(iii) From Assumption (A5), the bounded sequence {xk} implies the bounded sequence
{x̃k}. Therefore the assertions similar to (i) and (ii) also hold for {x̃k} and {z̃k}. Thus
there exists a positive constant M ′ such that ‖v‖2/M ′ ≤ vt(Tpk

Arw(x̃k)
−1Arw(z̃k)Tpk

)v ≤
M ′‖v‖2 for any v ∈ Rn, because we have 1/M0 ≤ ‖Tpk

‖ ≤ M0 for a positive constant M0

from Assumption (A5). This implies (37) from Assumption (A4).
(iv) From Lemma 1, (ii) and (iii), the matrix J(wk) is nonsingular and ‖∆wk‖ is

uniformly bounded. 2

We now show that Assumption (A5) holds for the examples (8) and (9). Commutabil-
ity of Arw(x̃k) and Arw(z̃k) for these examples is well known and does not need further
proof. The sequence {pk} is bounded and lim infk→∞ det(pk) > 0, because {xk} and {zk}
are bounded, and lim infk→∞ det(xk) > 0 and lim infk→∞ det(zk) > 0 from Assumption
(A2) and Lemma 7.

The following theorem gives the global convergence of an infinite sequence generated
by Algorithm SOCPLS.
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Theorem 3 Suppose that Assumptions (A1) – (A6) hold. Let an infinite sequence {wk}
be generated by Algorithm SOCPLS. Then there exists at least one accumulation point of
{wk}, and any accumulation point of the sequence {wk} is an BKKT point.

Proof. In the proof, we define the following notations

uk =

(
xk

zk

)
and ∆uk =

(
∆xk

∆zk

)

for simplicity. In view of Lemma 2, we can assume ∆xk 6= 0 for all k. By Lemma 7, the
sequence {wk} has at least one accumulation point. From Lemma 7, each component of
xk and zk is bounded away from the boundary of the second order cone. Hence we have
lim infk→∞ ᾱk > 0.

From (37) and (34), we have

∆Fl(uk; ∆uk) ≤ −‖∆xk‖2

M
< 0,(39)

and from (36),

F (uk+1)− F (uk) ≤ ε0ᾱkβ
lk∆Fl(uk; ∆uk)(40)

≤ −ε0ᾱkβ
lk
‖∆xk‖2

M
< 0.

Because the sequence {F (uk)} is decreasing and bounded below, the left-hand side of (40)
converges to 0.

We will prove that
lim
k→∞

∆Fl(uk; ∆uk) = 0,(41)

by contradiction. Suppose that there exists an infinite subsequence K ⊂ {0, 1, · · ·} and a
δ such that

|∆Fl(uk; ∆uk)| ≥ δ > 0, for all k ∈ K.(42)

Since the fact that the left most expression in (40) tends to zero yields βlk → 0, we have
lk → ∞, k ∈ K, and therefore we can assume lk > 0 for sufficiently large k ∈ K without
loss of generality. In particular, the point uk + αk∆uk/β does not satisfy condition (36).
Thus, we get

F (uk + αk∆uk/β)− F (uk) > ε0αk∆Fl(uk; ∆uk)/β.(43)

By Lemma 6, there exists a θk ∈ (0, 1) such that for k ∈ K,

F (uk + αk∆uk/β)− F (uk)

≤ αkF
′(uk + θkαk∆uk/β; ∆uk)/β

≤ αk∆Fl(uk + θkαk∆uk/β; ∆uk)/β.(44)

Then, from (43) and (44), we see that

ε0∆Fl(uk; ∆uk) < ∆Fl(uk + θkαk∆uk/β; ∆uk).
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This inequality yields

∆Fl(uk + θkαk∆uk/β; ∆uk)−∆Fl(uk; ∆uk)(45)

> (ε0 − 1)∆Fl(uk; ∆uk) > 0.

Thus by the property lk → ∞, we have αk → 0 and thus ‖θkαk∆uk/β‖ → 0, k ∈ K,
because ‖∆uk‖ is uniformly bounded above. This implies that the left-hand side of (45)
and therefore ∆Fl(uk; ∆uk) converges to zero when k → ∞, k ∈ K. This contradicts
assumption (42). Therefore we have proved (41).

Since equation (41) implies that

∆FBPl(xk; ∆xk) → 0 and ∆FPl(xk, zk; ∆xk, ∆zk) → 0,

it follows from (34), (14) and Lemma 5 that

∆xk → 0, g(xk) → 0, xk ◦ zk → µe (x̃k ◦ z̃k → µe).(46)

Therefore, the third equation (15) of the Newton equations yields

lim
k→∞

‖Arw(x̃k)T
−1
pk

∆zk‖ = lim
k→∞

‖(µe− x̃k ◦ z̃k)− Arw(z̃k)Tpk
∆xk‖ = 0.

Since {Arw(x̃k)} is uniformly positive definite and {T−1
pk
} is uniformly bounded, we get

∆zk → 0.

By equation (13), we have

∇xL(xk, yk + ∆yk, zk) → 0,

which implies that
r(xk, yk + ∆yk, zk, µ) → 0.

Since xk+1 = xk + αk∆xk, zk+1 = zk + αk∆zk, ∆xk → 0, ∆zk → 0 and yk+1 = yk + ∆yk,
the result follows. Therefore, the theorem is proved. 2

The preceding theorem guarantees that any accumulation point of the sequence {(xk, yk, zk)}
satisfies the BKKT conditions. If we adopt a common step size αk as wk+1 = wk +αk∆wk

in Step 4 of Algorithm SOCPLS, where αk is determined in Step 3, then the result of
the theorem is replaced by the statement that any accumulation point of the sequence
{(xk, yk + ∆yk, zk)} satisfies the BKKT conditions.

5 Concluding Remarks

In this paper, we have proposed a primal-dual interior point method for solving nonconvex
programming problems over second order cones. Within the line search strategy, we have
proposed the primal-dual merit function that consists of the barrier penalty function and
the potential function, and we have proved the global convergence property of our method.
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If we set s = n and ni = 1, i.e. Ki = {xi ≥ 0}, for i = 1, . . . , s, then problem (1)
reduces to the usual constrained optimization problem:

minimize f(x), x ∈ Rn,
subject to g(x) = 0, x ≥ 0.

(47)

In this case, the merit function reduces to

F (x, z) = FBP (x) + νFP (x, z),(48)

FBP (x) = f(x)− µ

n∑
i=1

log xi + ρ‖g(x)‖1,

FP (x, z) = (n + σ) log(xtz/n +
∣∣xtz/n− µ

∣∣)−
n∑

i=1

log(xizi).

Therefore, as a special case, the results of the present paper include the global convergence
property of the usual primal-dual interior point method for solving problem (47) by using
the primal-dual merit function (48) within the framework of the line search strategy. This
relates to the convergence result by Yamashita and Yabe [13] in which the primal-dual
quadratic barrier penalty function was used in the whole space of (x, y, z). In this case,
the merit function (48) may be modified as

F (x, y, z) = f(x)− µ

n∑
i=1

log xi + ρ‖g(x) + µy‖1 + ν log
(xtz/n + |xtz/n− µ|)n+σ

Πn
i=1xizi

,

and gives a slightly different form from the one given in [13].
Analysis of the rate of convergence and numerical experiments of our method are under

further research. In addition, we plan to construct a method within the framework of the
trust region globalization strategy.
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