
A globally and superlinearly convergent primal-dual

interior point trust region method for large scale

constrained optimization

Hiroshi Yamashita�, Hiroshi Yabey and Takahito Tanabez

July, 1997 (revised July, 1998)

Abstract

This paper proposes a primal-dual interior point method for solving large scale

nonlinearly constrained optimization problems. To solve large scale problems, we

use a trust region method that uses second derivatives of functions for minimizing

the barrier-penalty function instead of line search strategies. Global convergence of

the proposed method is proved under suitable assumptions. By carefully control-

ling parameters in the algorithm, superlinear convergence of the iteration is also

proved. A nonmonotone strategy is adopted to avoid the Maratos e�ect as in the

nonmonotone SQP method by Yamashita and Yabe. The method is implemented

and tested with a variety of problems given by Hock and Schittkowski's book and

by CUTE. The results of our numerical experiment show that the given method is

e�cient for solving large scale nonlinearly constrained optimization problems.

1 Introduction

This paper deals with the following constrained optimization problem:

minimize f(x); x 2 Rn;

subject to g(x) = 0; x � 0;
(1.1)

where we assume that the functions f : Rn ! R1 and g : Rn ! Rm are su�ciently

smooth and the number of variable n and the number of equality constraints m may be

large.
There are several well known methods for solving the above problem. Well known

examples are the augmented Lagrangian method (see, for example [1] and [15]) and the

SQP method (see [15]). Recently, variants of classic interior point methods [13] are revived

�Mathematical Systems, Inc., 2-4-3, Shinjuku, Shinjuku-ku, Tokyo, Japan. hy@msi.co.jp
yDepartment of Applied Mathematics, Faculty of Science, Science University of Tokyo, 1-3, Kagu-

razaka, Shinjuku-ku, Tokyo, Japan. yabe@am.kagu.sut.ac.jp
zMathematical Systems, Inc., 2-4-3, Shinjuku, Shinjuku-ku, Tokyo, Japan. tanabe@msi.co.jp

1

[25, 4, 12, 6, 7] partly because of the phenomenal success of interior point methods for

linear programming problems. In this paper we extend the algorithm developed in [25]

to solve large scale nonlinear optimization problems. In [25], the primal-dual framework,

minimization of the barrier-penalty function and suitable line search strategy are combined
to give a globally convergent e�cient algorithm for large scale linear programming and

small to medium scale nonlinear programming. The local behavior of this method is

analyzed in [28, 24]. However, to solve large scale nonlinear problems, one reasonable
way is to resort to the trust region strategy instead of the line search strategy because of

the reason explained below. Trust region methods used in the interior point method are
studied in [3], [5], [8] and [10].

Let the Lagrangian function of the above problem be de�ned by

L(w) = f(x)� ytg(x)� ztx;(1.2)

where w = (x; y; z)t, and y 2 Rm and z 2 Rn are the Lagrange multiplier vectors which
correspond to the equality and inequality constraints respectively. Then Karush-Kuhn-
Tucker (KKT) conditions for optimality of the above problem are given by

r0(w) =

0
B@
rxL(w)
g(x)
XZe

1
CA = 0; x � 0; z � 0;(1.3)

where

rxL(w) = rf(x)� A(x)ty � z;

A(x) =

0
BB@
rg1(x)t

...
rgm(x)t

1
CCA ;

X = diag (x1; � � � ; xn) ;
Z = diag (z1; � � � ; zn) ;
e = (1; � � � ; 1)t 2 Rn:

To solve problem (1.1) by an interior point method, we de�ne the following minimiza-

tion problem for the barrier function [13]:

minimize f(x)� �
nP
i=1

log(xi); x 2 Rn
+

subject to g(x) = 0;
(1.4)

where � > 0 is a given constant and Rn
+ = fx 2 Rn jx > 0g. It is well known that under

appropriate assumptions, a solution of the above problem gives a good approximation to
a solution of the original problem (1.1) for su�ciently small �. The optimality conditions
of this problem are given by

r(w; �) =

0
B@

rxL(w)

g(x)

XZe� �e

1
CA = 0; x > 0; z > 0;(1.5)

2

where y 2 Rm is the Lagrange multiplier for the equality constraints and z 2 Rn is

introduced to satisfy the third set of equations. In this paper we call conditions (1.5)

the barrier KKT conditions, and a point w(�) = (x(�); y(�); z(�)) that satis�es these

conditions is called the barrier KKT point. We note that conditions (1.5) are often called
the centrality conditions, and a point w(�) that satis�es these conditions is called the

center that corresponds to � in many literatures.

Further, we de�ne the barrier-penalty function which is introduced in [25] by

F (x; �) = f(x)� �
nX
i=1

log(xi) + �
mX
i=1

jgi(x)j;(1.6)

for � > 0 and � > 0. If � is su�ciently large to satisfy � � kyk
1
, then it is easy to show

that the optimality condition of the problem

minimize F (x; �); x 2 Rn
+(1.7)

coincides with conditions (1.5) (see [25]).
In the following, we consider an interior point method that solves optimality conditions

(1.5) with a strictly decreasing sequence f�kg ; �k # 0. Therefore we will assume that the
variables x and z always have positive values. Let �w = (�x;�y;�z)t be de�ned by a
solution of

J(w)�w = �r(w; �);(1.8)

where

J(w) =

0
B@

G �A(x)t �I
A(x) 0 0

Z 0 X

1
CA :(1.9)

If G = r2
xL(w), then �w becomes Newton's direction for solving (1.5). Unless otherwise

stated, G is supposed to be r2
xL(w) in the following.

In [25], the above iteration vectors are used to give a globally convergent algorithm that

uses the Armijo's rule for reducing the barrier-penalty function when we can assume that

the matrix G is positive semi-de�nite. As examples, we can list linear programs, positive

semi-de�nite quadratic programs and small to medium scale general nonlinear programs.

The last class of problems can be included because we can use dense positive de�nite quasi-

Newton approximations to the matrix r2
xL(w) in this case. Our interest in this paper is

in solving large scale nonlinear programs. In this case, we can no longer use dense positive

de�nite approximations to the Hessian of the Lagrangian. Therefore we use the Hessian
of the Lagrangian itself which may not be a positive semi-de�nite matrix, and employ

a trust region method for minimization of the barrier-penalty function. A preliminary
version [26] of this paper describes this algorithm and proves its global convergence.

In this paper, we also aim to obtain superlinear convergence of our basic interior point

method. It will be shown that by carefully controlling the values of relevant parameters,

we can have superlinear convergence of the iterates if we ignore the occurrence of Maratos

e�ect, which may be caused by the use of the l1-exact penalty function in (1.6). To avoid
Maratos e�ect, we adopt nonmonotone strategy of the iterations which is proposed in [27]

for SQP method.

3

Our method is implemented and tested with a variety of test problems. Test problems

from Hock and Schittkowski's book [17] and CUTE [2] are used for our experiment. The

results in Section 6 show that the proposed method is very e�cient for solving large scale

nonlinear problems as well as small ones.
This paper is organized as follows. In Section 2, the basic trust region iteration for

�nding a barrier KKT point with a �xed barrier parameter is described, and its global

convergence is proved. In Section 3, we propose a new method and show its global
convergence. In Section 4, superlinear convergence of our method is proved. Section 5

describes a practical way of choosing the trust region step. Section 6 reports our numerical
experiment.

In what follows, the subscript k denotes an iteration count. Subscripts i and j denote
components of vectors and matrices. For simplicity of description, we assume k �k denotes
the l2 norm for vectors and matrices in this paper. Practical but legitimate choices of

actual norms will be described in Section 6. Order notations are used in this paper. Let

fakg and fbkg are nonnegative sequences. If there exists a positive constant � such that

ak � �bk, then we write ak = O(bk). If there exists a positive sequence f�kg ; �k # 0 such
that ak � �kbk, then we write ak = o(bk).

2 Trust region method with �xed barrier parameter

2.1 Algorithm

A �rst order approximation Fl(x; s) : Rn
+ ! R1 to the barrier-penalty function with

respect to s 2 Rn at a point x 2 Rn
+ is de�ned by

Fl(x; s) = F (x; �) + (rf(x)� �X�1e)ts+ �
mX
i=1

����gi(x) +rgi(x)ts
���� jgi(x)j

�
:(2.1)

Similarly, we de�ne a second order approximation Fq(x; s) : R
n
+ ! R1 to the barrier-

penalty function by

Fq(x; s) = Fl(x; s) +
1

2
stQs;

where an explicit form of the matrix Q 2 Rn�n will be given in Section 2.3. De�ne
changes of these functions which correspond to the step s by

�Fl(x; s) � Fl(x; s)� Fl(x; 0) = Fl(x; s)� F (x; �);

�Fq(x; s) � Fq(x; s)� Fq(x; 0) = Fq(x; s)� F (x; �);

�F (x; s) � F (x+ s; �)� F (x; �):

Now we de�ne a reference direction that will be used to form the actual step with

Newton's direction, and to obtain the global convergence property of the algorithm by

0
B@

D �A(x)t �I
A(x) 0 0
Z 0 X

1
CA
0
B@

�xSD
�ySD
�zSD

1
CA = �r(w; �);(2.2)

4

whereD is a positive de�nite matrix. We call the direction �wSD = (�xSD;�ySD;�zSD)
t

the steepest descent direction by an analogy with the case in unconstrained optimization.

Lemma 1 There holds

�Fl(x; �x) � ��xt(G+X�1Z)�x� (�� ky +�yk
1
)

mX
i=1

jgi(x)j :(2.3)

If � � ky +�yk
1
and G is positive semi-de�nite, then �Fl(x; �x) � 0; and �Fl(x; �x) =

0 yields �x = 0.

Proof. From (1.8) and (2.1) we have

�Fl(x; �x) = ��xt(G+X�1Z)�x+�xtA(x) (y +�y)

+�
mX
i=1

���gi(x) +rgi(x)t�x
���� �

mX
i=1

jgi(x)j

= ��xt(G+X�1Z)�x� (y +�y)t g(x)� �
mX
i=1

jgi(x)j:

This equality gives the desired result (2.3).
A proof of the second statement is easy because two terms in (2.3) are nonpositive by

the assumption. 2

If G is replaced by D in Lemma 1, then we have

�Fl(x; �xSD) � ��xtSD(D +X�1Z)�xSD � (�� ky +�ySDk1)
mX
i=1

jgi(x)j :(2.4)

Now we describe a trust region algorithm that �nds a barrier KKT point for a �xed

barrier parameter �. At the iteration k, we are given the trust region radius �k > 0 and
the vectors �wk and �wSDk. From these two vectors we form the step sk that satis�es

the trust region constraint kskk � �k and strict positivity conditions of the variables. For

the latter to be maintained, we force the next trial point to satisfy

(1�
)(xk)i � (xk + sk)i; i = 1; :::; n;

where
 2 (0; 1). Note that by the existence of this condition, the trust region radius

need not be unnecessarily small to satisfy positivity conditions. The step sk should also

satisfy

�Fq(xk; sk) �
1

2
�Fq(xk;�

�(xk;�xSDk)�xSDk);(2.5)

where ��(x; d) is de�ned by

��(x; d) = argmin fFq(x;�d) j � � 1; k�dk � �; � 2 [0;
 ��(x; d)]g(2.6)

and

��(x; d) = min
i

�
�xi

di

���� di < 0

�

5

for x 2 Rn
+; d 2 Rn. The step size ��(x; d) gives a step to the boundary composed of

the bounds on the variables along the direction d. Thus the step size ��(x; d) gives a

minimum point of the function Fq along the direction d in the interval de�ned by the

trust region radius � and the feasible step size
 ��(x; d). Therefore condition (2.5) gives a
su�cient decrease condition based on the steepest descent step.

Now we present the algorithm of a trust region method for �nding a barrier KKT

point.

Algorithm TR

Step 0. Select an initial point w0 2 Rn
+ �Rm �Rn

+ and positive parameters � and � .

Set parameters " > 0,
 2 (0; 1), �0 > 0 and set k = 0.

Step 1. If kr(wk; �)k � ", then stop.

Step 2. Calculate the vectors �wk and �wSDk that satisfy (1.8) and (2.2) respectively.

If Gk = r2
xL(wk) gives a too large vector that does not satisfy (2.10) given below,

Gk is modi�ed to satisfy (2.10).

Step 3. Find the direction sk 2 Rn that satis�es the conditions:

kskk � �k;

(1�
)(xk)i � (xk + sk)i; i = 1; :::; n;(2.7)

�Fq(xk; sk) � 1

2
�Fq(xk;�

�(xk;�xSDk)�xSDk):

Step 4. �k+1 is de�ned as follows:

If �F (xk; sk) >
1

4
�Fq(xk; sk); then �k+1 =

1

2
�k;

If �F (xk; sk) �
3

4
�Fq(xk; sk); then �k+1 = 2�k;

Otherwise �k+1 = �k:

Step 5. If �F (xk; sk) � 0, then set xk+1 = xk + sk, compute �yk and �zk, set yk+1 =
yk + �yk�yk and zk+1 = zk + �zk�zk. Otherwise set wk+1 = wk.

Step 6. Set k := k + 1 and go to Step 1. 2

In the above algorithm, step sizes for the variables y and z are determined according
to the rule proposed in [25]. For the variable z, we prevent z from becoming too small or

diverging to in�nity by setting the condition

(cLk)i � (xk + sk)i(zk + �zk�zk)i � (cUk)i; i = 1; � � � ; n;

at the end of each iteration, where the bounds cLk and cUk satisfy

0 < (cLk)i < � < (cUk)i; i = 1; � � � ; n:

6

To this end, we let

(cLk)i = min

�
�

ML

; (xk + sk)i(zk)i

�
; (cUk)i = max fMU�; (xk + sk)i(zk)ig ; i = 1; � � � ; n

(2.8)

where ML > 1 and MU > 1 are given constants. The construction of the above bounds

shows that current z satis�es

(cLk)i

(xk + sk)i
� (zk)i �

(cUk)i

(xk + sk)i
; i = 1; � � � ; n:

Thus �zk is determined by

�zk = min

(
min
i

(
max
�i

(
�i

����� (cLk)i
(xk + sk)i

� (zk + �i�zk)i�
(cUk)i

(xk + sk)i

))
; 1

)
:(2.9)

This rule means that the step size �zk is the maximal allowed step that satis�es the box

constraints with the restriction of being not greater than the unit step length. In actual
calculation we modify the direction �zk by

(�z0k)i =

8><
>:

0; if (zk)i = (cLk)i=(xk + sk)i and (�zk)i < 0;
0; if (zk)i = (cUk)i=(xk + sk)i and (�zk)i > 0;

(�zk)i; otherwise:

This modi�cation means that we project the direction along the boundary of the box
constraints if the point zk is on that boundary and the direction �zk points outward
of the box. This procedure is adopted because it gives better numerical results. The
global convergence result shown in the following is equally valid for both unmodi�ed and

modi�ed directions.

Lemma 2 Suppose that an in�nite sequence fwkg is generated by Algorithm TR for �xed

� > 0. Then if lim infk!1(xk)i > 0 and lim supk!1(xk)i <1, then lim infk!1(cLk)i > 0

and lim supk!1(cUk)i <1 for i = 1; � � � ; n.

Proof. Suppose that (cLk)i ! 0 for an i and some subsequence K � f0; 1; 2; � � �g. Then
by the de�nition of (cLk)i in (2.8), (zk)i ! 0; k 2 K.

However, in order for a subsequence of f(zk)ig to tend to 0, there must be an iteration

k at which the lower bound (cLk)i=(xk+1)i of (zk)i is arbitrary small and the value of (zk)i
at the iteration is strictly larger than that bound, i.e. at the iteration the value of (zk)i
decreases to a strictly smaller value. This means that at the iteration k, (cLk)i = �=ML

and therefore the value of (xk+1)i must be arbitrary large. This is impossible because of

the assumption of the lemma. The proof of the boundedness of (cUk)i is similar. 2

For the variable y, we set
�yk = �zk:

We note that the step �y = 1 is also a valid step that gives a global convergence result.

7

2.2 Global convergence

Before proving the global convergence of Algorithm TR, we list the necessary assumptions.

Assumption G

(G1) The functions f and gi; i = 1; :::;m, are twice continuously di�erentiable.

(G2) The level set of the barrier penalty function at an initial point x0 2 Rn
+, which is

de�ned by
n
x 2 Rn

+ jF (x; �) � F (x0; �)
o
, is compact for given � > 0.

(G3) The matrix A(x) is of full rank on the level set de�ned in (G2).

(G4) The matrix D is uniformly positive de�nite and uniformly bounded. The matrices

Q and G are uniformly bounded.

(G5) There exists a number M > 0 such that

k�xkk �M k�xSDkk ; kskk � M k�xSDkk ;(2.10)

for each k = 0; 1; � � � :

(G6) The penalty parameter � satis�es � � kyk +�ySDkk1 for each k = 0; 1; ::: . 2

It follows from Assumption G that the linear system of equations (2.2) has a unique

solution and that the direction �xSDk is uniformly bounded on the compact level set
de�ned in (G2). The following lemma shows the basic property of the search directions.

Lemma 3 (1) If �wk = 0 or �wSDk = 0 at an interior point wk, then the point wk

satis�es the barrier KKT conditions.

(2) If �xk = 0, then �xSDk = 0.
(3) If �xSDk = 0, then �xk = 0 and sk = 0.

(4) If �xk = 0, then �zk = 1 and �yk = 1 are adopted in Algorithm TR, and the point

wk+1 satis�es the barrier KKT conditions.

Proof. (1) It is clear from (1.8) and (2.2).
(2) Since (0;�yk;�zk)

t satis�es (2.2) and the coe�cient matrix of (2.2) is nonsingular,

the uniqueness of the solution to (2.2) implies �xSDk = 0.

(3) This is a direct result from (G5).

(4) We note from (2) and (3) that �xk = 0 yields sk = 0. Thus by (1.8) we have

(xk + sk)i(zk +�zk)i = (xk)i(zk +�zk)i = �:

This implies that the stepsize �zk = 1 is accepted, and so is �yk = 1. Then it follows from
(1.8) again that wk+1 = (xk; yk + �yk; zk + �zk) satis�es the barrier KKT conditions.

Therefore the lemma is proved. 2

Now we proceed to the analysis of global convergence property of the above algorithm.

From the above lemma, we observe that if �xSDk = 0 at some iteration k, then the next
point wk+1 is the barrier KKT point. Therefore we will assume that �xSDk 6= 0 for each
k = 0; 1; � � � in the following.

We state the following simple lemma �rst.

8

Lemma 4 If a vector d 2 Rn satis�es

g(x) + A(x)d = 0;

then there holds the relation

�Fl(x;�d) = ��Fl(x; d); � 2 [0; 1] :(2.11)

Proof. Since gi(x) +rgi(x)td = 0 for all i, by (2.1) we have

�Fl(x;�d) = �(rf(x)� �X�1e)td+ �
mX
i=1

((1� �)jgi(x)j � jgi(x)j)

= �

"
(rf(x)� �X�1e)td+ �

mX
i=1

����gi(x) +rgi(x)td
���� jgi(x)j

�#
:

Thus the proof is complete. 2

Lemma 5 Let x 2 Rn
+; 0 6= d 2 Rn and � > 0 be given. Assume that �Fl(x; d) < 0, and

that

g(x) + A(x)d = 0:

Then the step size de�ned by (2.6) can be expressed as

��(x; d) = min

(
1;

�

kdk ;
 ��(x; d);�
�Fl(x; d)

max fdtQd; 0g

)
;(2.12)

where the last term in the braces in the right hand side is assumed to give the value 1 if

the value of the denominator is 0. Further we have

�Fq(x;�
�(x; d)d) � 1

2
��(x; d)�Fl(x; d):(2.13)

Proof. By the de�nition of the function Fq and Lemma 4, we have

Fq(x;�d) = F (x; �) + ��Fl(x; d) +
1

2
�2dtQd; � 2 [0; 1] :(2.14)

Suppose that dtQd > 0 for the moment. Then the unconstrained minimum �̂ of the

function in the right hand side of the above equality is calculated by

�̂ = ��Fl(x; d)

dtQd
:

Therefore we obtain

��(x; d) = min

(
1;

�

kdk ;
 ��(x; d);�
�Fl(x; d)

dtQd

)
;(2.15)

in this case. From this relation we have

dtQd � ��Fl(x; d)

��(x; d)
:(2.16)

9

>From (2.14) and (2.16) we deduce

�Fq(x;�
�(x; d)d) = ��(x; d)�Fl(x; d) +

1

2
��(x; d)2dtQd

� ��(x; d)�Fl(x; d)�
1

2
��(x; d)�Fl(x; d)

=
1

2
��(x; d)�Fl(x; d):

If dtQd � 0, we have

��(x; d) = min

(
1;

�

kdk ;
 ��(x; d)
)
;

and

�Fq(x;�
�(x; d)d) = ��(x; d)�Fl(x; d) +

1

2
��(x; d)2dtQd

� 1

2
��(x; d)�Fl(x; d):

Therefore we proved (2.12) and (2.13). 2

Theorem 1 Let an in�nite sequence fwkg be generated by Algorithm TR for �xed � >

0 and � > 0. Then there exists an accumulation point that satis�es the barrier KKT

conditions (1.5).

Proof. We �rst prove that
lim inf
k!1

k�xSDkk = 0:(2.17)

Since the sequence f�xSDkg is uniformly bounded and the barrier terms exist in the merit
function, any components of xk do not become arbitrarily small. Thus we have

lim inf
k!1

��(xk;�xSDk) > 0:

By Step 3 of Algorithm TR and Lemma 5, we have

(2.18)

�Fq(xk; sk) �
1

4
�Fl(xk; �xSDk)min

(
1;

�k

k�xSDkk
;
 ��(xk;�xSDk);�

�Fl(xk; �xSDk)

max f�xtSDkQk�xSDk; 0g

)
:

We de�ne subsequences K1 � f0; 1; � � �g and K2 � f0; 1; � � �g that satisfy K1 [K2 =

f0; 1; 2; � � �g and K1 \K2 = ; by

�F (xk; sk) >
1

4
�Fq(xk; sk); k 2 K1;(2.19)

�F (xk; sk) �
1

4
�Fq(xk; sk); k 2 K2:(2.20)

10

(i) Suppose that K1 is an in�nite sequence.

(i-a) If lim inf
k!1;k2K1

�k = 0, then there exists an in�nite set K 0
1 � K1 such that �k ! 0; k 2

K 0
1. Then because kskk � �k, we have kskk ! 0; k 2 K 0

1. Suppose lim inf
k!1

k�xSDkk > 0.

Then Assumption (G6) and (2.4) yield

lim inf
k!1;k2K 0

1

j�Fl(xk; �xSDk)j > 0:

On the other hand, we have

�F (xk; sk) = �Fl(xk; sk) + O
�
kskk2

�
(2.21)

= �Fq(xk; sk) + O
�
kskk2

�
:

>From (2.19) and (2.21), we have

��Fq(xk; sk) < O
�
kskk2

�
:

However this contradicts (2.18), because it gives the relation

��Fq(xk; sk) �
j�Fl(xk; �xSDk)j

4k�xSDkk
kskk = O(kskk) ;

for su�ciently large k 2 K 0
1. Thus we obtain lim inf

k!1
k�xSDkk = 0 in this case.

(i-b) If lim inf
k!1;k2K1

�k > 0, the condition �F (xk; sk) � 3
4
�Fq(xk; sk) must be satis�ed

in�nitely many times for k =2 K1 and this case corresponds to (ii) below.
(ii) Suppose that K2 is an in�nite sequence.
(ii-a) Suppose that there exists an in�nite sequence K 0

2 � K2 such that lim inf
k!1;k2K0

2

�k > 0.

Since fF (xk; �)g is bounded below and decreasing, and �F (xk; sk) � 0 for k 2 K2, we
have

F (xk+1; �)� F (xk; �) = �F (xk; sk)! 0; k 2 K2

and thus �Fq(xk; sk) ! 0; k 2 K2, from (2.20). Therefore we have �Fl(xk; �xSDk) !
0; k 2 K 0

2, from (2.18). Then, by (2.4) we obtain �xSDk ! 0; k 2 K 0
2, and thus

lim inf
k!1

k�xSDkk = 0 in this case.

(ii-b) Suppose lim
k!1;k2K2

�k = 0. Then the condition �F (xk; sk) >
1
4
�Fq(xk; sk) must

be satis�ed in�nitely many times. This case corresponds to (i) above. If the case (i-

a) holds, then (2.17) is proved as above. Otherwise we prove that the case (i-b) does
not occur in this case. Suppose that we have the case in which (i-b) occurs. Then

lim infk!1;k2K1
�k > 0 and limk!1;k2K2

�k = 0. This is a contradiction because �k+1 = �k,
1
2
�k, or 2�k for any k. Therefore the case (i-b) does not occur.
Thus we proved (2.17). By the requirement (2.10), this means that we have

lim inf
k!1

k�xkk = 0:

Thus there exists an in�nite sequence K � f0; 1; � � �g and an accumulation point x̂ 2 Rn
+

such that

xk ! x̂; sk ! 0; �xk ! 0; xk+1 ! x̂; k 2 K:

11

Since Lemma 2 and Assumption G assure the boundedness of
n
X�1

k Zk

o
, we have

lim
k!1;k2K

zk +�zk � �X�1
k e

 = 0

from (1.8). If we de�ne ẑ = �X̂�1e where X̂ = diag(x̂1; � � � ; x̂n), then we have

zk +�zk ! ẑ; k 2 K:

Hence from (2.8) we have

(cLk)i �
�

ML

� (xk + sk)i(zk +�zk)i �MU� � (CUk)i; i = 1; � � � ; n

for k 2 K su�ciently large, which shows that the point zk + �zk is always accepted as

zk+1 for su�ciently large k 2 K.

Since �zk = 1 is accepted for k 2 K su�ciently large, so is �yk = 1. Because the

matrix A(x̂) is of full rank, the sequence fyk +�ykg ; k 2 K converges to a point ŷ 2 Rm

from (1.8). Thus we proved that (xk+1; yk+1; zk+1)! (x̂; ŷ; ẑ) for k 2 K and that

rf(x̂)� A(x̂)tŷ � ẑ = 0;

g(x̂) = 0;

X̂ ẑ = �e; x̂ > 0; ẑ > 0:

This completes the proof. 2

2.3 Quadratic convergence

In the proof of the above global convergence theorem, the explicit form of the matrix Q is

arbitrary. However it is better to have a good form of Q that gives a fast local convergence
to the barrier KKT point for �xed �. For this purpose we set

Q = r2
xL(w) +X�1Z:(2.22)

In the following theorem we show that it is possible to prove that under Assumption

G and additional assumptions, the sequence generated by Algorithm TR converges to a

barrier KKT point quadratically.

Theorem 2 Let w(�) = (x(�); y(�); z(�)) be a solution to the barrier KKT conditions

(1.5) and let an in�nite sequence fwkg be generated by Algorithm TR for �xed � > 0 and

� > 0. Suppose the following assumptions in addition to Assumption G:

(Q1) The sequence fwkg converges to w(�).

(Q2) The second order su�cient condition for optimality of problem (1.4) holds at w(�).

(Q3) If �xk satis�es conditions (2.7), then sk is set to be �xk in Algorithm TR.

12

(Q4) �xk satis�es (2.10) without modifying the matrix Gk in Step 2 of Algorithm TR

for k su�ciently large.

(Q5) The penalty parameter � satis�es

� � kykk1 + �(2.23)

for each k, where � is a positive constant.

(Q6) The Hessian matrices of the constraint functions are su�ciently small to satisfy

�
mX
i=1

jstkr2gi(xk)skj < �1

2
�Fq(xk; sk)(2.24)

for su�ciently large k.

Then the sequence fwkg converges quadratically to w(�).

Proof. In the following, we assume that k is su�ciently large. We note that the second
order su�cient condition for optimality of problem (1.4) implies that there exist positive

constants �00 and �01 such that

vt
�
r2

xL(w(�)) +X(�)�1Z(�) + �00A(x(�))A(x(�))
t
�
v � �01kvk2

for all v 2 Rn. Hence there exist positive constants �0 and �1 such that

vt(Qk + �0A(xk)A(xk)
t)v � �1kvk2 for all v 2 Rn:(2.25)

We �rst prove that if k�xkk � �k, then �xk satis�es conditions (2.7). The �rst

condition of (2.7) clearly holds. Since lim
k!1

xk =
x(�) > 0 and lim
k!1

�xk = 0, we have

�
(xk)i < (�xk)i for i = 1; � � � ; n, which implies the second condition of (2.7). The
Newton direction �wk satis�es

rf(xk) +Qk�xk � �X�1
k e� A(xk)

t(yk +�yk) = 0;

g(xk) + A(xk)�xk = 0:

Since the above equations are the �rst order necessary conditions for optimality of mini-

mizing �Fq(xk; s) by assumption (Q5) (see [25]), �xk becomes a minimizer of �Fq(xk; s)

by the second order su�cient condition for optimality of problem (1.4). Then we have

�Fq(xk; �xk) � �Fq(xk;�
�(xk;�xSDk)�xSDk)

� 1

2
�Fq(xk;�

�(xk;�xSDk)�xSDk);

which implies the third condition of (2.7). Therefore

sk = �xk(2.26)

is accepted.

13

Secondly we show that

�Fq(xk; sk) � ��2kskk2(2.27)

for a positive constant �2.
(i) Suppose that k�xkk � �k. Since sk = �xk is accepted by (2.26), equations (2.3),

(2.23) and (2.25) yield

�Fq(xk; sk) = �Fl(xk; �xk) +
1

2
�xtkQk�xk

� �1

2
�xtkQk�xk � (�� kyk +�ykk1)

mX
i=1

jgi(xk)j

� �1

2
�1k�xkk2 �

1

2
�

mX
i=1

jgi(xk)j+O(kg(xk)k2)

� �1

2
�1kskk2:

(ii) Suppose that k�xkk > �k. In the same way as the proof of Case (i), equations (2.7),
(2.13), (2.4) and the uniformly positive de�niteness of the matrix Dk +X�1

k Zk yield

�Fq(xk; sk) � 1

2
�Fq(xk;�

�(xk;�xSDk)�xSDk)

� 1

4
��(xk;�xSDk)�Fl(xk; �xSDk)

� �1

4
�3(�

�(xk;�xSDk))
2k�xSDkk2;(2.28)

where �3 is a positive constant and ��(xk;�xSDk) is given by (2.12). Since xk ! x(�)
and �xSDk ! 0, we have

 ��(xk;�xSDk) > 1:

Thus we only consider the following three cases.

(ii-a) If ��(xk;�xSDk) = 1, then (2.28) and (G5) yield

�Fq(xk; sk) � �1

4
�3k�xSDkk2 � � �3

4M2
kskk2:

(ii-b) If ��(xk;�xSDk) =
�k

k�xSDkk
, then (2.28) and kskk � �k yield

�Fq(xk; sk) � �1

4
�3�

2
k � �1

4
�3kskk2:

(ii-c) If ��(xk;�xSDk) = ��Fl(xk; �xSDk)

�xtSDkQk�xSDk

, then (2.4) yields

��(xk;�xSDk) �
�xtSDk(Dk +X�1

k Zk)�xSDk + (�� kyk +�ySDkk1)
Pm

i=1 jgi(xk)j
�xtSDkQk�xSDk

:

Since there exist positive constants �4 and �5 such that

�xtSDk(Dk +X�1
k Zk)�xSDk � �4k�xSDkk2 and �xtSDkQk�xSDk � �5k�xSDkk2;

14

we have

��(xk;�xSDk) �
�4

�5
> 0:

Hence it follows from (2.28) and (G5) that

�Fq(xk; sk) � �1

4
�3

�4

�5

!2

k�xSDkk2 � � �3�
2
4

4M2�2
5

kskk2:

Therefore by (i) and (ii), we obtain (2.27).

We thirdly prove that

�F (xk; sk) � �Fq(xk; sk) + �
mX
i=1

���stkr2gi(xk)sk
���+ o(kskk2):(2.29)

Since

�
nX
i=1

log

1 +

(sk)i
(xk)i

!
= �stkX

�1
k e� 1

2
�stkX

�2
k sk + o(kskk2);

we have

F (xk + sk; �) = f(xk) +rf(xk)tsk +
1

2
stkr2f(xk)sk + o(kskk2)

��
nX
i=1

log(xk)i � �
nX
i=1

log

1 +

(sk)i

(xk)i

!

+�
mX
i=1

����gi(xk) +rgi(xk)tsk +
1

2
stkr2gi(xk)sk

����
� F (xk; �) + �Fl(xk; sk) +

1

2
stk(r2

xL(wk) +X�1
k Zk)sk

+
1

2
�

mX
i=1

���stkr2gi(xk)sk
���+ 1

2

mX
i=1

(yk)is
t
kr2gi(xk)sk + o(kskk2)

� F (xk; �) + �Fq(xk; sk) + �
mX
i=1

���stkr2gi(xk)sk
���+ o(kskk2):

Thus we obtain (2.29).

By (2.29), (2.24) and (2.27), we have

�F (xk; sk) <
1

2
�Fq(xk; sk) + o(kskk2)

=
1

4
�Fq(xk; sk) +

�
1

4
�Fq(xk; sk) + o(kskk2)

�

� 1

4
�Fq(xk; sk) +

�
�1

4
�2kskk2 + o(kskk2)

�

<
1

4
�Fq(xk; sk):

Step 4 of Algorithm TR implies

�k+1 = 2�k or �k+1 = �k;

15

and then we have

lim inf
k!1

�k > 0:

Since �xk ! 0 yields k�xkk < �k, by (2.26), sk = �xk is accepted. Therefore since

assumptions guarantee the nonsingularity of J(wk) and the pure Newton step �wk is
chosen, we obtain the quadratic rate of convergence of Algorithm TR. 2

We note that (2.24) is a condition for avoiding the Maratos e�ect and that this is
not so unrealistic condition for some problems. In fact, if the magnitude of r2gi(xk) is

su�ciently small for i = 1; � � � ;m, equation (2.27) guarantees (2.24). Instead of assuming

the above conditions, we could have a method for avoiding Maratos e�ect, an example of
such method is shown below, even in the iterations for �xed �. We do not include this

kind of strategy in Algorithm TR mainly because of simplicity of the given algorithm.

Also we note that in the algorithm given below a search with �xed � is terminated when

a point that approximately satis�es the barrier KKT conditions is obtained. Therefore

Maratos e�ect does not occur actually in the inner loop of Algorithm IPTR given below.

3 Our method and its global convergence

In the previous section, we showed global convergence of Algorithm TR for �nding a
barrier KKT point. Since KKT conditions (1.3) are obtained by letting �! 0 in barrier

KKT conditions (1.5), we can expect that the sequence fwkg that consists of approxi-
mations to barrier KKT points obtained by Algorithm TR with f�kg; �k # 0 converges
to a KKT point. On the other hand, in [28], local behavior of the primal-dual interior
point methods is studied and superlinear convergence property is proved. Hence our aim

in this paper is to propose a globally and superlinearly convergent primal-dual interior
point method. To avoid the Maratos e�ect, we adopt a nonmonotone strategy which is

similar to the one used in [27] for the SQP method.

In this section, we present our new method, a primal-dual interior point trust region

method, and show its global convergence. In the next section, we will analyze local

behavior of our method and show that the Maratos e�ect does not occur, hence superlinear
convergence of our method.

In the following algorithm, iterates consist of points wk+1; k = 0; 1; ::: that satisfy the

condition
kr(wk+1; �k)k �Mc�k;(3.1)

where Mc is a given positive constant. This condition means that the point wk+1 approx-
imately satis�es the barrier KKT conditions for the barrier parameter �k. Therefore we

call condition (3.1) the approximate barrier KKT condition. By using Algorithm TR we

can obtain such a point as shown above. Therefore it is easy to have a globally convergent
algorithm for obtaining a KKT point with the decreasing sequence f�kg that converges
to 0. However, we have to expect that Maratos e�ect may occur at the �nal stage of the

iteration because of the use of l1 type penalty function in our algorithm.

To avoid this e�ect, we include the nonmonotone procedure in Step 2 of Algorithm
IPTR below. We could use a sort of second order correction steps to avoid the Maratos

e�ect (see for example [14] and [20]). However we think such extra steps may complicate

16

the algorithm and necessitates extra computations. On the other hand, the Maratos

e�ect itself is somewhat an arti�cial one because it comes from the use of the l1 merit

function for attaining global convergence. Therefore we adopt a strategy which uses the

original Newton direction only. The nonmonotone step which will be described below is
just Newton direction for the barrier KKT conditions, and we try to adopt the step even

if it raises the value of the barrier penalty function. We note that our nonmonotone step

is di�erent from the one proposed in [16].
In the nonmonotone step which is tried at the initial step with a newly updated barrier

parameter (an approximate barrier KKT point for the previous barrier parameter value),
we test the quality of the direction by using the parameter �k. The parameter �k is called

the bounding parameter for the nonmonotone step. If a nonmonotone step gives a merit
function value that is not less than �k, we discard the point and resort to usual trust

region strategy (Algorithm TR). Otherwise we adopt the point as a closer approximation

to a barrier KKT point even if the merit function value does not decrease. If the point

obtained by the nonmonotone step satis�es the above approximate barrier KKT condition,

we are ready to reduce the barrier parameter. If not, we resort to Algorithm TR to obtain
such a point.

In our algorithm below values of �k have some
exibility. Initially we set �0 =

F (x0; ��1), i.e., the merit function value at the initial point. This value acts as the largest
allowable value of the merit function in the iterations hereafter. Let a point xk+�xk�xk be
given by the nonmonotone step at xk where �xk > 0 is a step size which will be de�ned be-

low. If the point xk+�xk�xk is discarded because F (xk+�xk�xk; �k) � �k, then we have
�k+1 = �k. Otherwise we have �k+1 2 [maxfF (xk; �k); F (xk + �xk�xk; �k)g; F (x0; ��1)].
We will prove that the Maratos e�ect can be avoided with these parameter values.

Now we give the algorithm as follows:

Algorithm IPTR

Step 0. (Initialize)

Choose parameters � > 0, Mc > 0 and " > 0. Select an initial point w0 2 Rn
+ �

Rm � Rn
+ and a positive parameter ��1 such that kr(w0; ��1)k � Mc��1. Set

�0 = F (x0; ��1) and k = 0.

Step 1. (Termination)

If kr0(wk)k � ", then stop. Otherwise choose �k 2 (0; �k�1):

Step 2. (Nonmonotone Procedure)

Step 2.1 Compute a search direction �wk by solving

J(wk)�wk = �r(wk; �k):(3.2)

If J(wk) is singular, then set �k+1 = �k and go to Step 3.

Step 2.2 Compute �k = diag(�xkIn; �ykIm; �zkIn) > 0 such that xk + �xk�xk > 0

and zk+�zk�zk > 0, where In and Im are n-th andm-th order identity matrices

respectively.

17

Step 2.3 If F (xk + �xk�xk; �k) � �k, then set �k+1 = �k and go to Step 3.

Step 2.4 Set �k+1 2 [maxfF (xk; �k); F (xk + �xk�xk; �k)g; F (x0; ��1)].
Step 2.5 If kr(wk +�k�wk; �k)k � Mc�k, then set wk+1 = wk +�k�wk and go to

Step 4. Otherwise go to Step 3.

Step 3. (Trust Region Procedure)

Find a new point wk+1 that satis�es the approximate barrier KKT condition (3.1)

by Algorithm TR.

Step 4. Set k := k + 1 and go to Step 1. 2

As described in Section 2, we can �nd a point that satis�es (3.1) by Algorithm TR
from any starting point. On the other hand, in order for the interval of �k+1 in Step 2.4

to be well de�ned, we need to use a starting point x which satis�es F (x; �k) � �k in Step

3. In fact, the point wk or wk +�k�wk is used as a starting point in Step 3. Speci�cally,
we may use wk if a jump from Step 2.1 or Step 2.3 occurs, and wk+�k�wk if a jump from
Step 2.5 occurs. Though in Step 0 of Algorithm IPTR, we could start from any initial
point w0, we start from w0 such that kr(w0; ��1)k � Mc��1 for simplicity.

By assumption (G2), there exists a constant �xi such that

0 <
(xk)i

�xi
< 1; i = 1; 2; :::; n

at each k, and the merit function (1.6) could be replaced by

F (x; �) = f(x)� �
nX
i=1

log
�
xi

�xi

�
+ �

mX
i=1

jgi(x)j;

if necessary. Therefore, in proving global convergence of our method, we can assume

that

0 < (xk)i < 1; i = 1; 2; :::; n

for all k, without loss of generality. This guarantees the monotone decreasing of the

barrier term with respect to �, i.e.

��k
nX
i=1

log(xk�1)i � ��k�1
nX
i=1

log(xk�1)i

for i = 1; :::; n.

In the following theorem, we show the global convergence property of Algorithm IPTR.

Theorem 3 Let fwkg be an in�nite sequence generated by Algorithm IPTR with f�kg; �k #
0. Suppose that the sequences fxkg and fykg are bounded. Then fzkg is bounded, and any
accumulation point of fwkg satis�es KKT conditions (1.3) of problem (1.1).

18

Proof. Assume that there exists an i such that (zk)i !1. Equation (3.1) yields

�����(rf(xk)� A(xk)
tyk)i

(zk)i
� 1

����� �Mc

�k�1

(zk)i
;

which is a contradiction because of the boundedness of fxkg and fykg. Thus the sequence
fzkg is bounded.

Let ŵ be any accumulation point of fwkg. Since the sequences fwkg and f�kg satisfy
(3.1) for each k and �k approaches zero, r0(ŵ) = 0 follows from the de�nition of r(w; �).

Therefore the proof is complete. 2

4 Superlinear Convergence

In this section, we discuss the convergence rate of Algorithm IPTR. In order to obtain

fast convergence, we must choose suitable step sizes. Following the analysis by Yamashita

and Yabe [28], we de�ne the step sizes by the rule:

�xk = min

(
1;
kmin

i

(
� (xk)i

(�xk)i

����� (�xk)i < 0

))
;(4.1)

�zk = min

(
1;
kmin

i

(
� (zk)i

(�zk)i

����� (�zk)i < 0

))
(4.2)

and
�yk = 1; or �xk; or �zk;

where
k 2 (0; 1).
Let w� = (x�; y�; z�)t be a KKT point of (1.1). In the following, we assume that k is

su�ciently large and �k is su�ciently close to 0. In order to prove superlinear convergence,
we need Assumption L.

Assumption L

(L1) The sequence fwkg converges to w�.

(L2) The second derivatives of the functions f and g are Lipschitz continuous at x�.

(L3) The linear independence of active constraint gradients, the second order su�cient

condition for optimality and the strict complementarity condition hold at w�.

(L4) � � kykk1 + � for all k, where � is a positive constant.

(L5) �k and
k are updated by the rules

�k = �kkr0(wk)k1+�1 and 1�
k = ��kkr0(wk)k�2

for positive constants �1, �2 and � such that min(1; �2) > �1 and 0 < � < 1, and for

a positive number �k such that 1
M 0

� �k � M 0, where M 0 is a positive constant.

19

(L6) 0 < Mc <
p
n.

2

By (L1), (L2) and (L3), the Jacobian matrix rr(wk; �k) is nonsingular and

krr(wk; �k)
�1k � �

holds for a positive constant �. Thus the linear system of equations (3.2) has a unique

solution and Step 2.2 is always performed.

First we give the following theorem, which plays an important role in showing super-

linear convergence property of Algorithm IPTR.

Theorem 4 (1) If a point ŵ 2 Rn
+ �Rm �Rn

+ satis�es kr(ŵ; �k)k �Mc�k, then

�1kr0(wk)k1+�1 � kr0(ŵ)k � �2kr0(wk)k1+�1(4.3)

for positive constants �1 and �2.

(2) �k = I:

(3) There holds

kr(wk +�wk; �k)k � Mc�k:(4.4)

Proof. (1) Since kr(ŵ; �k)k �Mc�k, we have

kr0(ŵ)k =

r(ŵ; �k) + �k

0
B@

0
0

e

1
CA

 = O(�k) = O(kr0(wk)k1+�1):

Furthermore we obtain

kr0(ŵ)k =

r(ŵ; �k) + �k

0
B@

0
0

e

1
CA

 � �k

0
B@

0
0
e

1
CA

� kr(ŵ; �k)k

� (
p
n�Mc)�k �

p
n�Mc

M 0
kr0(wk)k1+�1:

(2) We will show that

�xk = min

(
1;
kmin

i

(
� (xk)i

(�xk)i

����� (�xk)i < 0

))
= 1:

For i such that (x�)i > 0, it follows from (�xk)i ! 0 and
k ! 1 that

�
k
(xk)i

(�xk)i
> 1 ((�xk)i < 0):(4.5)

Now we consider an index i such that (x�)i = 0. In this case we note that (z�)i > 0 by

Assumption (L3). By the Newton equaion (3.2),

(xk)i(�zk)i + (zk)i(�xk)i = �k � (xk)i(zk)i;

20

and then we have

(xk)i + (�xk)i =
�k

(zk)i
� (xk)i(�zk)i

(zk)i
:(4.6)

Since kr(wk; �k�1)k �Mc�k�1, we have

�k = O(kr0(wk)k1+�1) = O(kr0(wk�1)k(1+�1)
2

)(4.7)

by result (1), and

j(xk)i(zk)i � �k�1j �Mc�k�1:

The latter yields

(xk)i �
(1 +Mc)�k�1

(zk)i
=

1 +Mc

(zk)i
�kkr0(wk�1)k1+�1 :

Since

(�zk)i � k�wkk = O(kr(wk; �k)k) = O(kr0(wk)k) = O(kr0(wk�1)k1+�1);

we have

(xk)i(�zk)i = O
�
kr0(wk�1)k2(1+�1)

�
:(4.8)

Assumption (L5) implies (1 + �1)
2 < 2(1+ �1). Thus it follows from (4.6), (4.7) and (4.8)

that

(xk)i + (�xk)i > �
�k

(zk)i
;(4.9)

where � is given by (L5). Since (xk)i(zk)i � kr0(wk)k, Assumption (L5) guarantees

�k

(zk)i
=

�kkr0(wk)k1+�1
(zk)i

� �k(xk)ikr0(wk)k�1

� �k(xk)ikr0(wk)k�2 =
1

�
(xk)i(1�
k);

then we have

�
�k

(zk)i
� (xk)i(1�
k):(4.10)

Thus by (4.9) and (4.10) we obtain

(xk)i + (�xk)i > (1�
k)(xk)i;

which implies

k

� (xk)i

(�xk)i

!
> 1 for (�xk)i < 0:

Hence (4.5) holds for any i such that (�xk)i < 0, and we have �xk = 1.
In the same way as above, we can prove that

�zk = min

(
1;
kmin

i

(
� (zk)i

(�zk)i

����� (�zk)i < 0

))
= 1:

21

Therefore the result follows.

(3) >From the Newton equation (3.2) and Assumption (L5), we directly obtain

kr(wk +�wk; �k)k = kr(wk; �k) + J(wk)�wk +O(k�wkk2)k
= O(k�wkk2)
= O(kr(wk; �k)k2)
= O(kr0(wk)k2)
= o(kr0(wk)k1+�1)
= o(�k)

� Mc�k:

This proves (4.4).

Therefore the proof of this theorem is complete. 2

The preceding theorem shows that wk + �wk satis�es the approximate barrier KKT
condition in Step 2.5, therefore if we accept this point in Step 2.3 for each k, then we
obtain superlinear convergence of Algorithm IPTR from (4.3).

Theorem 5 Let � be a positive constant. If �k � F (xk0 ; �k0) + � for su�ciently large k0
and each k � k0, then Algorithm IPTR sets wk+1 = wk +�wk for all k � k0 and gives a

superlinear rate of convergence of fwkg.

Proof. Since Assumption L implies that

lim
k!1

F (xk +�xk; �k) = lim
k!1

F (xk; �k) = f(x�);

we have
jF (xk +�xk; �k)� F (xk0 ; �k0)j < �;

for su�ciently large k0 and all k � k0. Thus the assumption of the theorem yields

�k > F (xk +�xk; �k);

and by (3) of Theorem 4, wk+1 = wk + �wk is accepted in Step 2.5. Therefore the

superlinear convergence property follows from (1) of Theorem 4. 2

In what follows, even if we do not assume the condition in the above theorem, we
show that it is possible to prove that Step 2.4 and Step 2.5 are performed and Step 3 is

skipped at each iteration, and that superlinear convergence property is obtained. To this
end, we need additional assumptions as follows:

(L7) There exists an integer î such that (x�)̂i = 0.

(L8) 0 < Mc < 1.

(L9) �1 and �2 given in (L5) satisfy �1 >
p
2� 1 and �2 � 1: 2

22

We note that (L7) means xk 6= x� for all k, because xk is always positive. Since

kr(wk; �k�1)k �Mc�k�1 is satis�ed for all k, (L8) yields

(xk)i(zk)i � (1�Mc)�k�1 > 0; i = 1; :::; n:(4.11)

Theorem 6 There hold

(1) kwk � w�k = O(kxk � x�k),

(2) �3k�xkk � kxk � x�k � �4k�xkk for positive constants �3 and �4,

(3) k�wkk = O(k�xkk),

(4) k�xkk = o(k�xk�1k).

Proof. (1) Since

kwk � w�k = O(kr0(wk)� r0(w
�)k

= O

0
B@

r(wk; �k�1) + �k�1

0
B@

0
0
e

1
CA

1
CA ;

we have
kwk � w�k � �5�k�1;(4.12)

where �5 is a positive constant. >From (4.11), there exists a positive constant �6 such that
(xk)i � �6�k�1 for i = 1; :::; n. It follows from (L7) that

j(xk)̂i � (x�)̂ij � �6�k�1:

This implies

kxk � x�k � �6�k�1:(4.13)

Therefore equations (4.12) and (4.13) yield

kwk � w�k � �7kxk � x�k(4.14)

for a positive constant �7.
(2) By (4.14), we have

����� k�xkk
kxk � x�k � 1

����� =
jkxk � x�k � k�xkkj

kxk � x�k

� kxk +�xk � x�k
kxk � x�k

� �7kwk +�wk � w�k
kwk � w�k :

23

Since

kwk +�wk � w�k = O(kr0(wk +�wk)� r0(w
�)k)

= O(kr(wk +�wk; �k) + O(�k)k)
= O(kr(wk; �k) + J(wk)�wk +O(k�wkk2) + O(�k)k)
= O(kr0(wk)k2) + O(kr0(wk)k1+�1)
= o(kr0(wk)k)
= o(kwk � w�k);

we obtain ����� k�xkk
kxk � x�k � 1

����� = o(1):

(3) By using results (1) and (2), we have

k�wkk = O(kr(wk; �k)k) = O

0
B@

r0(wk)� �k

0
B@

0
0
e

1
CA

1
CA

= O(kr0(wk)k) = O(kwk � w�k)
= O(kxk � x�k) = O(k�xkk):

(4) By Theorem 4 we have

k�xkk � k�wkk = O(kr(wk; �k)k) = O(kr0(wk)k)
= O(kr0(wk�1)k1+�1) = o(kr0(wk�1)k) = o(kwk�1 � w�k):

Thus (1) and (2) yield

k�xkk = o(kxk�1 � x�k) = o(k�xk�1k):

Therefore the theorem is proved. 2

Since xk 6= x�, we should note that �xk 6= 0 for all k from (2).

The following assumption is stated temporarily for use in Corollary 1.

(L70) There exists an integer î such that (z�)î = 0: 2

Corollary 1 If Assumption (L7) is replaced by (L70), then

(1) kwk � w�k = O(kzk � z�k),

(2) �3k�zkk � kzk � z�k � �4k�zkk for positive constants �3 and �4,

(3) k�wkk = O(k�zkk),

(4) k�zkk = o(k�zk�1k).

Proof. Proof of the corollary is same as Theorem 6. 2

24

Lemma 6 If wk = wk�1 +�wk�1, then

��k
nX
i=1

log(xk +�xk)i = ��k
nX
i=1

log(xk�1)i + o(k�xk�1k2)

< ��k�1
nX
i=1

log(xk�1)i + o(k�xk�1k2):

Proof. First we note that

log

(xk�1)i + (�xk�1)i

(xk�1)i

!
� log(1�
k�1):(4.15)

Since Theorem 4 yields

kr0(wk)k � �2kr0(wk�1)k1+�1 ;

Assumption (L5) yields

��k log(1�
k�1)(4.16)

= ��kkr0(wk)k1+�1(log ��k�1 + log kr0(wk�1)k�2)

� �M 0�1+�12 kr0(wk�1)k(1+�1)
2

�
log

�

M 0
+ log kr0(wk�1)k�2

�

= �M 0�1+�12 kr0(wk�1)k2
�
kr0(wk�1)k�

2

1
+2�1�1

�
log

�

M 0
+ �2 log kr0(wk�1)k

��
:

Since �1 >
p
2� 1 guarantees � 21 +2�1� 1 > 0, it follows from (4.15), (4.16) and Theorem

6 that

��k
nX
i=1

log(1 + (X�1
k�1�xk�1)i) � �n�k log(1�
k�1)

= o(kr0(wk�1)k2)
= o(kwk�1 � w�k2)
= o(kxk�1 � x�k2)
= o(k�xk�1k2):(4.17)

In the same way as the above and by using Theorem 4, we have

��k
nX
i=1

log(1 + (X�1
k �xk)i)(4.18)

� �n�k log(1�
k)

= �n�kkr0(wk)k1+�1 log (��kkr0(wk)k�2)

� �nM 0�1+�12 kr0(wk�1)k2
�
kr0(wk�1)k�

2

1
+2�1�1

�
log

�

M 0
+ �2 log �1

+�2(1 + �1) log kr0(wk�1)k)g
= o(k�xk�1k2):

25

We also see that
nX
i=1

log(xk +�xk)i =
nX
i=1

log(xk)i +
nX
i=1

log(1 + (X�1
k �xk)i)(4.19)

=
nX
i=1

log(xk�1)i +
nX
i=1

log(1 + (X�1
k�1�xk�1)i)

+
nX
i=1

log(1 + (X�1
k �xk)i):

Since Assumption (L7) implies
nX
i=1

log(xk�1)i < 0, we have

��k
nX
i=1

log(xk�1)i < ��k�1
nX
i=1

log(xk�1)i:(4.20)

Thus by expressions (4.17), (4.18), (4.19) and (4.20), we obtain the desired results. 2

Let I� = fij(x�)i = 0g and ~I be a jI�j � n matrix whose row consists of eti; i 2 I�,

where ei denotes the i-th column vector of the identity matrix. We de�ne

~A(x) =

A(x)
~I

!
2 R(m+jI�j)�n:

Assumption (L3) implies that an augmented matrix

�Gk = r2
xL(wk) + �0 ~A(xk)

t ~A(xk)

is uniformly positive de�nite for a su�ciently large positive constant �0, i.e. there exists
a positive constant � such that the matrix �Gk satis�es

vt �Gkv � �kvk2 for any v 2 Rn:(4.21)

Lemma 7 There hold

(1) ��xtk(r2
xL(wk) +X�1

k Zk)�xk

� ��k�xkk2 �
X
i2I�

(zk)i
(xk)i

� �0

!
(�xk)

2
i +O(kg(xk)k2)

� ��k�xkk2 +O(kg(xk)k2);

(2) etX�1
k �xk < 0:

Proof. (1) By (4.21), we have

��xtk(r2
xL(wk) +X�1

k Zk)�xk

= ��xtk(�Gk � �0 ~A(xk)
t ~A(xk) +X�1

k Zk)�xk

� ��k�xkk2 + �0(g(xk)
tg(xk) +

X
i2I�

(�xk)
2
i)�

nX
i=1

(zk)i

(xk)i
(�xk)

2
i

� ��k�xkk2 �
X
i2I�

(zk)i

(xk)i
� �0

!
(�xk)

2
i +O(kg(xk)k2):

26

The second inequality follows from
(zk)i
(xk)i

� �0 > 0; i 2 I�.

(2) Since Lemma 3 in [28] yields

(�xk)i

(xk)i
� �1 + �k

(xk)i(zk)i
+O(k�wkk)

for i such that (x�)i = 0, and
(�xk)i

(xk)i
= O(k�wkk)

for i such that (x�)i > 0, we have

etX�1
k �xk =

nX
i=1

(�xk)i
(xk)i

� �1 +
nX
i=1

�k

(xk)i(zk)i
+O(k�wkk):

Since (1) of Theorem 4 and (4.11) yield

�k�1

(xk)i(zk)i
� 1

1�Mc

and �k = O(�1+�1k�1);

we see that
�k

(xk)i(zk)i
� �9

�1+�1k�1

(xk)i(zk)i
� �9

1�Mc

��1k�1;

where �9 is a positive constant. Then we have

etX�1
k �xk � �1 + O(��1k�1) + O(k�wkk) < 0: 2

De�ne
L0(xk; yk) = f(xk)� ytkg(xk) and ~yk = yk +�yk:

>From Newton's equations (3.2), we have

r2
xL(wk)�xk = �rf(xk) + A(xk)

t(yk +�yk) + (zk +�zk)(4.22)

= �rf(xk) + A(xk)
t~yk �X�1

k Zk�xk + �kX
�1
k e

and therefore

rxL0(xk; ~yk) = �r2
xL0(xk; yk)�xk �X�1

k Zk�xk + �kX
�1
k e:(4.23)

Theorem 7 If wk = wk�1 +�wk�1, then

F (xk +�xk; �k) < F (xk�1; �k�1):

27

Proof. From equation (4.22), we have

F (xk +�xk; �k) = f(xk +�xk)� �k

nX
i=1

log(xk +�xk)i

+�
mX
i=1

jgi(xk +�xk)j

= f (xk) +rf(xk)t�xk � �k

nX
i=1

log(xk +�xk)i

+�
mX
i=1

jgi(xk) +rgi(xk)t�xkj+O(k�xkk2)

= f (xk)� ~ytkg(xk)� �k

nX
i=1

log(xk +�xk)i

��xtk(r2
xL(wk) +X�1

k Zk)�xk

+�ke
tX�1

k �xk +O(k�xkk2):
Hence by Lemma 7 and Theorem 6-(4), we have

F (xk +�xk; �k) < L0(xk; ~yk)� �k

nX
i=1

log(xk +�xk)i +O(k�xkk2)

= L0(xk�1; ~yk) +rxL0(xk�1; ~yk)
t�xk�1

+
1

2
�xtk�1r2

xL0(xk�1; ~yk)�xk�1

��k
nX
i=1

log(xk +�xk)i + o(k�xk�1k2):

Since equation (4.23) yields

rxL0(xk�1; ~yk)
t�xk�1 = rxL0(xk�1; ~yk�1)

t�xk�1 � (~yk�1 � ~yk)
tg(xk�1)

= ��xtk�1r2
xL0(xk�1; yk�1)�xk�1 ��xtk�1X

�1
k�1Zk�1�xk�1

+�k�1�x
t
k�1X

�1
k�1e� (~yk�1 � ~yk)

tg(xk�1);

we have

F (xk +�xk; �k)

< L0(xk�1; ~yk) + f��xtk�1r2
xL0(xk�1; yk�1)�xk�1

��xtk�1X�1
k�1Zk�1�xk�1 + �k�1e

tX�1
k�1�xk�1 � (~yk�1 � ~yk)

tg(xk�1)g

+
1

2
�xtk�1r2

xL0(xk�1; ~yk)�xk�1 � �k

nX
i=1

log(xk +�xk)i + o(k�xk�1k2)

< L0(xk�1; ~yk)�
1

2
�xtk�1r2

xL0(xk�1; yk�1)�xk�1

�1

2
�xtk�1fr2

xL0(xk�1; yk�1)�r2
xL0(xk�1; ~yk)g�xk�1

��xtk�1X�1
k�1Zk�1�xk�1 � �k

nX
i=1

log(xk +�xk)i

+o(k�xk�1k2) + o(kg(xk�1)k):

28

Hence Lemmas 6 and 7 yield

F (xk +�xk; �k) < F (xk�1; �k�1)�
1

2
�x;k�1�x

t
k�1r2

xL0(xk�1; yk�1)�xk�1

�ytk+1g(xk�1)� �
mX
i=1

jgi(xk�1)j ��xtk�1X
�1
k�1Zk�1�xk�1

+o(k�xk�1k2) + o(kg(xk�1)k)

< F (xk�1; �k�1)� (�� kyk+1k1)
mX
i=1

jgi(xk�1)j+ o(kg(xk�1)k)

�1

2
�xtk�1(r2

xL(wk�1) +X�1
k�1Zk�1)�xk�1 + o(k�xk�1k2)

< F (xk�1; �k�1)� �
mX
i=1

jgi(xk�1)j+ o(kg(xk�1)k)

�1

2
�k�xk�1k2 + o(k�xk�1k2):

This implies
F (xk +�xk; �k) < F (xk�1; �k�1):

The theorem is proved. 2

Now we present a main result for superlinear convergence.

Theorem 8 Algorithm IPTR sets wk+1 = wk +�wk for all k su�ciently large and gives

a superlinear rate of convergence of fwkg and fxkg.

Proof. We �rst show the nonmonotone procedure in Step 2 of Algorithm IPTR is accepted

at some iteration. To this end, we assume that the trust region procedure in Step 3 is
performed for all k su�ciently large. Since assumption (L1) implies � log(xk+1)i > 0 for
k su�ciently large, we have

�k � F (xk+1; �k) > F (xk+1; �k+1) � F (xk+2; �k+1):

Thus the facts that �k is constant for su�ciently large k and �wk ! 0 guarantee that

there exists a su�ciently large k such that

F (xk +�xk; �k) < �k

in Step 2.3, and then Step 2.4 is performed, which is a contradiction. Since Theorem 4
implies kr(wk +�wk; �k)k �Mc�k, we have wk+1 = wk +�wk in Step 2.5.

At the (k + 1)-st iteration, Theorem 7 and the updating rule of �k imply

F (xk+1 +�xk+1; �k+1) < F (xk; �k) � maxfF (xk; �k); F (xk+1; �k)g � �k+1:

Thus Step 2.3 and Step 2.4 are performed, and we obtain wk+2 = wk+1 +�wk+1 in Step
2.5 because kr(wk+1 +�wk+1; �k+1)k �Mc�k+1 holds by Theorem 4.

Therefore nonmonotone steps (Step 2.5) are adopted hereafter, and Theorems 4 and 6

guarantee the superlinear convergence properties of fwkg and fxkg, which completes the
proof. 2

29

5 Actual step

In this section, we describe how to perform the trust region iterations practically. We

calculate the vector s based on the following two sets of equations:

0
B@

G �A(x)t �I
A(x) 0 0
Z 0 X

1
CA
0
B@

�x

�y
�z

1
CA = �r(w; �); G = r2

xL(w)(5.1)

and 0
B@

D �A(x)t �I
A(x) 0 0

Z 0 X

1
CA
0
B@

�xSD
�ySD
�zSD

1
CA = �r(w; �):(5.2)

To satisfy condition (2.10), the matrix G is added a positive diagonal matrix if the current
matrix G = r2

xL(w) gives a singular or nearly singular coe�cient matrix, i.e., if condition
(2.10) is not satis�ed. From these two sets of vectors, we calculate the vector s by

s = ��xSD + (1� �)�x;(5.3)

where the parameter � 2 [0; 1] is determined to satisfy condition (2.7). For a given
� 2 [0; 1], we calculate ��(x; s) and check if condition (2.7) is satis�ed by s = ��(x; s)s.
The calculation of the step ��(x; s) is easy because the function involved is quadratic.
If � = 1, condition (2.7) is obviously satis�ed by s = ��(x; s)s. If � = 0, the resulting

iteration vector s coincides with the Newton iteration vector �x. Therefore, we try the
value � = 0 �rst, and increase the value of � by 0.1 until condition (2.7) is satis�ed by

s = ��(x; s)s.

6 Implementation and numerical results

The algorithm of this paper is implemented and tested with various problems from Hock

and Schittkowski's book [17] and CUTE [2]. The program is named as NUOPT 3.0.

In this section, the implementation of NUOPT 3.0 and its numerical performance are

described in order. All experiments are done on Pentium Pro 200MHz PC with 96MB

main memory which runs under BSD/OS. Programming languages used are Fortran 77,

C and C++.

6.1 problem input

The problem is speci�ed with an objective function, upper and/or lower bounds on vari-

ables, linear equality constraints, nonlinear equality constraints, linear inequality con-
straints with upper and/or lower bounds and nonlinear inequality constraints with upper

and/or lower bounds. Inequality constraints are converted to equality constraints and
slack variables with bound(s). Our implementation can deal with upper and lower bounds

on variables by modifying the algorithm of this paper.

30

6.2 Solution of linear equation

Our algorithm has to solve two sets of possibly large sparse linear equations (5.1) and

(5.2) at each trust region iteration. The solution method of these equation is a critical

point of the performance of the program. These two sets of systems may be large sparse

inde�nite one in general. Therefore we have to consider not only increase of �ll-in factors,

but also numerical stability in the course of pivotings. NUOPT 3.0 uses the supernodal

right-looking method for solving these linear equations [23].

6.3 Miscellaneous details

6.3.1 Initial values of variables and parameters

Initial values of primal variables are designated by each problem. If a speci�ed value

violates a bound, then a value that satis�es a bound strictly is set in the program. Initial

values of dual variables and various parameters are determined by the following rules:

(z0)i = max(krf(x0)k1; 1); i = 1; � � � ; n;
�0 = max(1; (x0)

tz0=max(1; n));

�1 = 1;

�2 = 1=max(1; n; krfk1);
�3 = 1=max(1; m; kg(x0)k1):

Other parameters include �1 = 0:6 and
0 = 0:99 .

6.3.2 Scaling of functions

All the functions involved are scaled as follows:

f := f=max(1; krf (x0)k1=n);
gi := gi=max(1; kg(x0)k1=m); i = 1; � � � ;m:

6.3.3 Parameters

The barrier parameter � is updated when the following condition is satis�ed

�(wk; �k) � Mc�k;

where

�(w; �) = max

(
krxL(w)k1

max(n; krfk1)
;

kg(x)k1
max(1;m; kg(x0)k1)

;
kXz � �ek1

max(1; n; kxk1 + kzk1)

)
;

and Mc = 30� �(w0; �0) .

Convergence of primal-dual iterations is judged by :

max

(
krxL(w)k1

max(n; krfk1)
;

kg(x)k1
max(1;m; kg(x0)k1)

;
xtz

max(1; n; kxk1 + kzk1)

)
< �;

where

� � p
�mch � 102 ' 1:4 � 10�6:

31

6.4 Hock & Schittkowski problems

In this subsection, we report the results for Hock and Schittkowski problems [17]. NUOPT

3.0 could solve all 114 problems with the same set of parameters.

Total number of problems = 114

Failed problem = 0

Total number of iterations = 1296
Total number of function evaluations = 2321

Total number of factorizations = 2091

32

� Hock & Schittkowski problems

problem n m obj res itr neval nfact time(s)

HS1 2 1 1.8074e-13 3.9e-10 20 35 34 0.02
HS2 2 1 4.9412 3.2e-09 8 10 10 0.02
HS3 2 1 4.5238e-09 4.5e-09 4 6 5 0.00
HS4 2 1 2.6667 5.0e-07 4 6 4 0.00
HS5 2 1 -1.9132 5.1e-07 5 9 8 0.00
HS6 2 2 0 1.9e-17 2 4 3 0.00
HS7 2 2 -1.7321 1.2e-08 7 17 10 0.02
HS8 2 3 -1 6.9e-12 5 7 6 0.00
HS9 2 2 -0.5 1.2e-09 5 7 7 0.00
HS10 2 2 -1 3.7e-11 11 18 20 0.02
HS11 2 2 -8.4984 1.1e-06 6 8 6 0.00
HS12 2 2 -30 3.5e-08 10 12 14 0.02
HS14 2 3 1.3935 6.3e-07 6 8 6 0.00
HS15 2 3 306.51 1.4e-06 8 14 9 0.02
HS16 2 3 0.25001 9.4e-08 26 35 45 0.03
HS17 2 3 1.0002 1.1e-06 14 28 20 0.03
HS18 2 3 5 1.0e-09 11 15 15 0.03
HS19 2 3 -6961.8 1.1e-07 7 15 9 0.00
HS20 2 4 40.199 1.3e-07 6 8 6 0.00
HS21 2 2 -99.96 1.8e-08 8 17 15 0.00
HS22 2 3 1 4.0e-07 6 8 6 0.00
HS23 2 6 2 1.5e-08 10 23 19 0.03
HS24 2 4 -0.99999 1.1e-06 23 41 42 0.02
HS25 3 1 3.3565e-13 2.3e-09 23 42 45 0.48
HS26 3 2 4.232e-12 1.2e-06 17 23 25 0.02
HS27 3 2 0.04 2.5e-09 23 49 43 0.03
HS28 3 2 6.163e-32 1.1e-16 1 3 1 0.00
HS29 3 2 -22.627 5.5e-08 7 9 11 0.02
HS30 3 2 1 3.3e-07 6 13 11 0.02
HS31 3 2 6 6.1e-08 6 13 11 0.02
HS32 3 3 1 6.2e-07 9 11 10 0.00
HS33 3 3 -4.5858 2.0e-07 19 32 33 0.03
HS34 3 3 -0.83402 1.5e-06 9 24 18 0.02
HS35 3 2 0.11111 4.6e-08 7 9 7 0.00
HS36 3 2 -3300 3.7e-07 6 8 6 0.02
HS37 3 3 -3456 2.0e-07 6 12 10 0.02
HS38 4 1 8.5679e-10 1.4e-08 37 58 73 0.03
HS39 4 3 -1 1.2e-10 10 27 21 0.03
HS40 4 4 -0.25 2.6e-12 4 6 4 0.02
HS41 4 2 1.9259 1.3e-08 7 9 7 0.02
HS42 4 3 13.858 3.3e-11 5 8 6 0.00
HS43 4 4 -44 3.2e-08 7 13 8 0.02
HS44 4 7 -15 2.2e-07 9 12 13 0.02
HS45 5 1 1 1.0e-07 7 9 8 0.00
HS46 5 3 1.044e-10 1.3e-06 16 18 21 0.02
HS47 5 4 2.732e-09 9.6e-07 15 28 21 0.05
HS48 5 3 4.9304e-32 1.7e-16 1 3 1 0.00
HS49 5 3 4.5732e-06 1.5e-06 11 13 12 0.00
HS50 5 4 6.3837e-13 2.0e-09 8 10 8 0.00
HS51 5 4 2.9582e-31 4.5e-16 1 3 1 0.00
HS52 5 4 5.3266 1.4e-16 1 3 1 0.00
HS53 5 4 4.093 5.6e-10 5 9 8 0.02
HS54 6 2 -0.90807 2.4e-08 15 52 30 0.02
HS55 6 7 6.6667 1.0e-06 6 8 6 0.02
HS56 7 5 -3.456 9.3e-12 37 59 72 0.08
HS57 2 2 0.030662 5.0e-09 26 35 48 0.07

33

problem n m obj res itr neval nfact time(s)

HS59 2 4 -7.8028 1.1e-07 11 20 15 0.02
HS60 3 2 0.032568 3.0e-09 5 11 9 0.00
HS61 3 3 -143.65 1.1e-06 4 9 6 0.02
HS62 3 2 -26272 3.0e-07 6 11 7 0.00
HS63 3 3 961.72 1.6e-07 23 64 41 0.05
HS64 3 2 6299.8 4.7e-08 15 17 17 0.03
HS65 3 2 0.95353 1.1e-07 9 11 9 0.00
HS66 3 3 0.51816 9.2e-08 9 24 18 0.02
HS67 3 15 -1162.1 2.8e-07 8 10 8 0.00
HS68 4 3 -0.92043 1.1e-10 15 35 30 0.03
HS69 4 3 -956.71 6.4e-07 15 36 30 0.05
HS70 4 2 0.0074985 9.9e-07 18 38 36 0.53
HS71 4 3 17.014 7.8e-07 7 9 7 0.02
HS72 4 3 727.68 4.9e-07 15 53 30 0.03
HS73 4 4 29.894 2.8e-08 8 10 8 0.02
HS74 4 6 5126.5 5.9e-07 7 14 12 0.00
HS75 4 6 5174.4 1.0e-11 8 19 14 0.02
HS76 4 4 -4.6818 1.4e-06 6 8 6 0.00
HS77 5 3 0.2415 1.7e-08 11 13 13 0.02
HS78 5 4 -2.9197 1.9e-10 4 6 4 0.00
HS79 5 4 0.078777 1.1e-09 4 6 4 0.03
HS80 5 4 0.05395 9.9e-07 5 10 9 0.00
HS81 5 4 0.05395 2.4e-08 7 14 13 0.03
HS83 5 4 -30666 4.0e-07 7 9 8 0.02
HS84 5 4 -5.2803e+06 1.0e-06 11 30 22 0.02
HS85 5 22 -2.2147 8.3e-07 17 22 24 0.08
HS86 5 11 -32.349 8.4e-08 10 12 11 0.02
HS87 6 5 8927.6 6.2e-09 12 25 24 0.03
HS88 2 2 1.3627 5.2e-11 13 25 24 0.12
HS89 3 2 1.3627 9.9e-09 30 54 55 0.40
HS90 4 2 1.3627 1.0e-06 21 33 40 0.38
HS91 5 2 1.3627 1.3e-08 17 27 28 0.52
HS92 6 2 1.3627 9.6e-07 21 38 40 0.83
HS93 6 3 135.08 6.9e-08 8 20 16 0.05
HS95 6 5 0.015627 4.1e-08 10 16 13 0.03
HS96 6 5 0.015672 2.9e-07 9 16 11 0.02
HS97 6 5 4.0713 6.5e-07 13 25 19 0.03
HS98 6 5 4.6452 1.2e-07 12 20 17 0.03
HS99 7 3 -8.3108e+08 1.8e-07 5 7 5 0.02
HS100 7 5 680.63 1.2e-07 7 17 8 0.02
HS101 7 6 1809.8 2.2e-07 16 27 23 0.08
HS102 7 6 911.88 9.1e-07 15 22 18 0.08
HS103 7 6 543.67 5.3e-07 20 38 30 0.12
HS104 8 6 3.9512 1.2e-08 11 20 20 0.05
HS105 8 2 1044.6 4.7e-07 10 21 19 0.58
HS106 8 7 7049.3 2.9e-08 15 32 29 0.03
HS107 9 7 5055 2.4e-08 8 10 9 0.03
HS108 9 14 -0.67498 5.5e-07 46 72 85 0.20
HS109 9 11 5362.1 3.0e-10 11 21 20 0.07
HS110 10 1 -45.779 1.2e-06 6 13 11 0.03
HS111 10 4 -47.761 1.2e-06 16 36 32 0.10
HS112 10 4 -47.761 2.7e-07 12 14 14 0.07
HS113 10 9 24.306 1.0e-06 9 11 9 0.00
HS114 10 12 -1768.8 1.8e-08 15 39 30 0.07
HS116 13 15 97.588 5.2e-09 26 56 51 0.13
HS117 15 6 32.349 3.9e-07 11 13 11 0.03

34

problem n m obj res itr neval nfact time(s)

HS118 15 18 664.82 4.8e-08 15 27 29 0.08
HS119 16 9 244.9 9.4e-07 12 23 21 0.12

TOTAL (114) 1296 2321 2091 6.77

AVERAGE 4 4 3.4e-07 11.4 20.4 18.3 0.06

35

6.5 CUTE problems

In this subsection, we report the results for CUTE problems [2]. Our version of CUTE

problems is the one obtained in December 8 1994. We choose those problems which have

more than 20 variables, more than 20 constraints and analytic second derivatives. If the

problem size is variable, we choose the maximum size speci�ed basically. The problem

LHAIFAM is excluded because the CUTE interface subroutine behaves abnormally. The

problem GROUPING is excluded because the number of equality constraints exceeds that
of variables. This selection leaves 164 problems for us. In the following table the mark t

means that the problem needed parameter tuning to solve it.
Summary of the results is as follows:

Total number of problems = 164

Total number of succeeded problems = 150
Total number of problems that needed parameter tuning = 18

Total number of failed problems = 14
Average number of variables = 3830
Average number of constraints = 2522
Total number of iterations = 3092

36

� CUTE problems

problem n m obj res itr neval nfact time(s)
AGG 163 489 -3.5991e+07 7.7e-07 26 28 40 2.7
AIRPORT 84 43 47953 2.2e-11 25 33 49 2.3
AUG2D 20200 10001 1.6874e+06 1.5e-07 6 8 18 127.0
AUG2DC 20200 10001 1.8184e+06 1.1e-13 1 3 1 51.7
AUG2DCQP 20200 10001 6.4981e+06 2.2e-08 34 41 66 482.0 *t
AUG2DQP 20200 10001 6.237e+06 2.8e-07 36 43 70 525.0 *t
AUG3D 3873 1001 554.07 3.5e-07 4 6 12 7.6
AUG3DC 3873 1001 771.26 1.4e-15 1 3 1 3.1
AUG3DCQP 3873 1001 993.36 1.4e-07 14 16 21 14.9
AUG3DQP 3873 1001 675.24 8.5e-07 14 16 20 13.1
BIGGSB1 1000 1 0.015323 5.7e-07 15 17 18 1.9
BLOCKQP1 2005 1002 2.5042 1.1e-06 8 10 9 4.3
BLOCKQP2 2005 1002 2.5043 4.1e-07 9 11 10 4.6
BLOCKQP3 2005 1002 2.5013 9.0e-07 8 10 9 4.2
BLOCKQP4 2005 1002 2.5021 3.5e-09 15 17 20 7.1
BLOCKQP5 2005 1002 2.5021 1.1e-06 8 10 9 4.2
CHENHARK 1000 1 -2 1.3e-06 12 14 15 1.6
CLNLBEAM�s 1503 1001 346.5 1.1e-06 94 174 186 32.9
CORKSCRW 9006 7001 90.69 1.1e-08 19 33 32 87.5
COSHFUN 61 21 -0.77326 2.5e-07 18 23 32 0.2
DALLASL 906 668 -2.026e+05 1.6e-07 19 23 28 6.0
DALLASM 196 152 -48198 1.3e-07 13 15 15 0.8
DALLASS 46 32 -32393 1.5e-06 14 17 19 0.2
DISC2 29 24 1.5625 5.4e-07 23 54 43 0.2
DITTERT�s 105 71 -1.9846 1.1e-08 7 9 8 0.2
DIXCHLNV 100 51 8.0923e-27 2.9e-08 36 48 68 4.3
DTOC1L 14995 9991 125.34 1.3e-07 5 7 6 68.6
DTOC1NA 1495 991 12.702 9.8e-08 5 7 6 5.7
DTOC1NB 1495 991 15.938 2.1e-09 5 7 6 5.6
DTOC1NC 1495 991 24.97 3.9e-07 72 97 140 64.3
DTOC1ND�s 745 491 13.374 4.9e-07 93 151 183 43.6 *t
DTOC2 5998 3997 0.50865 4.0e-07 5 10 8 17.6
DTOC3 14999 9999 235.26 1.8e-13 1 3 1 37.5
DTOC4 14999 9999 2.8685 8.9e-10 3 5 3 49.1
DTOC5 9999 5000 1.5351 5.4e-09 3 5 4 20.6
DTOC6 10001 5001 1.3485e+05 4.0e-10 11 17 21 60.4
EG3 1001 2001 0.22677 1.3e-06 37 57 73 26.1 *t
EIGENA2 110 56 0 1.0e-17 2 6 3 0.4
EIGENACO 110 56 8.9141e-29 2.9e-16 2 6 3 1.6
EIGENB2 110 56 18 5.0e-15 2 4 2 0.4
EIGENBCO 110 56 9 3.8e-16 2 4 2 1.6
EIGENC2�s 462 232 6.8846 3.8e-09 37 61 69 140.2
EIGENCCO�s 30 16 0.38828 1.0e-07 30 47 57 0.6
EIGMAXA 101 102 -1 1.1e-06 13 15 24 0.3
EIGMAXB 101 102 -0.00096743 7.1e-08 9 11 13 0.2
EIGMAXC 22 23 -1 3.1e-07 10 12 16 0.1
EIGMINA 101 102 1 1.1e-06 13 15 24 0.3
EIGMINB 101 102 0.00096743 1.4e-07 9 11 13 0.2
EIGMINC 22 23 1 4.8e-07 11 13 18 0.1
EXPLIN 120 1 -7.2352e+05 1.0e-06 15 17 21 0.1
EXPLIN2 120 1 -7.2446e+05 1.7e-07 14 16 19 0.1
EXPQUAD 120 1 -3.626e+06 1.1e-06 9 11 10 0.1
GAUSSELM 1496 3691 -0.99999 9.9e-07 12 18 15 10.6
GOFFIN 51 51 6.551e-05 1.0e-07 13 15 31 1.5
GOULDQP2 699 350 0.00018798 2.6e-07 8 10 14 0.9
GOULDQP3 699 350 2.0278 1.3e-07 8 14 14 1.4

37

problem n m obj res itr neval nfact time(s)

GRIDNETA 13284 6725 304.98 1.3e-06 20 22 31 81.0
GRIDNETB 13284 6725 143.32 2.1e-14 1 3 1 23.9
GRIDNETC 7564 3845 161.87 8.2e-07 27 29 44 74.9
GRIDNETD 7564 3845 570.71 7.3e-07 16 19 25 21.0
GRIDNETE 7564 3845 206.48 4.2e-07 2 4 2 14.5
GRIDNETF 7564 3845 243.54 8.3e-08 26 28 41 100.7
GRIDNETG 60 37 73.449 4.7e-08 8 10 11 0.3
GRIDNETH 60 37 39.609 1.6e-07 4 6 4 0.2
GRIDNETI 60 37 40.223 1.0e-07 9 11 11 0.4
HADAMALS 100 1 813.35 1.4e-06 12 14 18 1.5
HAGER1 10001 5001 0.88078 9.0e-07 3 5 3 22.9
HAGER2 10001 5001 0.43208 5.8e-15 1 3 1 15.7
HAGER3 10001 5001 0.14096 1.1e-14 1 3 1 20.5
HAGER4 10001 5001 2.7955 2.6e-07 9 11 11 41.3
HANGING�s 300 181 -620.18 4.0e-08 19 21 33 2.0
HARKERP2 100 1 43.892 1.1e-06 13 15 16 25.8
HELSBY 1408 1400 31.97 4.2e-07 24 36 42 7.9
HS99EXP 31 22 -8.6883e-23 7.4e-08 8 10 10 0.1
HVYCRASH�s 204 151 2.5536e-07 1.3e-06 51 69 96 2.4
HYDROELL 1009 1009 -3.5852e+06 1.1e-06 16 18 25 4.3
HYDROELM 505 505 -3.5818e+06 1.1e-06 16 18 25 1.9
HYDROELS 169 169 -3.5822e+06 8.5e-07 15 17 24 0.6
KSIP 20 1002 6.0968e+15 1.2e-06 14 16 20 5.3 *t
LAUNCH 25 29 9.0052 2.3e-07 29 45 51 0.5
LEAKNET 156 154 8.0464 1.3e-06 24 38 42 0.8
LINSPANH 97 34 -77 4.2e-07 5 7 5 0.0
LISWET1 10002 10001 475.19 1.1e-07 16 18 31 92.3 *t
LISWET10 10002 10001 526.3 6.0e-08 17 19 33 91.7 *t
LISWET11 10002 10001 372.49 1.7e-07 15 17 29 81.8 *t
LISWET12 10002 10001 2177.6 8.3e-08 18 20 35 96.5 *t
LISWET2 10002 10001 25.001 1.5e-06 7 9 9 39.8
LISWET3 10002 10001 25 5.9e-07 9 11 13 50.2
LISWET4 10002 10001 25 1.7e-10 22 24 39 117.6
LISWET5 10002 10001 25 3.4e-07 9 11 12 48.5
LISWET6 10002 10001 25.001 1.4e-06 7 9 9 39.8
LISWET7 10002 10001 1276.8 1.7e-07 17 19 33 97.5 *t
LISWET8 10002 10001 1237.8 1.4e-07 17 19 33 97.6 *t
LISWET9 10002 10001 2512 5.5e-08 19 21 37 107.8 *t
MADSSCHJ 81 159 -797.28 3.8e-07 13 22 22 9.6
MAKELA3 21 21 3.3825e-08 8.7e-08 8 10 11 0.1
MAKELA4 21 41 2.6483e-06 6.6e-08 5 7 5 0.0
MANNE 1095 731 -0.94019 1.1e-06 94 141 179 26.6
MINC44�s 311 263 0.002573 2.9e-07 14 19 20 5.1
MODEL 1542 39 0 8.7e-10 5 7 6 0.2
MOSARQP1 2500 701 -952.88 1.0e-06 12 14 12 5.7
MOSARQP2 900 601 -1597.5 6.3e-07 10 12 11 2.2
NGONE�s 100 1274 -0.63764 8.5e-09 51 67 100 24.2 *t
OPTCNTRL 32 21 550 9.9e-09 13 15 20 0.0
OPTCTRL3 122 81 2047.8 7.9e-07 3 5 3 0.1
OPTCTRL6 122 81 2047.8 7.9e-07 3 5 3 0.1
OPTMASS�s 70 56 -9.669e-13 4.4e-07 3 5 6 0.1
ORTHREGA 517 257 1664.8 8.4e-08 70 93 139 8.9
POWELL20�s 1000 1001 5.2146e+07 1.6e-09 42 44 80 12.9 *t
PRODPL0 60 30 58.79 1.0e-09 22 29 37 0.2
PRODPL1 60 30 35.739 1.4e-07 49 94 90 0.5
QPCBLEND 83 75 -0.0078415 5.3e-07 18 20 28 0.4

38

problem n m obj res itr neval nfact time(s)

QPCBOEI1 384 352 1.1504e+07 7.7e-07 23 25 34 2.8
QPCBOEI2 143 167 8.1966e+06 1.6e-08 39 41 67 1.8
QPCSTAIR 467 357 6.2044e+06 9.4e-07 63 65 115 9.6
QPNBLEND 83 75 -0.0091333 2.2e-08 21 23 34 0.4
QPNBOEI1 384 352 6.7789e+06 1.3e-06 27 29 43 3.4
QPNBOEI2 143 167 1.3835e+06 3.9e-08 34 36 56 1.5
QPNSTAIR 467 357 5.146e+06 7.0e-07 69 71 125 10.4
QR3DLS 155 1 2.4812e-15 5.3e-09 51 124 99 13.1
QUDLIN 50 1 -1.25e+05 6.4e-07 13 15 18 0.1
READING1 10002 5001 -0.15517 1.3e-06 17 27 32 88.9
READING2 15003 10001 -0.012576 1.5e-06 29 34 57 219.6
READING3 10002 5002 -0.15255 3.3e-08 19 27 36 98.9
READING4�s 501 501 -0.28928 5.9e-08 32 48 62 6.3 *t
READING5 5001 5001 0 7.1e-09 7 9 12 19.2
S368 100 1 -123.05 4.8e-07 32 58 60 17.8
SINROSNB 1000 1000 201.41 2.2e-07 11 15 15 2.8
SMBANK 117 65 -7.1293e+06 2.9e-07 16 18 24 0.3
SMMPSF 720 264 1.0329e+06 3.7e-07 43 65 74 13.3
SPANHYD 97 34 335.08 4.7e-07 7 9 8 0.1
SREADIN3 10002 5002 -0.15249 7.7e-07 23 32 44 117.8
SSEBLIN 194 73 1.6172e+07 2.8e-07 10 12 11 0.2
SSEBNLN 194 97 1.6171e+07 4.1e-11 19 43 36 0.7 *t
SSNLBEAM�s 33 21 337.77 1.2e-06 51 83 100 0.3
STATIC3 434 97 -1529.8 1.4e-06 26 29 45 1.7
STEENBRA 432 109 16958 6.5e-08 12 14 17 6.0
STEENBRB 468 109 9076.1 5.7e-08 51 53 92 30.2
STEENBRC 540 127 28482 2.7e-07 42 53 73 36.2
STEENBRD 468 109 9030.6 5.9e-07 79 143 149 48.7
STEENBRE 540 127 28529 1.5e-06 33 42 58 29.2
STEENBRF 468 109 8995.3 5.8e-07 50 64 90 29.6
STEENBRG 540 127 28268 1.0e-07 53 57 95 46.0
SVANBERG 5000 5001 8361.4 1.7e-07 23 25 39 76.7 *t
SWOPF 83 93 0.06786 9.5e-08 13 15 19 0.2
TRAINF 20008 10003 3.1056 7.2e-08 31 33 55 390.1
TRAINH 20008 10003 12.316 1.3e-07 64 66 119 801.5
UBH1 18009 12001 1.116 4.9e-10 4 6 5 68.5
UBH5 20010 14001 1.116 6.4e-08 4 6 4 89.5
ZIGZAG�s 64 51 3.1618 4.2e-07 32 51 56 0.4 *t

TOTAL (150) 3092 4204 5394 5761.6

AVERAGE 3830 2522 4.3e-07 20.6 28.0 36.0 38.4

39

� failed CUTE problems

problem n m
BINSTAR1 257 251
BINSTAR2 157 151
CATENARY�s 99 33
DISCS 36 67
DRUGDIS 3004 2001
DRUGDISE 63 51
HADAMARD�s 65 165
HAIFAL 343 8959
HAIFAM 99 151
HUESTIS 10000 3
JUNKTURN 7000 10010
LUBRIF 500 751
MINPERM 1113 1034
ROTDISC 905 1082

TOTAL (14)
AVERAGE 1688 1764

40

References

[1] D.P.Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Aca-

demic Press, New York, 1982.

[2] I.Bongartz, A.R.Conn, N.Gould, and Ph.L.Toint, CUTE:Constrained and Uncon-

strained Testing Environment, Research Report RC 18860, IBM T.J. Watson Re-

search Center, Yorktown , USA,1993.

[3] J.F.Bonnans and C.Pola, A trust region interior point algorithm for linearly con-

strained optimization, Technical Report 1948, INRIA, 1993.

[4] M.G.Breit�eld and D.F.Shanno, Preliminary computational experience with modi�ed

log-barrier functions for large-scale nonlinear programming, in Large Scale Optimiza-

tion, Kluwer academic publishers, Dordrecht, Boston, London, 1994.

[5] R.H.Byrd, J.C.Gilbert and J.Nocedal, A trust region method based on interior point

techniques for nonlinear programming, Technical Report OTC 96/02, Optimization

Technology Center, Argonne National Laboratory, June, 1996.

[6] R.H.Byrd, M.E.Hribar and J.Nocedal, An interior point algorithm for large scale non-

linear programming, Technical Report OTC 97/05, Optimization Technology Center,

Argonne National Laboratory, August, 1997.

[7] R.H.Byrd, G.Liu and J.Nocedal, On the local behaviour of an interior point method

for nonlinear programming, in Numerical analysis 1997, D.F.Gri�ths, D.J.Higham
and G.A.Watson eds., Longman (1998), pp.37-56.

[8] T.F.Coleman and Y.Li, An interior trust region approach for nonlinear minimization

subject to bounds, SIAM J. on Optimization, 6 (1996) pp.418-445.

[9] A.R.Conn, N.I.M.Gould and Ph.L.Toint, LANCELOT: a Fortran package for large-scale

nonlinear optimization (Release A). Springer Verlag, Heiderberg, Berlin, New York,

1992.

[10] J.E.Dennis, Jr., M.Heinkenschloss and L.N.Vicente, Trust-region interior-point SQP

algorithms for a class of nonlinear programming problems, TR94-45, Dept. of Com-

putational and Applied Mathematics, Rice University, Houston, Texas, USA, 1994
(revised November 1995).

[11] I.S.Du�, and J.K.Reid, The Multifrontal solution of inde�nite sparse symmetric lin-

ear systems., ACM Transaction on Mathematical Software.Vol.9,No.3 ,302-325,1983.

[12] A.S.El-Bakry, R.A.Tapia, T.Tsuchiya and Y.Zhang, On the formulation and theory

of the Newton interior-point method for nonlinear programming, Journal of Opti-
mization Theory and Applications, 89 (1996) pp.507-541.

[13] A.V.Fiacco and G.P.McCormick, Nonlinear Programming: Sequential Unconstrained
Minimization Techniques, SIAM, Philadelphia, 1990.

41

[14] R.Fletcher, Second order corrections for nondi�erentiable optimization, in Numeri-

cal Analysis { Dundee 1981, G.A.Watson, ed., Lecture Notes in Mathematics 912,

Springer-Verlag, Berlin, 1982, pp.85-114.

[15] R.Fletcher, Practical Methods of Optimization, Second Edition, John Wiley & Sons,

New York, 1987.

[16] L.Grippo, F.Lampariello and S.Lucidi, A nonmonotone line search technique for New-

ton's method, SIAM J. on Numerical Analysis, 23 (1986), pp.707-716.

[17] W.Hock and K.Schittkowski, Test Examples for Nonlinear Programming Codes, Lec-

ture Notes in Economics and Mathematical Systems 187, Springer-Verlag, Berlin,

1981.

[18] N.Maratos, Exact penalty function algorithms for �nite dimensional and control op-

timization problems, Ph.D.Thesis, Imperial College of Science and Technology, Uni-

versity of London, London, U.K., 1978.

[19] H.J.Martinez, Z.Parada and R.A.Tapia, On the characterization of Q-superlinear
convergence of quasi-Newton interior-point methods for nonlinear programming, Bol.

Soc. Mat. Mexicana, Vol.1 (1995), pp.137-148.

[20] D.Q.Mayne and E.Polak, A superlinearly convergent algorithm for constrained opti-
mization problems, Mathematical Programming Study, 16 (1982), pp.45-61.

[21] W.Murray, Sequential quadratic programming methods for large-scale problems,
Computational Optimization and Applications, 7 (1997) pp.127-142.

[22] E.R.Panier and A.L.Tits, Avoiding the Maratos e�ect by means of a nonmonotone
line search I: General constrained problems, SIAM J. on Numerical Analysis, 28
(1991), pp.1183-1195.

[23] E.Rothberg and A.Gupta, E�cient sparse matrix factorization on high-peformance

workstations-Exploiting the memory hierarchy, ACM Transactions on Mathematical

Software, 17, No3, (1991), pp313-334.

primal-dual Optimization

[24] H.Yabe and H.Yamashita, Q-superlinear convergence of primal-dual interior point
quasi-Newton methods for constrained optimization, Journal of the Operations Re-

search Society of Japan, 40 (1997), pp.415-436.

[25] H.Yamashita, A globally convergent primal-dual interior point method for constrained

optimization, Technical Report, Mathematical Systems, Inc., Tokyo, Japan, April
1992 (revised May 1995).

[26] H.Yamashita and T.Tanabe, A primal-dual interior point trust region method for
large scale constrained optimization, Optimization { Modeling and Algorithms 6,

Cooperative Research Report 73, The Institute of Statistical Mathematics, March

(1995), pp.1-25.

42

[27] H.Yamashita and H.Yabe, A nonmonotone SQP method with global and superlinear

convergence properties, Optimization { Modeling and Algorithms 8, Cooperative Re-

search Report 84, The Institute of Statistical Mathematics, March (1996), pp.10-29.

[28] H.Yamashita and H.Yabe, Superlinear and quadratic convergence of some primal-

dual interior point methods for constrained optimization, Mathematical Program-

ming, 75 (1996), pp.377-397.

43

