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0. Conventions

This document presents a technical overview of the methods implemented in the C and S-Plus code that
comprises the module S+SeqTrial. In this document the following conventions are used:

1. Parentheses () are used to denote arguments to a function, elements of a vector, or endpoints of an open
interval; square brackets [ ] are used to designate order of arithmetic operations, elements of a matrix, or
endpoints of a closed interval; curly brackets fg are used to designate order of arithmetic operations (in
alternation with the square brackets) or elements of a set. Hence, y(t) shall mean a function y evaluated
at t, while y[t+ u] would mean to multiply a variable y by the quantity t+ u.

2. X � N (�; �2) is used to signify that X is a random variable distributed according to a normal dis-
tribution having mean � and variance �2. �(x) denotes the cumulative distribution function for the
standard normal distribution.

3. Pr(A) denotes the probability of event A; Pr(AjX) shall denote the probability of event A after condi-
tioning on the observation of random variable X ; Pr(A;�) shall denote the probability of event A when
the parameter is �.

4. The letters a, b, c, and d when used as a subscript shall denote a parameter that is in some way related
to the corresponding boundary of a group sequential test.

5. The letters S, X, Z, P , B, C, H , and E when used as a subscript shall denote one of the scales for test
statistics. The letter T shall be used to represent any choice of these test statistics.

6. An asterisk, �, used as a superscript shall denote a quantity measured under the standardizing trans-
formation. Note that all quantities measured under the standardizing transformation are denoted by
appending an asterisk as a superscript to the symbol used on the untransformed scale with the notable
exception of the standardized mean, which is denoted by �.

7. An asterisk, �, used as a subscript shall usually indicate a general formula that might apply to several
di�erent subscripted parameters. For instance, an asterisk might be used as a subscript to stand for any
of the letters a, b, c, or d when it is desired to draw parallels among the formulas for the four boundaries,
to stand for any of the statistics when it is desired to draw parallels among the various boundary scales,
or to stand for `+', `-', or `0' when it is desired to draw parallels among the various hypotheses.
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1. Fundamental model, test statistics, and standardizing transformation

Suppose we potentially have measurements

Xi � N (�; �2) i = 1; 2; : : : ; N: (1:1)

We assume that all observations are independent. We further assume that �2 is known and that � is an un-
known parameter meauring treatment e�ect and which is to be estimated and/or tested. Let N1; N2; : : : ; NJ

be sample sizes such that N1 > 0, Nj < Nj+1 for j = 1; : : : ; J � 1 and NJ = N . We consider the testing of
the null hypothesis

H0 : � = �0: (1:2)

In the simplest clinical trial setting, Xi represents the measurement of treatment response in the ith
sampling unit, and �2 reects the variability of each sampling unit. The unknown parameter � is the
population average treatment response. N1; : : : ; NJ represent sample sizes at which the data might be
statistically analyzed. For notational convenience, we de�ne the group sizes accrued between analyses as
n1 = N1 and nj = Nj �Nj�1, for j = 2; : : : ; J .

More generally, Nj=�
2 measures the statistical information accrued at various stages during the study.

More general settings are described in section 3, and the issues that arise when estimating �2 are discussed
in section 12.

1.1. Frequentist Test Statistics

For j = 1; : : : ; J , de�ne statistics

(partial sum) Sj =

NjX
i=1

Xi

(sample mean) Xj =
Sj
Nj

(normalized statistic) Zj =
p
Nj

[Xj � �0]

�

(�xed sample P value) Pj = 1��(Zj) = 1�
ZjZ

�1

1p
2�
e�u

2=2du

(1:3)

where �(x) is the cumulative distribution function for the standard normal distribution.

The above statistics should be recognizable as those that would typically be used in hypothesis testing.
It should be noted that for our purposes those statistics are essentially equivalent. That is, because Nj , �0,
and �2 are all assumed to be known quantities, and because �(x) is a known function, converting any one
of those statistics into another is straightforward.

Note that for a �xed (nonrandom) Nj when the data are not sampled according to a stopping rule, the
above statistics would have distributions

Sj � N (Nj�;Nj�
2)

Xj � N
�
�;
�2

Nj

�

Zj � N
�p

Nj
[�� �0]

�
; 1

� (1:4)

and Pj would be the upper one-sided P value in a �xed sample test of H0 : � = �0.
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By the independent structure of the observations, the increment Sj+1 � Sj is independent of Sj . This
in turn suggests that for j = 1; : : : ; J � 1

cov(Sj ; Sj+1) = Nj�
2

cov(Xj ; Xj+1) =
�2

Nj+1

(1:5)

1.2. Bayesian Statistics

In a Bayesian setting, we are interested in statistics based on the posterior distribution of �, which is
based on the observed data and some prespeci�ed prior distribution of the mean parameter. For convenience,
we will consider only the conjugate prior distribution. Thus, we will assume a prior distribution � � N (�; �2).
The posterior distribution of � conditioned on the observations X1; : : : ; XNj

is then

� j (X1; : : : ; XNj
) � N

�
Nj�

2Xj + �2�

Nj�2 + �2
;

�2�2

Nj�2 + �2

�
:

Statistics of interest might include the posterior probabilities that the mean � is greater than the null
hypothesis �0 or prespeci�ed alternative hypotheses �+ and �� (see section 2). In general, then, we can
de�ne a statistic for the posterior probability that the mean � is greater than some hypothesized value ��.
We de�ne statistics

Bj(�; �
2; ��) = Pr(� � �� j (X1; : : : ; XNj

))

= 1��

 
��[Nj�

2 + �2]�Nj�
2Xj � �2�

��
p
Nj�2 + �2

!
(1:6)

A special case that is of occasional interest is the noninformative prior corresponding to the limit as �2 !1.
In this setting, the Bayesian posterior probability reduces to

Bj(�; �
2 =1; ��) = Pr(� � �� j (X1; : : : ; XNj

)) = 1� �

�p
Nj

�� �Xj

�

�

which is similar in form (but not interpretation) to the �xed sample P value.

These Bayesian statistics are for our purposes equivalent to the frequentist statistics speci�ed in eqn
(1.3), as again conversions among the various statistics involve only known quantities.

1.3. Measures of Futility

In the setting of group sequential trials, it is often of interest to consider various measures of the futility
of continuing the study. A common goal of such measures is estimating the probability that the test statistic
at the Jth analysis might exceed some threshold, where the calculation of the probability is conditioned on
the observation at the jth analysis. In what follows, we consider the use of XJ as the test statistic and
de�ne tXJ as the threshold of interest for that test statistic at the Jth analysis. As noted above, these
measures of futility could also be speci�ed based on any of the statistics de�ned in this section, with a
suitable transformation of the threshold as de�ned in section 1.5 and discussed in section 4.3. The value
of the conditional probability is independent of which test statistic is used, providing the corresponding
transformation of the threshold is used.

Using the independence of the individual observations, the conditional distribution of XJ given Xj is
found to be

XJ jXj � N
�
�+

Nj

NJ
[Xj � �];

[NJ �Nj ]

NJ

�2

NJ

�
:

Computing probabilities based on the above distribution will not result in a statistic, as the distribution
depends on the unknown parameter �. We can, however, compute the probabilities under hypothesized
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values for �. Obvious candidates for such computations might be the null hypothesis �0, either of the
alternative hypotheses �+ or ��, or the maximum likelihood estimate �̂ = Xj of � at the jth analysis. We
can then de�ne statistics for a speci�ed threshold tXj and speci�ed value of � = ��:

Cj(tXJ ; ��) � Pr(XJ > tXJ jXj ;� = ��)

= 1��

 
NJ [tXJ � ��]�Nj [Xj � ��]

�
p
NJ �Nj

!
(1:7)

Note that when the conditional probabilities are computed using the observed maximum likelihood
estimate Xj for �, we obtain

Cj(tXJ ; �� = Xj) � Pr(XJ > tXJ jXj ;� = Xj)

= 1� �

 
NJ [tXJ �Xj ]

�
p
NJ �Nj

!
(1:8)

An alternative approach is to use a Bayesian prior distribution for � to compute its posterior distribution
based on the observation of Xj , and then to compute a predictive probability by averaging the conditional
probabilities of exceeding the threshhold as � ranges over that posterior distribution. Using this approach
with a normal prior distribution � � N (�; �2) yields a posterior distribution �(� jXj) that is normal as
given in section 1.2 above. We then compute the marginal conditional distribution of XJ given Xj as
a normal distribution having mean

�
[NJ�

2 + �2]NjXj + [NJ �Nj ]�
2�
	
=
�
NJ [Nj�

2 + �2]
	
and variance

�2[NJ �Nj ][NJ�
2 + �2]=

�
N2
J [Nj�

2 + �2]
	
and survival function

Hj(tXJ ; �; �
2) �

Z
Pr(XJ > tXJ jXj ; �)�(� jXj) d�

= 1��

 
NJ [Nj�

2 + �2][tXJ �Xj ] + �2[NJ �Nj ][Xj � �]

�
p
[NJ �Nj ][NJ�2 + �2][Nj�2 + �2]

! (1:9)

When we consider a noninformative prior distribution (� � N (�; �2) and taking the limit as �2 ! 1), the
posterior distribution �(� jXj) is normal with mean Xj and variance �

2=Nj . We then compute the marginal
conditional distribution of XJ given Xj as having survival function

Hj(tXJ ; �; �
2 =1) = 1� �

0
@ NJ [tXJ �Xj ]

�
q

NJ

Nj
[NJ �Nj ]

1
A

1.4 Error Spending Measures

Another set of statistics sometimes used in the group sequential setting are those related to the error
spending functions. These statistics are based on the sampling distribution of the group sequential test
statistic under various hypotheses. As such, the de�nition of these statistics makes use of the general form
of stopping rules de�ned in section 4 and the group sequential density de�ned in section 5. We use this
notation at this point (in advance of its formal introduction) in order to highlight that measures based on
error spending functions are in fact statistics independent of unknown parameters and that there are 1:1
correspondences between each of the error spending statistics and statistics measured on each of the scales
de�ned above. We do note, however, that a choice needs to be made to de�ne the error spending scale in
a manner such that that a 1:1 correspondence exists for all possible values of the observed statistics at the
interim analyses (the path followed here), or to de�ne the error spending scale in a manner such that a 1:1
correspondence exists only for possible values of the observed statistics at the end of a study (an approach
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that we will term the \error spending function", rather than the \error spending scale"). Further discussion
of this distinction will be made in section 6.3.

Consider a setting in which for each of the j = 1; : : : ; J speci�ed sample sizes there are speci�ed constants
measured on the partial sum scale �1 � aSj � bSj � cSj � dSj � 1, aSJ = bSJ and cSJ = dSJ . Further
suppose there are four speci�ed hypotheses �a, �b, �c, and �d, with �b � �d � �c and �b � �a � �c. Let
p(j; s;�), f(j; s;�), and F (j; s;�) be de�ned by eqns (5.2), (5.3), and (5.4), with Cj � (aSj ; bSj ] [ [cSj ; dSj)
for j = 1; : : : ; J .

We de�ne statistics on the error spending scale as

Eaj(�a) � 1

�`

"
j�1X
i=1

Z aSi

�1

p(i; s;�a) ds+

Z Sj

�1

f(j; s;�a) ds

#
=

1

�`

"
j�1X
i=1

F (i; aSi;�a) + F (j; Sj ;�a)

#

Ebj(�b) � 1

[1� �`]

"
j�1X
i=1

Z 1

bSi

p(i; s;�b) ds+

Z 1

Sj

f(j; s;�b) ds

#

=
1

[1� �`]

"
j�1X
i=1

Z 1

bSi

p(i; s;�b) ds+ F (j;1;�b)� F (j; Sj ;�b)

#

Ecj(�c) � 1

[1� �u]

"
j�1X
i=1

Z cSi

�1

p(i; s;�c) ds+

Z Sj

�1

f(j; s;�c) ds

#

=
1

[1� �u]

"
j�1X
i=1

Z cSi

�1

p(i; s;�c) ds+ F (j; Sj ;�c)

#

Edj(�d) � 1

�u

"
j�1X
i=1

Z 1

dSi

p(i; s;�d) ds+

Z 1

Sj

f(j; s;�d) ds

#

=
1

�u

(
j�1X
i=1

[F (i;1;�d)� F (i; dSi;�d)] + F (j;1;�d)� F (j; Sj ;�d)

)

(1:10)

where constants �`, �u, �`, and �u are de�ned by

�` �
JX
i=1

Z aSi

�1

p(i; s;�a) ds =
JX
i=1

F (i; aSi;�a)

�` �
JX
i=1

Z aSi

�1

p(i; s;�b) ds =

JX
i=1

F (i; aSi;�b)

�u �
JX
i=1

Z 1

dSi

p(i; s;�c) ds =

JX
i=1

[F (i;1;�c)� F (i; dSi;�c)]

�u �
JX
i=1

Z 1

dSi

p(i; s;�d) ds =

JX
i=1

[F (i;1;�d)� F (i; dSi;�d)]

(1:11)

In section 6.3, the above statistics will be related to the error spending functions for a group sequential
test having continuation sets for the partial sum statistic Sj de�ned by the values of the aSj 's, bSj 's, cSj 's,
and dSj 's. The values of �`, �u, �`, and �u will relate to the size and power of the group sequential design.

1.5. Transformations among the various scales

As noted above, each of the statistics de�ned by eqns (1.3), (1.6), (1.7), (1.9), and (1.10) are equivalent
in the sense that knowing one of the statistics determines the values of the other statistics precisely. This
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then suggests that we can express a group sequential setting in terms of any of the above statistics, thereby
establishing a scale for the problem. We shall at times abbreviate the scales according to the notation used
for that statistic. Hence,

S-scale partial sum scale

X-scale sample mean scale

Z-scale normalized scale

P -scale �xed sample P value scale

B-scale Bayesian scale (a function of hypothesized mean)

C-scale conditional probability scale (a function of threshold

and hypothesized mean

H-scale predictive probability scale (a function of threshold)

Ea-scale lower type I error spending scale

Eb-scale lower type II error spending scale

Ec-scale upper type II error spending scale

Ed-scale upper type I error spending scale

(1:12)

Critical values on a given scale can be similarly converted to other scales using transformations as follows. In
de�ning these conversions, we shall provide formulas for converting a value on an arbitrary scale to the S-scale
and for converting the S-scale to any other scale. We again make use of the de�nitions of p(j; s;�), f(j; s;�),
and F (j; s;�) as de�ned by eqns (5.2), (5.3), and (5.4) in section 5.1. We note that it is assumed that the
threshold tXJ is measured on the X-scale, and that the boundaries aSj , bSj , cSj , and dSj for j = 1; : : : ; J are
measured on the S-scale.

Suppose at the jth analysis, y is a value measured on one of the possible scales. The following table
provides conversions for y measured on each of the scales to s measured on the S-scale. Note that in the
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cases of the B-scale, C-scale, and H-scale, y is a function of a mean �� and/or a threshold tXj .

S-scale s = y

X-scale s = Njy

Z-scale s =
p
Nj�y +Nj�0

P -scale s =
p
Nj��

�1(1� y) +Nj�0

B-scale s =
��[Nj�

2 + �2]� �2� � ��
p
Nj�2 + �2��1

�
1� y(�; �2; ��)

�
�2

noninf B-scale s = ��Nj � �
p
Nj�

�1
�
1� y(�; �2 =1; ��)

�
C-scale s = NJ tXJ � [NJ �Nj ]�� � �

p
NJ �Nj�

�1 (1� y(tXJ ; ��))

H-scale s =
NJ [Nj�

2 + �2]tXJ � �2[NJ �Nj ]�

NJ�2 + �2

� �
p
[NJ �Nj ][NJ�2 + �2][Nj�2 + �2]��1

�
1� y(tXJ ; �; �

2)
�

NJ�2 + �2

noninf H-scale s = NjtXJ � �

r
Nj

NJ
[NJ �Nj ] �

�1
�
1� y(tXJ ; �; �

2 =1)
�

Ea-scale s = F�1

 
j; �`y(�a)�

j�1X
i=1

F (i; aSi;�a) ; �a

!

Eb-scale s = F�1

 
j; F (j;1;�b)� [1� �`]y(�b) +

j�1X
i=1

Z 1

bSi

p(i; u;�b) du ; �b

!

Ec-scale s = F�1

 
j; [1� �u]y(�c)�

j�1X
i=1

Z cSi

�1

p(i; u;�c) du ; �c

!

Ed-scale s = F�1

 
j; F (j;1;�d)� �uy(�d) +

j�1X
i=1

Z 1

dSi

p(i; u;�d) du ; �d

!

(1:13)

The following table provides the formulas for converting between a value s measured on the S-scale and
a value y on any of the other scales. Note that in the cases of the B-scale, C-scale, and H-scale, y is a
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function of a mean �� and/or a threshold tXj .

S-scale y = s

X-scale y =
s

Nj

Z-scale y =
p
Nj

[ sNj
� �0]

�

P -scale y = 1��

 p
Nj

[ sNj
� �0]

�

!

B-scale y(�; �2; ��) = 1��

 
��[Nj�

2 + �2]� �2s� �2�

��
p
Nj�2 + �2

!

noninf B-scale y(�; �2 =1; ��) = 1��

 
��Nj � s

�
p
Nj

!

C-scale y(tXJ ; ��) = 1��

 
NJ [tXJ � ��]� s+Nj��)

�
p
NJ �Nj

!

H-scale y(tXJ ; �; �
2) = 1��

 
NJ [Nj�

2 + �2][tXJ � s
Nj

] + �2[NJ �Nj ][
s
Nj
� �]

�
p
[NJ �Nj ][NJ�2 + �2][Nj�2 + �2]

!

noninf H-scale y(tXJ ; �;1) = 1��

0
@ NJ [tXJ � s

Nj
]

�
q

NJ

Nj
[NJ �Nj ]

1
A

Ea-scale y(�a) =
1

�`

"
j�1X
i=1

F (i; aSi;�a) + F (j; s;�a)

#

Eb-scale y(�b) =
1

[1� �`]

"
j�1X
i=1

Z 1

bSi

p(i; u;�b) du+ F (j;1;�b)� F (j; s;�b)

#

Ec-scale y(�c) =
1

[1� �u]

"
j�1X
i=1

Z cSi

�1

p(i; u;�c) du+ F (j; s;�c)

#

Ed-scale y(�d) =
1

�u

(
j�1X
i=1

[F (i;1;�d)� F (i; dSi;�d)] + F (j;1;�d)� F (j; s;�d)

)

(1:14)

1.6. Standardizing Transformation

We �nd it useful to introduce a standardizing transformation on two grounds:

1. In later sections we shall �nd that many of the calculations required for statistical inference with
group sequential sampling are extremely computationally intensive. By reducing each problem down
to some standardized form, we can develop computer routines to perform general functions under that
standardizing transformation, and then we can transform the output to the original scale desired by the
user.

2. In most study design situations, we are interested in determining the sample size which would provide
adequate power to detect an alternative hypothesis of interest. We thus need to be able to compute
the operating characteristics of a group sequential test in some standardized form that is independent
of the sample size, and then solve for the sample size that would provide those operating characteristics
for a speci�c alternative.
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We therefore adopt the following standardizing transformation

X�
i =

Xi � �0

�
p
NJ

; i = 1; : : : ; N = NJ : (1:15)

Note that when �0 = 0 and NJ�
2 = 1, this is just the identity transformation.

For notational convenience, we de�ne for j = 1; : : : ; J the proportion of the maximal information accrued
by the jth analysis as �j = Nj=NJ and the proportion accrued between the (j � 1)th and jth analyses as
�j = nj=NJ .

1.6.1. Frequentist test statistics

In the standardized setting, the various test statistics can be de�ned in an analogous fashion to those
based on the original data. In particular, in analogy with eqn (1.3), for j = 1; : : : ; J , we consider test
statistics

(partial sum) S�j =

NjX
i=1

X�
i

(sample mean) X
�
j =

S�j
�j

(normalized statistic) Z�
j = X

�
j

p
�j

(�xed sample P value) Pj = 1��(Z�
j ) =

Z�jZ
�1

1p
2�
e�u

2=2du

(1:16)

The parallels between eqns (1.3) and (1.16) may not be immediately apparent for the de�nition of the sample
mean and the normalized statistic. However, the connection becomes clear if we examine the distribution of
the transformed data. In the general case, X�

i � N ( �
NJ
; 1
NJ

), where the standardized mean � is related to
the original unknown mean � according to

� =
p
NJ

(�� �0)

�
: (1:17)

In particular, in this standardized setting, the null hypothesis �0 corresponds to �0 = 0, and the prespeci�ed
alternatives �� and �+ correspond to �� =

p
NJ(�� � �0)=� and �+ =

p
NJ(�+ � �0)=�, respectively.

For a �xed (nonrandom) Nj , the distribution of the standardized partial sum is given by S�j �
N (�j�;�j) which depends on the sample size only as the proportion of the maximal sample size. The
statistics de�ned in eqn (1.16) then have the sample mean estimating � and the null distribution of the
normalized statistic (in the �xed sample case) being the standard normal distribution. The formulas given
in eqn (1.16) follow directly from eqn (1.3) when we choose �2 = 1, �0 = 0, NJ = 1, and Nj = �j . It is ap-
parent, then, that with the standardizing transformation, Nj is in a sense counting the accrued observations
in units corresponding to a proportion of the maximal statistical information NJ=�

2, and 1
�2 is the average

statistical information contributed by a single sampling unit.

Each of the above statistics based on the standardizing transformation can be easily related to the
corresponding statistic on the untransformed scale.

S�j =
Sj �Nj�0p

NJ�

X
�

j =
p
NJ

Xj � �0
�

Z�
j = Zj

P �
j = Pj

(1:18)
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1.6.2. Bayesian statistics

We can also compute the Bayesian statistics for a given prior. We note that prior distribution � �
N (�; �2) implies � � N (��; ��2), where �� =

p
NJ(� � �0)=� and ��2 = NJ�

2=�2. We then �nd the
posterior distribution of � conditioned on the observations X�

1 ; : : : ; X
�
Nj

is then

� j (X�
1 ; : : : ; X

�
Nj
) � N

 
�j�

�2X
�

j + ��

�j��
2 + 1

;
��2

�j��
2 + 1

!
:

The posterior probabilities that the mean � is greater than some hypothesis �� (which might typically be
the null hypothesis �0 = 0 or prespeci�ed alternative hypotheses �+ and ��) are given by

B�
j (�

�; ��2; ��) = Pr(� � �� j (X�
1 ; : : : ; XN�

j
))

= 1��

 
��[�j�

�2 + 1]��j�
�2X

�
j � ��

��
p
�j��

2 + 1

!
(1:19)

Each of the above statistics based on the standardizing transformation is exactly equal to the corre-
sponding statistic on the untransformed scale. That is for �� and �� related by eqn (1.17)

B�
j (�

�; ��2; ��) = Bj(�; �
2; ��) (1:20)

1.6.3. Measures of futility

The statistics based on conditional probabilities or predictive probabilities can also be computed under
the standardizing transformation. We consider the use of X

�
J as the test statistic and de�ne t�

XJ =
p
NJ [tXJ�

�0]=� as the transformed threshold (using eqn (1.18)) for that test statistic at the Jth analysis. As noted
above, these measures of futility could also be speci�ed based on any of the statistics de�ned in this section,
with a suitable transformation of the threshold as de�ned in section 1.6.5.

The conditional distribution of X
�
J given X

�
j is found to be

X
�
J jX

�
j � N

�
� +�j [X

�
j � �]; 1��j

�
:

Computing conditional probabilities based on some hypothesis �� (which might typically be the null

hypothesis �0 = 0, one of the alternative hypotheses �+ or ��, or the maximum likelihood estimate �̂ = X
�
j ,

each of which correspond to the appropriate value of � according to eqn (1.17)) yields:

C�
j (t

�
Xj ; ��) � Pr(X

�
J > t�

XJ jX
�
j ; ��)

= 1��

 
[t�
XJ � ��]��j [X

�
j � �]p

1��j

!
(1:21)

Under the standardizing transformation, the predictive probability based on a normal prior distribu-
tion for � (� � N (��; ��2) where �� =

p
NJ(� � �0)=� and ��2 = NJ�

2=�2) yields a posterior distribution

��(� jX�

j ) that is normal as given in section 1.6.2 above. We then compute the marginal conditional dis-

tribution of X
�
J given X

�
j as a normal distribution having mean

n
[��2 + 1]�jX

�
j + [1� �j ]�

�
o
=[�j�

�2 +1]

and variance [1��j ][�
�2 + 1]=[�j�

�2 + 1] and survival function

H�
j (t

�
XJ ; �

�; ��2) �
Z
Pr(X

�
J > t�

XJ jX
�
j ; �)�

�(� jX�
j ) d�

= 1��

 
[�j�

�2 + 1][t�
XJ �X

�

j ] + [1��j ][X
�

j � ��]p
[1��j ][��

2 + 1][�j��
2 + 1]

! (1:22)
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When we consider a noninformative prior distribution (taking the limit as ��2 !1), we obtain

H�
j (t

�
Xj ; �

�;1) = 1��

 p
�j

[t�
XJ �X

�
j ]p

1��j

!

Each of the above statistics based on the standardizing transformation is exactly equal to the corre-
sponding statistic on the untransformed scale.

C�
j (t

�
Xj ; ��) = Cj(tXj ; ��)

H�
j (t

�
Xj ; �

�; ��2) = Hj(tXj ; �; �
2)

(1:23)

1.6.4. Error spending measures

Under the standardizing transformation, the statistics on the error spending scale are computed for
constants transformed using eqn (1.18)

a�Sj =
aSj �Nj�0

�
p
NJ

b�
Sj =

bSj �Nj�0

�
p
NJ

c�
Sj =

cSj �Nj�0

�
p
NJ

d�Sj =
dSj �Nj�0

�
p
NJ

(1:24)

and speci�ed hypotheses transformed using eqn (1.17)

�a =
p
NJ [�a � �0]=�

�b =
p
NJ [�b � �0]=�

�c =
p
NJ [�c � �0]=�

�d =
p
NJ [�d � �0]=�

(1:25)

using the functions f�(j; s�; �), F �(j; s�; �), and p�(j; s�; �) de�ned by eqns (5.2), (5.3), and (5.4) for the
standardizing transformation. We thus can de�ne error spending statistics

E�
aj(�a) =

1

��`

"
j�1X
i=1

F �(i; a�
Si; �a) + F �(j; S�j ; �a)

#

E�
bj(�b) =

1

[1� ��` ]

"
j�1X
i=1

Z 1

b�
Si

p�(i; s�; �b) ds
� + F �(j;1; �b)� F �(j; S�j ; �b]

!

E�
cj(�c) =

1

[1� ��u]

"
j�1X
i=1

Z c�Si

�1

p�(i; s�; �c) ds
� + F �(j; S�j ; �c)

#

E�
dj(�d) =

1

��u

(
j�1X
i=1

[F �(i;1; �d)� F �(i; d�Si; �d)] + F �(j;1; �d)� F �(j; S�j ; �d)

)
(1:26)
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where constants ��` , �
�
u, �

�
` , and �

�
u are de�ned by

��` =

JX
i=1

F �(i; a�Si; �a)

��` =

JX
i=1

F �(i; a�Si; �b)

��u =

JX
i=1

[F �(i;1; �c)� F �(i; d�
Si; �c)]

��u =
JX
i=1

[F �(i;1; �d)� F �(i; d�
Si; �d)]

(1:27)

Each of the above statistics based on the standardizing transformation is exactly equal to the corre-
sponding statistic on the untransformed scale.

E�
aj(�a) = Eaj(�a)

E�
bj(�b) = Ebj(�b)

E�
cj(�c) = Ecj(�c)

E�
dj(�d) = Edj(�d)

(1:28)

Furthermore, we also have that the constants de�ned by eqn (1.24) are exactly equal to those de�ned by eqn
(1.11). That is, ��` = �`, �

�
` = �`, �

�
u = �u, and �

�
u = �u.

1.6.5. Summary of correspondences

Conversions among the various scales under the standardizing transformation are analogous to those
presented in eqns (1.13) and (1.14). The following table provides conversions for y� measured on each of the
scales under the standardizing transformation to s� measured on the S�-scale. Note that in the cases of the
B�-scale, C�-scale, and H�-scale, y� is a function of a mean �� and/or a threshold t

�
Xj .
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S�-scale s� = y�

X�-scale s� = �jy
�

Z�-scale s� =
p
�jy

�

P �-scale s� =
p
�j�

�1(1� y�)

B�-scale s� =
��[�j�

�2 + 1]� �� � ��
p
�j��

2 + 1��1(1� y�(��; ��2; ��))

��2

noninf B�-scale s� = ���j �
p
�j�

�1(1� y�(��; ��2 =1; ��))

C�-scale s� = t�
XJ � [1��j ]�� �

q
[1��j ]�

�1(1� y�(t�
XJ ; ��))

H�-scale s� =
[�j�

�2 + 1]t�
XJ � [1��j ]�

�

��2 + 1

�
p
[1��j ][��

2 + 1][�j��
2 + 1]��1

�
1� y�(t�

XJ ; �
�; ��2)

�
��2 + 1

noninf H�-scale s� = �jt
�
XJ �

q
�j [1��j ]�

�1(1� y�(t�
XJ ; �

�; ��2 =1))

E�
a-scale s

� = F ��1

 
j; ��`y

�(�a)�
j�1X
i=1

F �(i; a�Si; �a) ; �a

!

E�
b -scale s

� = F ��1

 
j; F �(j;1; �b)� [1� ��` ]y

�(�b) +

j�1X
i=1

Z 1

b�
Si

p�(i; u�; �b) du
� ; �b

!

E�
c -scale s

� = F ��1

 
j; [1� ��u]y

�(�c)�
j�1X
i=1

Z c�Si

�1

p�(i; u�; �c) du
� ; �c

!

E�
d-scale s

� = F ��1

 
j; F �(j;1; �d)� ��uy

�(�d) +

j�1X
i=1

Z 1

d�
Si

p�(i; u�; �d) du
� ; �d

!

(1:29)
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The following table provides the formulas for converting between a value s� measured on the S�-scale
and a value y� on any of the other scales under the standardizing transformation. Note that in the cases of
the B�-scale, C�-scale, and H�-scale, y� is a function of a mean �� and/or a threshold t

�
Xj .

S�-scale y� = s�

X�-scale y� =
s�

�j

Z�-scale y� =
s�p
�j

P �-scale y� = 1��

 
s�p
�j

!

B�-scale y�(��; ��2; ��) = 1��

 
��[�j�

�2 + 1]� ��2s� � ��

��
p
�j��

2 + 1

!

noninf B�-scale y�(��; ��2 =1; ��) = 1��

 
���j � s�p

�j

!

C�-scale y�(t�
Xj ; ��) = 1��

 
t�
XJ � �� � s� +�j��)p

1��j

!

H�-scale y�(t�
Xj ; �

�; ��2) = 1��

 
[�j�

�2 + 1][t�
XJ � s�

�j
] + [1��j ][

s�

�j
� ��]p

[1��j ][��
2 + 1][�j��

2 + 1]

!

noninf H�-scale y�(t�
Xj ; �

�; ��2 =1) = 1��

0
@ t�XJ � s�

�jq
(1��j)
�j

1
A

E�
a-scale y

�(�a) =
1

��`

"
j�1X
i=1

F �(i; a�Si; �a) + F �(j; s�; �a)

#

E�
b -scale y

�(�b) =
1

[1� ��` ]

"
j�1X
i=1

Z 1

b�
Si

p�(i; u�; �b) du
� + F �(j;1; �b)� F �(j; s�; �b)

#

E�
c -scale y

�(�c) =
1

[1� ��u]

"
j�1X
i=1

Z c�Si

�1

p�(i; u�; �c) du
� + F �(j; s�; �c)

#
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d-scale y

�(�d) =
1

��u

(
j�1X
i=1

[F �(i;1; �d)� F �(i; d�
Si; �d)] + F �(j;1; �d)� F �(j; s�; �d)

)

(1:30)

Conversions between the scales under the standardized transformation and the corresponding scales on
the untransformed scales are straightforward. The following table provides conversions between a measure-
ment y on an untransformed scale and a measurement y� on the corresponding standardized scale. Note
that in the cases of the B�-scale, C�-scale, and H�-scale, y� is a function of a mean �� and/or a threshold t

�
Xj

which correspond respectively to the mean �� and threshold tXj according to the transformations speci�ed by
eqns (1.17) and (1.18) as in in section 1.6.3. Similarly, the error spending scales assume that the hypotheses
and boundaries on the standardized scale have been transformed from the original scale as outlined by eqns
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(1.24) and (1.25) in section 1.6.4.

S-scale ! S�-scale y� =
y �Nj�0p

NJ�

X-scale ! X�-scale y� =
p
NJ

y � �0
�

Z-scale ! Z�-scale y� = y

P -scale ! P �-scale y� = y

B-scale ! B�-scale y�(��; ��2; ��) = y(�; �; ��)

C-scale ! C�-scale y�(t�
Xj ; ��) = y(tXj ; ��)

H-scale ! H�-scale y�(t�
Xj ; �

�; ��2) = y(tXJ ; �; �
2)

Ea-scale ! E�
a-scale y�(�a) = y(�a)

Eb-scale ! E�
b -scale y�(�b) = y(�b)

Ec-scale ! E�
c -scale y�(�c) = y(�c)

Ed-scale ! E�
d-scale y�(�d) = y(�d)

(1:31)

The following table provides conversions between a measurement y� on a standardized scale and a measure-
ment y on the corresponding untransformed scale.

S�-scale ! S-scale y = Nj�0 +
p
NJ�y

�

X�-scale ! X-scale y = �0 +
�p
NJ

y�

Z�-scale ! Z-scale y = y�

P �-scale ! P -scale y = y�

B�-scale ! B-scale y(�; �; ��) = y�(��; ��2; ��)

C�-scale ! C-scale y(tXj ; ��) = y�(t�
Xj ; ��)

H�-scale ! H-scale y(tXj ; �; �
2) = y�(t�

Xj ; �
�; ��2)

E�
a-scale ! Ea-scale y(�a) = y�(�a)

E�
b -scale ! Eb-scale y(�b) = y�(�b)

E�
c -scale ! Ec-scale y(�c) = y�(�c)

E�
d -scale ! Ed-scale y(�d) = y�(�d)

(1:32)

1.7. Parameter Scales

Heretofore in this section, we have considered various scales to be used in describing the sample space for
the test statistic in the setting of a one sample test for the mean of a normally distributed random variable.
In sections 1.1 - 1.5, we considered the scales for the sample space of the test statistic for the unstandardized
problem, and in section 1.6 we considered the analogous scales for the sample space of the test statistic for
the standardized problem.

It is now useful to formally de�ne scales for the parameter space. That is, in the unstandardized problem,
we were primarily interested in making inference about �, the mean of the normally distributed random
variable, and we can refer to this parameter scale as the unstandardized parameter scale and will be denoted
as the �-scale. In the standardized problem, we can make equivalent inference about the standardized
parameter �, and we can refer to the parameter scale in the standardized problem as the standardized
parameter scales and denote it as the �-scale. From eqn (1.17) we can derive the formulas for converting
between the � and � scales

�-scale ! �-scale � =
p
NJ

(�� �0)

�

�-scale ! �-scale � = �0 +
�p
NJ

�
(1:33)
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As discussed in greater detail in section 3, the basic probability model that considers the mean of a
normally distributed random variable can serve as the foundation for a wide variety of probability models
frequently used in the analysis of clinical trial data. In these various probability models, a parameter �
measuring the treatment e�ect can be related to the parameter � of our basic model. Typically � is a
parameter that is more generally understood by non-statisticians than the � parameter that is perhaps used
in a statistical model. For instance, � representing the odds ratio (in logistic regression models) or the
hazard ratio (in proportional hazards regression models) might be measures of treatment e�ect more readily
understood by a clinician than the log odds ratio or the log hazard ratio (which are the interpretations of the
regression parameters in the corresponding statistical models). We will therefore refer to � as the \natural"
parameter. We note that this terminology is not at all restrictive, as in section 3 we do allow for (but do
not particularly recommend using) probability models in which � represents, say, the log odds ratio or the
log hazard ratio.

In the general case, we consider a transformation

� =  g(�) (1:34)

where  is some constant and g(�) is a link function used in the statistical model. We can thus also de�ne the
probability model parameter scale (denoted as the �-scale) for the parameter space based on the relationship
speci�ed by eqn (1.34), and derive conversions between the �-scale and the �-scale as

�-scale ! �-scale � = g(�) 

�-scale ! �-scale � = g�1
�
�

 

�
(1:35)

Under this parameterization, we note that it will generally be of more interest to consider at the jth
analysis a test statistic �̂j corresponding to the maximum likelihood estimate of �, rather than focussing on
the maximum likelihood estimate Xj of �. We thus de�ne

�̂j = g�1
�
Xj

 

�
: (1:36)

Based on the above, we can also de�ne an estimate scale (denoted as the �̂-scale) for statistics at the jth
analysis. We note that at the jth analysis, conversions between a measurement x on the X-scale and and a
measurement �̂ on the �̂-scale are easily derived from eqn (1.36) as

�̂-scale ! X-scale x = g(�̂) 

X-scale ! �̂-scale �̂ = g�1
�
Xj

 

�
(1:37)

We note that the �̂ scale is primarily of interest when providing an intuitive interface for one of the
statistical models presented in section 3. As is described in later sections, computations related to group
sequential inference will generally consider the standardized partial sum scale (S�-scale) for statistics and
the standardized parameter scale (�-scale) for parameters. We assume that the user will typically want to
use only the \natural" scale (the �-scale as de�ned by the probability model) for input and output related
to the parameter space. Hence, while the user will typically be allowed to choose any of the unstandardized
scales (as summarized in eqn (1.12)) for input and output related to the sample space for statistics, we shall

assume that the �̂-scale (estimating the natural parameter) will be of far greater interest than the X-scale
(potentially estimating some transformation of the natural parameter). For this reason, we will generally

suppress the true X-scale and use the �̂-scale in its place. In fact, in the S+SeqTrial functions, it is the
�̂-scale that will be referred to as the \sample mean" scale. In this document, however, we will use the term
\sample mean" scale to refer to the X-scale and the term \estimate" scale to refer to the �̂-scale. In this
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setting it is unnecessary to de�ne a separate standardized �̂ scale, because we can consider the X�-scale as
a standardized form of the �̂-scale.

1.8. Impact of Boundary Scales on User Interface for S+SeqTrial

The major instances in which the user will need to consider the scale for expressing test statistics include

1. Speci�cation of parameters for the Bayesian, conditional futility, predictive futility scales, and error
spending scales.

These scales for test statistics require input of additional parameters, some of which must in turn
be speci�ed on a particular scale.

2. Speci�cation of design family for the stopping boundaries.

The various families of group sequential designs described in section 8 are in turn based on speci�c
choices of scales for test statistics outlined above, or particular combinations of those scales as
described briey below. The design parameters A�, P�, R�, and G� will refer to boundary rela-
tionships on the scale(s) corresponding to the design family. Simple relationships between stopping
boundaries at successive relationships will tend to exist only on the boundary scale corresponding
to the group sequential design family.

3. Speci�cation of exact, minimum, or maximum constraints for stopping boundaries.

The constrained boundaries are based on one or more of the design families. Hence any user
speci�ed stopping boundary at a particular analysis time will be interpreted according to the test
statistic scale used in de�ning the constraint. (See section 11 for a more detailed description of
constraints on group sequential design family.)

4. Speci�cation of display scale for the stopping boundaries.

The output stopping boundaries will be expressed on the scale speci�ed by the display scale. The
spectrum of test statistic scales used for display is somewhat richer than the spectrum for which
design families have been designed.

5. Speci�cation of test statistics for input to module routines for integration of the sampling density,
monitoring of the study, or reporting results of a �nal analysis.

6. Conversion of test statistics between individual scales.

Speci�cation of the scales is through de�nition of a seqScale object using the S+SeqTrial function
seqScale(). The required argument to that function is scaleType, which accepts a character valued scalar
which is one of `S' (for partial sum statistic family), `X' (for uni�ed or sample mean statistic family), `Z' (for
normalized statistic family), `P' (for �xed sample P value statistic family), `B' (for Bayesian family), `C' (for
conditional futility family), `H' (for predictive futility family), or `E' (for error spending family). Some of
the scales corresponding to these design families require input of additional parameters, and this is e�ected
through speci�cation of the argument scaleParameters as a numeric vector which has interpretation speci�c
to the scale family selected. An alternative (and generally easier) speci�cation of the parameters makes use
an appropriate selection of the additional arguments threshold, hypTheta, priorTheta, priorVariation,
pessimism, and boundaryNumber.

The additional parameters required for certain boundary scales reect the parameters needed for com-
putation of the test statistics on those scales. These include

{ the B-scale statistic's de�nition is based on the mean � and variance �2 of the prior distribution
for �, as well as a threshold �� for the computation of the posterior probability,

{ the C-scale statistic's de�nition is based on the threshold tXJ and the hypothesized value of the
mean �� to use in the computation of the conditional probability,

{ the H-scale statistic's de�nition is based on the threshold tXJ and the mean � and variance �2 of
the prior distribution for �, and
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{ the Ea-, Eb-, Ec-, and Ed-scales are combined into a single error spending scale which then requires
speci�cation of which of the four subscales is desired as well as the value of the hypothesized means
�a, �b, �c, or �d.

Furthermore, within each of those four families of scales, combinations which use di�erent parameters
for each of the four boundaries are useful in evaluation of the operating characteristics of group sequential
stopping rules and in the de�nition of families of group sequential designs. Each of those scales will therefore
need an additional indicator of the particular combination of parameters to be used. Hence, the possible
choices for the speci�cation of scale parameters for each of the statistics scales are as given below. When
discussing the scales used for presentation of boundaries (as opposed to statistics representing arbitrary
possible outcomes), we use the notation aj , bj , cj , and dj to represent the stopping boundaries at the jth
analysis as introduced in section 4 when the scale is either unimportant or clear. When it is necessary to
distinguish the scale on which the stopping boundaries are represented, we denote that with an additional
subscript, e.g. aXj , a�̂j , and aBj will represent the \a" boundary at the jth analysis on the sample mean,
estimate, and Bayesian scales, respectively. We use �a = �0�, �b = ��, �c = �+, and �d = �0+ to represent
the hypotheses being rejected by the corresponding boundaries as discussed in sections 2 and 8. We note
that input of statistics to the S+SeqTrial seqScale function will generally be made on the estimate (�̂) scale
and input of parameters will generally be made on the probability model (�) scale. These two scales are
described in section 1.7.

S-scale seqScale ("S") (no parameters needed)

X-scale seqScale ("X") (no parameters needed)

Z-scale seqScale ("Z") (no parameters needed)

P -scale seqScale ("P") (no parameters needed)

B-scale Three families of subscales are possible where the interpretation of additional parameters to
seqScale("B",: : :) are as follows

0. scaleParameters = c(0,g�1(�= ),�2,g�1(��= ))
(or priorTheta = g�1(�= ), priorVariation= �2, threshold=g�1(��= ))
when used for boundaries or statistics will correspond to Bj(�; �

2; ��)

1. scaleParameters = c(1,g�1(�= ),�2)
(or priorTheta = g�1(�= ), priorVariation= �2)
when used for boundaries will correspond to comparing the similarly transformed test statistics
to boundaries as follows

aBj = 1�Bj(�; �
2; �a = �0�)

bBj = Bj(�; �
2; �b = ��)

cBj = 1�Bj(�; �
2; �c = �+)

dBj = Bj(�; �
2; �d = �0+)

where �� � �0+ � �0� � �+ are hypotheses being tested in the group sequential clinical test
as described in section 2.

2. scaleParameters = c(2,!,�2)
(or priorVariation= �2, pessimism=!)
when used for boundaries will correspond to comparing the following statistics to boundaries
as follows

aBj = 1�Bj(� = �a + !�; �2; �a = �0�)

bBj = Bj(� = �b � !�; �2; �b = ��)

cBj = 1�Bj(� = �c + !�; �2; �c = �+)

dBj = Bj(� = �d � !�; �2; �d = �0+)

where ! is a measure of the pessimism which is to be used in determining the prior distribution
when rejecting particular hypotheses, and �� � �0+ � �0� � �+ are hypotheses being tested
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in the group sequential clinical test as described in section 2.

C-scale Three families of subscales are possible where the interpretation of additional parameters to
seqScale("C",: : :) are as follows

0. scaleParameters = c(0,g�1(tXJ= ),g
�1(��= ))

(or hypTheta = g�1(��= ), threshold=g�1(tXJ= ))
when used for boundaries or statistics will correspond to Cj(tXJ ; ��)

1. scaleParameters = 1

(or hypTheta = "design")
when used for boundaries will correspond to comparing the following statistics to boundaries
as follows for j < J

aCj = Cj(aXJ ; �a = �0�)

bCj = 1� Cj(bXJ ; �b = ��)

cCj = Cj(cXJ ; �c = �+)

dCj = 1� Cj(dXJ ; �d = �0+)

where �� � �0+ � �0� � �+ are hypotheses being tested in the group sequential clinical test
as described in section 2. For j = J , we de�ne aCJ = bCJ = cCJ = dCJ = 0:5.

2. scaleParameters = 2

(or hypTheta = "estimate")
when used for boundaries will correspond to comparing the following statistics to boundaries
as follows for j < J

aCj = Cj(aXJ ; �a = aXJ )

bCj = 1� Cj(bXJ ; �b = bXJ)

cCj = Cj(cXJ ; �c = cXJ)

dCj = 1� Cj(dXJ ; �d = dXJ )

For j = J , we de�ne aCJ = bCJ = cCJ = dCJ = 0:5.

H-scale Three families of subscales are possible where the interpretation of additional parameters to
seqScale("H",: : :) are as follows

0. scaleParameters = c(0,g�1(�= ),�2,g�1(tXJ= ))
(or priorTheta = g�1(�= ), priorVariation= �2, threshold=g�1(tXJ= ))
when used for boundaries or statistics will correspond to Hj(tXJ ; �; �

2)

1. scaleParameters = c(1,g�1(�= ),�2)
(or priorTheta = g�1(�= ), priorVariation= �2)
when used for boundaries will correspond to comparing the following statistics to boundaries
as follows for j < J

aHj = Hj(aXJ ; �; �
2)

bHj = 1�Hj(bXJ ; �; �
2)

cHj = Hj(cXJ ; �; �
2)

dHj = 1�Hj(dXJ ; �; �
2)

For j = J , we de�ne aHJ = bHJ = cHJ = dHJ = 0:5.

2. scaleParameters = c(2,!,�2)
(or pessimism = !, priorVariation= �2)
when used for boundaries will correspond to comparing the following statistics to boundaries
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as follows for j < J

aHj = Hj(aXJ ; � = �a + !�; �2)

bHj = 1�Hj(bXJ ; � = �b � !�; �2)

cHj = Hj(cXJ ; � = �c + !�; �2)

dHj = 1�Hj(dXJ ; � = �d � !�; �2)

where ! is a measure of the pessimism which is to be used in determining the prior distribution
when rejecting particular hypotheses. For j = J , we de�ne aHJ = bHJ = cHJ = dHJ = 0:5.

E-scale Two families of subscales are possible where the interpretation of additional parameters to
seqScale("E",: : :) are as follows

0. scaleParameters = c(0,b,g�1(�= ))
(or boundaryNumber = c("a","b","c","d")[b+ 1], hypTheta = g�1(�= ))
when used for boundaries of statistics will correspond to Eaj(�), Ebj(�), Ecj(�), or Edj(�)
according to whether b= 0, 1, 2, or 3, respectively.

1. scaleParameters = 1

(or no additional parameters speci�ed)
when used for boundaries will correspond to the error spending functions for a stopping rule
(see section 6.3) when the seqScale object is supplied to S+SeqTrial functions seqDesign()
or seqBoundary() and will correspond to comparing the following statistics to boundaries as
follows when the seqScale object is supplied to S+SeqTrial function changeSeqScale()

aEj = Eaj(�a = �0�)

bEj = Ebj(�b = ��)

cEj = Ecj(�c = �+)

dEj = Edj(�d = �0+)

The seqScale objects de�ned in the manner described above are then used in the following ways

1. The group sequential design family to be used with the design parameters A�, P�, R�, and G� is speci�ed
through

scale = seqScale(: : :)

seqDesign(: : :,design.family=scale,: : :)

where scale is a seqScale object corresponding to one of the \X", \S", \Z", or \E" scale families
for stopping boundaries. (Group sequential design families de�ned for other scales have not yet been
implemented in S+SeqTrial.)

2. User speci�cation of exact values for stopping boundaries at speci�c analyses is e�ected through

scale = seqScale(: : :)

bounds = seqBoundry(bndrymtx, scale)

seqDesign(: : :,exact.constraint=bounds,: : :)

where bndrymtx is a numeric matrix containing the desired values speci�ed on the boundary scale
speci�ed by scale, which is a seqScale object corresponding to one of the scale families for stopping
boundaries. The boundary scale used for exact constraints must be compatible with the boundary scale
used for the design family: Only constraints expressed on the error spending scale are valid with the
error spending design family, and all scales except the error spending scale are valid for constraints used
with other design families.

3. User speci�cation of minimum values for stopping boundaries at speci�c analyses is e�ected through

scale = seqScale(: : :)
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bounds = seqBoundry(bndrymtx, scale)

seqDesign(: : :,minimum.constraint=bounds,: : :)

where bndrymtx is a numeric matrix containing the desired values speci�ed on the boundary scale
speci�ed by scale, which is a seqScale object corresponding to one of the scale families for stopping
boundaries. The boundary scale used for minimum constraints must be compatible with the boundary
scale used for the design family: Only constraints expressed on the error spending scale are valid with
the error spending design family, and all scales except the error spending scale are valid for constraints
used with other design families.

4. User speci�cation of maximum values for stopping boundaries at speci�c analyses is e�ected through

scale = seqScale(: : :)

bounds = seqBoundry(bndrymtx, scale)

seqDesign(: : :,maximum.constraint=bounds,: : :)

where bndrymtx is a numeric matrix containing the desired values speci�ed on the boundary scale
speci�ed by scale, which is a seqScale object corresponding to one of the scale families for stopping
boundaries. The boundary scale used for maximum constraints must be compatible with the boundary
scale used for the design family: Only constraints expressed on the error spending scale are valid with
the error spending design family, and all scales except the error spending scale are valid for constraints
used with other design families.

5. User speci�cation of the boundary scale for display of boundaries is e�ected through

scale = seqScale(: : :)

seqDesign(: : :,display.scale=scale,: : :)

where scale is any valid seqScale object. (Note that the valid parameters for use with input and
output of test statistics or output of stopping boundaries are more varied than those which are valid for
design families).

6. User speci�cation of the boundary scale for input of test statistics is e�ected through, for instance,

scale = seqScale(: : :)

seqInference(: : :,inScale=scale,: : :)

where scale is any valid seqScale object and corresponds to the scale that the seqInference()

argument observed is measured on. (Note that the valid parameters for use with input and output of
test statistics or output of stopping boundaries are more varied than those which are valid for design
families).
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2. Statistical Decision Rules

In conducting a clinical trial, we are most often interested in deciding how some new treatment a�ects
a clinical outcome. If the parameter � is a measure of that treatment e�ect, then the goal of the clinical
trial is often phrased in terms of making a decision for one of several hypotheses by constructing a decision
rule that de�nes for which outcomes a particular decision is made. Typically, the statistical decision rule
is constructed according to frequentist methods which quantify the probability of observing particular data
when some null hypothesis is true. Alternative approaches can be based on Bayesian methods which use the
data along with some prior probability distribution to quantify the probability that some hypothesis is true.

2.1. A Frequentist Approach: Hypothesis Testing

In classical hypothesis testing, we generally wish to discriminate among at most three hypotheses: that
the unknown mean is greater than the null hypothesis (H+ : � > �0), that the unknown mean is less than
the null hypothesis (H� : � < �0), or that the data are consistent with the null hypothesis (H0 : � = �0).
We note that in one-sided hypothesis testing, we may not try to distinguish two of the hypotheses. For
instance, when testing H0 against a higher alternative, we may not distinguish between H0 and H�.

Although it is not uncommon for researchers to speak of deciding in favor of one of the above hypotheses,
we must recall that our frequentist inference is actually based on rejecting one or more hypotheses. Thus,
we speak of deciding for H+ only if we have rejected H0 and H�, and we speak of deciding for H� only if
we have rejected H0 and H+. In the classical frequentist hypothesis testing, we never decide for H0. This is
because for any �nite sample size, there are, for instance, samples that are typical both of H0 and H+. For
a �nite sample size, it is always possible to �nd some small � > 0 such that the distributions of the data are
statistically indistinguishable when � = �0 or when � = �0 + �. However, when we are using the results of
a hypothesis test to decide whether to adopt a new treatment, if we do not reject H0, we usually take an
action that is in essence rejecting H+ and H�. Thus, we desire to develop a decision theoretic model under
which we can quantify the interpretation of a failure to reject H0.

Such a model will demand a reformulation of our alternative hypotheses, because, as noted above, with
a �nite sample size we can never reject the possibility that � is marginally smaller than or greater than �0.
Thus, we now formulate our alternative hypotheses as H+ : � � �+ and H� : � � ��, where �+ > �0
and �� < �0. The values of the alternatives �� and �+ can be chosen in one of two ways. In the �rst
scenario, the alternatives are chosen to correspond to di�erences in outcome which it is clinically important
to distinguish. Study sample sizes are then chosen to allow su�cient statistical power to reject H0 when
� = �+ or su�cient statistical power to reject H0 when � = �� (note that it is not always possible to satisfy
arbitrarily chosen power constraints with arbitrarily chosen values of �+ and ��). In the second approach,
the available sample size is constrained, and we instead compute the alternatives �� and �+ for which the
test design has su�cient statistical power.

In this framework, we can regard a two-sided hypothesis test as a combination of two one-sided tests: an
upper test of H0+ : � � �0+ versus H+ : � � �+ and a lower test of H0� : � � �0� versus H� : � � ��. In
the classical two-sided hypothesis test, we choose �0+ = �0� = �0. However, we introduce the more general
setting in which �� � �0+ � �0� � �+ in order to accomodate more exible designs in the group sequential
setting (see sections 8 and 9).

In order to maintain the same level of evidence for rejection of any hypothesis, we can choose a study
design for which the type I and type II errors are equal. Thus, if we conduct a one-sided level � test of
H0+ against H+ (respectively, H0� against H�), we choose �+ (respectively, ��) such that we reject H0+

(respectively, H0� with probability 1 � � when � = �+ (respectively, � = ��). In a two-sided level 2�
test of H0 (so �0+ = �0� = �0 and we falsely reject H0+ in favor of H+ with probability � and falsely
reject H0� in favor of H� with probability �), we choose �+, ��, and our sample size such that we reject
H0+ with probability 1� � when � = �� and we reject H0� with probability 1� � when � = �+. Such a
strategy guarantees that at the end of the study the 100(1� 2�)% con�dence interval will with probability
1 not contain both �+ and �0+, nor would it contain both �� and �0�. In this way, the study will with
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100(1� 2�)% con�dence discriminate between the null and alternative hypotheses for each of the overlaid
one-sided hypothesis tests.

While the above formulation using a common criterion for statistical evidence is our preferred approach,
many users will choose power constraints at some level less than 1 � �. Hence, for generality, we shall
introduce the notation

Pr(reject H0+ for H+; �0+) = �u

Pr(reject H0+ for H+; �+) = �u

Pr(reject H0� for H�; �0�) = �`

Pr(reject H0� for H�; ��) = �`

(2:1)

The two-sided hypothesis test constructed under this notation is then level �u + �`. As noted above, we
shall most often recommend the choice �u = �` = � and �u = �` = 1� �, which is symmetric in the type I
and type II statistical errors. As a rule, we shall adopt this latter convention in this document, although the
more general notation will be used when it is desirable to have the widest application. In any case, in order
to preserve the natural ordering of �+ � �0� � �0+ � ��, we will demand that the following constraints be
satis�ed

�u � �u

�` � �`

�u + �` � 1

(2:2)

In choosing our hypotheses in the above symmetric fashion, we note that some values of � do not belong
strictly to any single hypothesis. For example, for a one-sided level � test of H0+ versusH+ having statistical
power 1�� to detect H+, if � � �+, we can with 100(1��)% con�dence state that our study will result in
rejection of H0+ in favor of H+, and if � � �0+, we can with 100(1��)% con�dence state that our study will
result in rejection of H+ in favor of H0+. However, if �0+ < � < �+, we can not be 100(1� �)% con�dent
of either rejecting H0+ or H+. This would suggest that our rejection of H0+ can only be interpreted a
priori as being consistent with the decision that � > �0+, and that rejection of H+ can only be interpreted
a priori as being consistent with the decision that � < �+ (we note that at the completion of the study,
computation of con�dence intervals will provide more precise quanti�cation of our inference). The interval
(�0+; �+) constitutes an equivocal region of our parameter space for the unknown mean �, because it is not
inconsistent (at the 100(1� �)% level of con�dence) with either decision.

To formalize this idea, we de�ne an equivocal region EQ for a hypothesis test by

EQ = f� : Pr(reject H0+ for H+;�) < 1� � and Pr(reject H0� for H�;�) < 1� �g: (2:3)

The interpretation of the equivocal region will depend upon the particular application. For instance, in
one-sided tests of a new treatment against a placebo, the equivocal region should carry the interpretation of
levels of improvement that are not of su�cient clinical importance to warrant increasing the sample size in
order to be con�dent that they will be detected. In two-sided tests comparing two treatments, the equivocal
region should be interpreted as levels of di�erence between the treatments that are so small as to allow
decisions of equivalence. In any case, if the equivocal region includes values of the mean that it is clinically
important to distinguish from the null hypothesis, the sample size should be increased to make the equivocal
region smaller.

2.2. A Bayesian Approach

We now consider a Bayesian approach to distinguishing among the hypotheses considered above. In
a Bayesian analysis, decisions are based on the posterior probability of a speci�c hypothesis. There are a
variety of equally valid ways of de�ning a Bayesian testing procedure. For instance, one can make decisions
for a null hypothesis when the posterior probability that the mean is in some close neighborhood of the null
hypothesis is su�ciently high, or one can make a decision for a null hypothesis when the posterior probability
that the mean is in either of the alternative hypotheses is low. In our development here, we adopt the latter
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strategy. That is, in order to maintain the greatest parallel with the frequentist approach, we choose to
describe our decisions in terms of rejecting hypotheses rather than acceptance of hypotheses.

We again consider the most general case of the superposition of two decision problems, which we will
continue to describe in terms of hypotheses. Hence we consider an upper pair of hypotheses H0+ : � � �0+
versus H+ : � � �+ and a lower pair of hypotheses H0� : � � �0� versus H� : � � ��. We note that in
one-sided decision problems, we again may not try to distinguish two of the hypotheses.

For generality, we introduce the following notation for our decision rules

reject H0+ for H+ when Pr(� > �0+ jX1; : : :) � �u

reject H0� for H� when Pr(� < �0� jX1; : : :) � �`

reject H+ for H0+ when Pr(� > �+ jX1; : : :) � �u

reject H� for H0� when Pr(� < �� jX1; : : :) � �`

(2:4)

Under the above, we note that a decision is made for the null hypothesis only if both of the alternatives have
been rejected. Due to the natural ordering of the hypotheses, whenever the null hypothesis has been rejected
in favor H+, the alternative H� has also been rejected by at least the same criteria. Similar arguments hold
for decisions in favor of H�. In order to preserve the natural ordering of �+ � �0� � �0+ � ��, we will
again demand that the constraints speci�ed by eqn (2.2) be satis�ed.

In choosing the values of the alternatives �� and �+, parallels can be drawn to the frequentist approaches
to sample size determination. That is, we assume that the outcome of the study must correspond to a decision
for exactly one of the above hypotheses. In one approach, we choose �+ (respectively, ��) to correspond to
di�erences in outcome which it is clinically important to distinguish. We then �nd the sample size which
results in contiguous, nonoverlapping decision sets for H0+ and H+ (respectively, H0� and H�). Because it
is not always possible to have contiguous decision sets for all three hypotheses for arbitrary choices of �u,
�`,�u, and �`, the value of �� (respectively, �+) must then be chosen to satisfy the probability constraints
in eqn (2.4).

In a second approach, the available sample size is constrained, and we �nd the value of �+ and �� that
satisfy the probability constraints in eqn (2.4).
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3. Examples of Applications

The formulation of the fundamental model in section 1 applies directly to the case of a one sample test
for the mean of a normal distribution estimated from independent, identically distributed observations. In
fact, however, we can use the designs derived for this simple situation in a variety of other useful clinical
trial settings. In particular, we can consider the following departures from the assumptions of the previous
section.

1. Each random variable Xi, i = 1; : : : ; N can represent a summary measure from a sampling unit. For
instance, in a two sample study, we might choose to describe our probability model in terms of sampling
units consisting of 1 subject sampled from population 1 and r subjects sampled from population 2.

2. Each random variable Xi, i = 1; : : : ; N can have a distinct mean �i and a distinct variance �2i . For
instance, we may design a clinical trial in which the best measure of treatment e�ect is the slope of
a linear dose-response relationship. The test statistic may be based on the e�cient scores, in which
case each observation corresponding to the e�cient score would potentially have a di�erent mean and
variance (although presumably the mean of each observation would depend in some way on a common
parameter).

3. The distribution of the random variablesXi, i = 1; : : : ; N need not be normal. Because we are analyzing
the data after groups of observations have been accrued, it will often be the case that a central limit
theorem will guarantee that the increments of information Sj � Sj�1 are approximately normally dis-
tributed. We will �nd in section 5 that the sampling density for the group sequential statistic depends
only upon the normal distribution for those increments, and thus our methods are valid whenever those
increments are approximately normally distributed.

In the following we consider a variety of statistical models for which the group sequential methods
described herein are valid. In their most general form, we consider original observations Yi, i = 1; : : : ;M
with distributions depending on parameter of interest � and potentially on nuisance parameters (; �; : : :)

and covariates ~Wi, i = 1; : : : ;M .

(It should be noted that the use of the notation M in this section refers to a sample size in an un-
transformed setting. In later sections, we will use M to denote a random variable measuring the analysis at
which a clinical trial stopped. While such overlap of notation is undesirable, there should not truly be any
ambiguity, as it is only in this section that M will denote the sample size.)

(It should be further noted that this document describes the de�nition of the sample size N used by the
C code, which uses N to refer to count sampling units. S+SeqTrial de�nes the sample size according to the
total sample requirements across all arms, and thus the value of M as used in this section corresponds to the
output of S+SeqTrial.)

We assume that it is of interest to test a null hypothesis H0 : � = �0 using test statistic T (~Y ), a

function of the observations ~Y = (Y1; : : : ; YM ). We then relate this original model to observations Xi,
i = 1; : : : ; N made on N independent sampling units. The ith observation Xi has moments E(Xi) = �i and
V ar(Xi) = �2i , with

� =
1

N

NX
i=1

�i

�2 =
1

N

NX
i=1

�2i

(3:1)

representing the average tendencies for the moments across the population sampled. We further consider a
parameterization in which the most direct measure of treatment e�ect is measured by parameter �, and that
� is a function of that parameter

� =  g(�) (3:2)

where  is some constant and g(�) is a link function used in the statistical model. Under this parameterization,
we note that it will generally be of more interest to consider at the jth analysis a test statistic �̂j corresponding
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to the maximum likelihood estimate of �, rather than focussing on the maximum likelihood estimate Xj of

�. In section 1.7 we de�ned transformations between the estimate (�̂) scale and the sample mean (X) scale,
as well as the �-, �-, and �-scales for the parameter space.

In each of the following models, we de�ne the sampling unit, the observation Xi, the moments �i and
�2i , the averages � and �2, the link function g(�), and the constant  . We also describe the most typical ways
in which the hypotheses �0, �+, and �� might be speci�ed. In addition, we describe the correspondences
between the commonly used statistics in the original statistical model (as might be obtained from computer

output) and the statistics Xj , �̂j , Zj , and Pj .

3.1. Normally distributed responses

When the treatment response is measured on a continuous scale, it is common to base statistical inference
on the assumption that the underlying observations are normally distributed. It should be noted that these
same models are valid for nonnormal data provided the group sizes are su�ciently large as to allow the central
limit theorem to provide a good approximation. This may not be a good assumption when the distribution
is markedly skewed, however in those cases the methods described below for log normal responses may work.

It should be noted that in all of the models presented in this section, it is typically the case that the
variance �2 is unknown. Hence, rather than using statistics which have the normal distribution, one typically
assumes a t distribution. In what follows, however, we will take the approach of using the usual estimate of
the variance, but continuing to use the normal based methods. We note that such an approach is valid in
large sample sizes. We also note that there is some evidence (Pocock, 1977) to suggest that if the statistics
Pj are taken from the t distribution, the small sample behavior of the group sequential methodology parallels
that of the small sample behavior of the t test in that same data (which t test may also not be exact due to
nonnormality of the underlying observations).

3.1.1. One sample test of a normal mean

Suppose we sample independently from a population with Yi � N (�; �2) for i = 1; : : : ;M . We wish to
test a null hypothesis about the populaton mean �, H0 : � = �0, and in a �xed sample test we perform a one
sample Z test using test statistic

T (~Y ) =
p
M

[YM � �0]

�
:

Such a trial corresponds exactly to our fundamental model with a sampling unit corresponding to a
single observation. Hence, N = M , and the observations Xi = Yi on those sampling units have moments
�i = � and �2i = �2, with averages � = � and �2 = �2. Under this parameterization, the link function g(�)
is merely the identity function g(�) = �, and the constant  = 1. The null and alternative hypotheses are
typically speci�ed directly, with �0 = 0 being the usual choice for the null hypothesis.

At the jth analysis, the statistic Xj is the sample mean of the �rst Nj observations, and �̂j = Xj . In
a typical situation, the variance �2 is not known, and one would typically use the sample variance as an
estimate. For our purposes, we can usually assume su�cient sample sizes such that a reasonable approximate
test is obtained by using as Zj the one-sample t statistic. The statistic Pj is the one-sided p value from
such a test used to detect the alternative H+ : � > �0. If only a two-sided P value is provided by statistical
software (as is quite often the case), then Pj is half the two-sided P value when Zj > 0, and Pj is 1 minus half
the two-sided P value when Zj < 0. As discussed above, it might be more robust to use the t distribution
rather than the standard normal distribution when the variance is unknown, hence it is probably easiest to
use the P -scale when using this statistical model.

3.1.2. Two sample test of normal means

Suppose we sample independently from two populations: a treatment group with Y1i � N (1; �
2
1 ) for

i = 1; : : : ;M1 and a comparison group with Y2i � N (2; �
2
2) for i = 1; : : : ;M2. We wish to test a null

hypothesis about the di�erence in population means � = 1 � 2, H0 : � = �0, and in a �xed sample test we
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perform a two sample Z test using test statistic

T (~Y ) =
[Y 1M1 � Y 2M2 ]� �0q

�21
M1

+
�22
M2

:

For notational convenience, we de�ne r =M1=M2. Such a trial corresponds to our fundamental model
with a sampling unit corresponding to a single observation from the comparison group, and r observations
from the treatment group. Hence, N = M2, and the observations Xi =

Pri
k=ri�r+1 Y1k=r � Y2i on those

sampling units have moments �i = � and �2i = �21=r + �22 , with averages � = � and �2 = �21=r + �22 . Under
this parameterization, the link function g(�) is merely the identity function g(�) = �, and the constant  = 1.
The total sample size required in the study (across both arms) is [r + 1]N .

In specifying the hypotheses, most often �0 and �+ or �� are speci�ed directly. Typically, the null
hypothesis is �0 = 0. Alternative methods of specifying the hypotheses include: 1) specifying the values of
1 and 2 under the null hypothesis, and also the values of 1 and 2 under the alternative hypothesis, and
2) specifying 1 under each of the null and alternative hypotheses, and assuming that 2 under both the
null and alternative is equal to what 1 is under the null. In allowing for alternative speci�cations of the
hypotheses, it should be noted that it is easy to distinguish between the usual speci�cation of �0 and �+ or
�� and the �rst alternative based on the number of values given in the speci�cation. Distinguishing between
the usual speci�cation and the second alternative is not possible by such means, but it is truly unimportant.
Treating those two methods of speci�cation the same will result in the exact same sample size calculation,
because in each case �+ � �0 is the same value. When a computer interface reports values back to a user,
those values may be � = 1 � 2 (in the case of the usual speci�cation or 1 (in the case of the second
alternative), and only the user need know which is which. In the case of the �rst alternative, it probably is
most straightforward to convert the input to the corresponding values of � and to report those values.

At the jth analysis (and assuming the ratio between the number of measurements from the �rst popu-
lation and the number of measurements from the second population is r:1 for all j), the statistic Xj is the
sample mean of the �rst Nj observations

Xj =
1

rNj

rNjX
i=1

Y1i � 1

Nj

NjX
i=1

Y2i;

and �̂j = Xj . In a typical situation, the variances �21 and �22 are not known, and one would typically use the
sample variances as estimates. For our purposes, we can usually assume su�cient sample sizes such that a
reasonable approximate test is obtained by using as Zj the two-sample t statistic assuming unequal variances.
The statistic Pj is the one-sided P value from such a test used to detect the alternative H+ : � > �0. If
only a two-sided P value is provided by statistical software (as is quite often the case), then Pj is half the
two-sided P value when Zj > 0, and Pj is 1 minus half the two-sided P value when Zj < 0. As discussed
above, it might be more robust to use the t distribution rather than the standard normal distribution when
the variance is unknown, hence it is probably easiest to use the P -scale when using this statistical model.

It should be noted that although the above derivation assumes that the ratio between the number of
measurements from the �rst population and the number of observations from the second population is r:1
at each analysis, the statistical behavior of the group sequential test is not substantially a�ected by slight
deviations from that ratio across the di�erent interim analyses. Hence at the design stage, it is su�cient to
assume a constant value for r, and then when actually monitoring the study to use the observed r at each
analysis. This is equivalent to just ignoring any variation in r across analysis times and using the value of
Pj as de�ned above at each analysis.

Of course, major deviations in the distribution of sample sizes from the two populations across analysis
times will a�ect the statistical behavior of the group sequential test when boundaries are determined solely
on the basis of the number of sampling units accrued to date. This problem is alleviated for the most part
when stopping boundaries are determined on the basis of the proportion of the planned maximal statistical
information accrued to date. This aspect is discussed further in section 12.
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3.1.3. Test of linear regression slope

Suppose we sample paired observations (Yi;Wi) for i = 1; : : : ;M , with response variable Yi � N (i; �
2)

and where we assume a regression model based on covariates Wi as i = � + �Wi. We wish to test a null
hypothesis about the linear slope �, H0 : � = 0, and in a �xed sample test we use as test statistic the
t test based on the estimate of the slope �̂ =

PM
i=1 Yi[Wi � W ]=

PM
i=1[Wi �W ]2 and its standard error

ŝe(�̂) = �̂=
qPM

i=1[Wi �W ]2, where �̂2 =
PM

i=1[Yi � �̂ � �̂Wi]
2=[M � 2] is the estimated residual mean

squared error. Thus we use test statistic

T (~Y ) =

PM
i=1 Yi[Wi �W ]

�̂

qPM
i=1[Wi �W ]2

;

which has a t distribution withM�2 degrees of freedom. For largeM , this distribution is well approximated
by a standard normal distribution.

Such a trial corresponds to our fundamental model with a sampling unit corresponding to a single
observation. Hence, N =M , and the observations Xi = Yi[Wi �W ] on those sampling units have moments

�i = [Wi �X]i and �
2
i = [Wi �W ]2�2, with averages � = �VW and �2 = �2VW , where VW =

PM
i=1[Wi �

W ]2=M is the variance of the covariates. Under this parameterization, the link function g(�) is merely the
identity function g(�) = �, and the constant  = VW .

An alternative correspondence to our fundamental model again has a sampling unit corresponding to
a single observation with N = M , but the observations on those sampling units are taken to be Xi =
Yi[Wi �W ]=VW having moments �i = [Wi � X]i=VW and �2i = [Wi �W ]2�2=V 2

W , leading to averages

� = � and �2 = �2=VW , where again VW =
PM

i=1[Wi �W ]2=M is the variance of the covariates. Under this
parameterization, the link function g(�) is merely the identity function g(�) = �, and the constant  = 1.

In either correspondence to the fundamental model, the null and alternative hypotheses are typically
speci�ed directly, with �0 = 0 being the usual choice for the null hypothesis.

At the jth analysis (and assuming the mean of the covariates is W and the variance of the covariates is
VW for all j), the statistic Xj is the sample mean of the �rst Nj observations. In the �rst correspondence,
we then have

Xj =
1

Nj

NjX
i=1

Yi[Wi �W ];

and in the second correspondence, we have

Xj =
1

NjVW

NjX
i=1

Yi[Wi �W ]:

In either case we have that �̂j is just the least squares estimate of the slope based on the �rst Nj observations.
For our purposes, we can usually assume su�cient sample sizes such that a reasonable approximate test is
obtained by using as Zj the t statistic for the test of the slope. The statistic Pj is the one-sided P value from
such a test used to detect the alternative H+ : � > 0. If only a two-sided P value is provided by statistical
software (as is generally the case), then Pj is half the two-sided P value when Zj > 0, and Pj is 1 minus half
the two-sided P value when Zj < 0. As discussed above, it might be more robust to use the t distribution
rather than the standard normal distribution when the variance is unknown, hence it is probably easiest to
use the P -scale when using this statistical model.

It should be noted that although the above derivation assumes that the mean W and variance VW
for the covariates is constant at each analysis, the statistical behavior of the group sequential test is not
substantially a�ected by slight deviations from those values across the di�erent interim analyses. Hence at
the design stage, it is su�cient to assume constant value for W and VW , and then when actually monitoring
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the study to use the observed values at each analysis. This is equivalent to just ignoring any variation in W
and VW across analysis times and using the value of Pj as de�ned above at each analysis.

Of course, major deviations in the distribution of covariates across analysis times will a�ect the statistical
behavior of the group sequential test when boundaries are determined solely on the basis of the number of
sampling units accrued to date. This problem is alleviated for the most part when stopping boundaries are
determined on the basis of the proportion of the planned maximal statistical information accrued to date.
This aspect is discussed further in section 12.

We note that a two sample test of equality between means assuming equal variances is equivalent to
a test of linear slope in a regression model when the covariates Wi are dichotomous. The same inference
is obtained under either the regression model described here or the two sample model described in section
3.1.2 with �21 = �22 .

3.1.4. Test of equality of means among K groups (ANOVA)

Suppose we sample independently from K populations with Yki � N (k; �
2) for i = 1; : : : ;Mk and

k = 1; : : : ;K. For notational convenience, we de�neM =
PK

k=1Mk and ~r = (r1; : : : ; rK), where rk =Mk=M
is the proportion of the total sample size that is apportioned to the kth group. We wish to test a null
hypothesis about the equality of population means 1 = 2 = � � � = K , and in a �xed sample test we
perform a F test from a one-way analysis of variance (ANOVA).

Such a trial cannot be couched in our fundamental model. The F statistic is asymptotically distributed
according to a chi square distribution as the sample sizes within every group gets large, and that distribution
would be approximately normal only as the number of groups K approaches in�nity. Hence, the methods we
derive for group sequential tests will not apply directly to this statistical model. We do present here sample
size formula that can apply to this setting for �xed sample trials. The null hypothesis is understood to be
exact equality of the means in this model, and alternative hypothesis can be speci�ed either by listing the
K values 1, 2, : : :, K , or by providing the variance of the values for the 's.

The sample size formula for the K-sample problem can be derived by considering the regression model
in which dummy variables are �t for groups 2 through K, and then testing that those K � 1 regression
parameters are simultaneously equal to 0. If we assume that �2 is known, the test statistic has a noncentral
�2K�1(�

2) distribution with K � 1 degrees of freedom and noncentrality parameter �2 =MV=�
2 where

V =

8<
:

KX
k=1

rk
2
k �

"
KX
k=1

rkk

#29=
; (37)

is a weighted variance of the population means. Note that �2 = 0 under H0, and in that case the test statistic
has a central �2 distribution.

In experimental design, we often desire to �nd a sample size which would under some speci�ed alternative
hypothesis supply prespeci�ed power � to reject the null hypothesis when performing a level � ANOVA. To
obtain a level � test, we compare the ANOVA test statistic to the critical value �2K�1(0; 1� �) which is the
upper �th quantile of the central chi square distribution with k � 1 degrees of freedom. The distribution of
the test statistic depends on the alternative only through the value V . Thus we need to �nd the value ofM
such that a random variable U having a noncentral chi square distribution with K � 1 degrees of freedom
and noncentrality parameter MV=�

2 satis�es

Pr(U > �2K�1(0; 1� �)) = �:

In S-Plus this can be e�ected using the following code (where alpha = � is the size of the test, beta = �
is the desired power, gamma = ~ = (1; : : : ; K) is the vector of population means under the alternative,
vrnc = �2 is the within group variance, and r = ~r is the vector of sample size proportions to be accrued to
each group)

K <- length (gamma)
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crit.value <- qchisq ( 1-alpha, K-1)

noncent <- (sum (r * gamma2̂) - sum (r * gamma)2̂ ) / vrnc

pwr <- 1 - pchisq (crit.value, K-1, (1:1000) * noncent)

group.sample.sizes <- r * (sum (pwr < 1 - beta) + 1)

The vector group:sample:sizes= (M1; : : : ;MK).

3.2. Lognormal responses

When dealing with continuous positive response variables that are heavily skewed, it is not uncommon
to assume a lognormal distribution for those variables. Such an assumption is equivalent to assuming that
the logarithm of the response variable has a normal distribution. A similar transformation of the data is also
often used when the data exhibit a mean-variance relationship in which the variance of the response variable
is proportional to the square of the mean, even though the response variable might not have the lognormal
distribution. As noted above with the normal model, due to the central limit theorem, the inference based
on assuming a normal model for log transformed response is fairly robust to departures from normality.

Analyses based on the normal model for the log transformed response can be viewed as inference based
on the mean of the log response. Such does not have an easy interpretation on the original response scale.
However, so long as the log response has a symmetric distribution (which is certainly satis�ed by the normal
model), the mean log response is the median log response. The median is easily back transformed to the
original response scale. Hence, we consider these models based on log transformed response to be inference
about the median and the median ratio. We note that inference could also be considered on the basis of the
geometric mean and the ratio of geometric means of the distributions of the original response.

In the following, it is assumed that a user would want to work with the median of the original response
variables, rather than working with summary measures of the transformed responses. This is the most natural
model, however, in the event that it were desired to work on the transformed scale, the correspondences
discussed in each subsection would hold exactly, with the exception that the parameter of interest would
be the log median log(�) or the di�erence in log medians and the link function g(�) would be the identity
function g(log �) = log(�).

3.2.1. One sample test of a lognormal median

Suppose we sample independently from a population with Ui = log(Yi) � N (log(�); �2) for i = 1; : : : ;M .
We wish to test a null hypothesis about the population median �, H0 : � = �0, and in a �xed sample test we
perform a one sample Z test using test statistic

T (~Y ) =
p
M

[UM � log(�0)]

�
:

Such a trial corresponds exactly to the model described in section 2.1.1 for the transformed response
and a transformed parameter of interest. Hence, N =M , and the observations Xi = Ui = log(Yi) on those
sampling units have moments �i = log(�) and �2i = �2, with averages � = log(�) and �2 = �2. Under this
parameterization, the link function g(�) is the logarithmic function g(�) = log(�), and the constant  = 1.
The null and alternative hypotheses are typically speci�ed directly, with �0 = 1 being the usual choice for
the null hypothesis.

At the jth analysis, the statistic Xj is the sample mean of the �rst Nj logarithmically transformed

observations, and �̂j = exp(Xj). In a typical situation, the variance �2 is not known, and one would
typically use the sample variance as an estimate. For our purposes, we can usually assume su�cient sample
sizes such that a reasonable approximate test is obtained by using as Zj the one-sample t statistic on the
log transformed observations. The statistic Pj is the one-sided p value from such a test used to detect the
alternative H+ : � > �0. If only a two-sided P value is provided by statistical software (as is quite often the
case), then Pj is half the two-sided P value when Zj > 0, and Pj is 1 minus half the two-sided P value when
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Zj < 0. As discussed above, it might be more robust to use the t distribution rather than the standard
normal distribution when the variance is unknown, hence it is probably easiest to use the P -scale when using
this statistical model.

3.2.2. Two sample test of lognormal medians

Suppose we sample independently from two populations: a treatment group with U1i = log(Y1i) �
N (log(1); �

2
1 ) for i = 1; : : : ;M1 and a comparison group with U2i = log(Y2i) � N (log(2); �

2
2) for i =

1; : : : ;M2. We wish to test a null hypothesis about the ratio of population medians � = 1=2, H0 : � = �0,
and in a �xed sample test we perform a two sample Z test using test statistic

T (~Y ) =
[U1M1 � U2M2 ]� log(�0)q

�21
M1

+
�22
M2

:

For notational convenience, we de�ne r =M1=M2. Such a trial corresponds to our fundamental model
with a sampling unit corresponding to r observations from the treatment group (population 1), and a
single observation from the comparison group (population 2). Hence, N = M2, and the observations Xi =Pri

k=ri�r+1 U1k=r�U2i on those sampling units have moments �i = log(�) and �2i = �21=r+�
2
2 , with averages

� = log(�) and �2 = �21=r+�
2
2 . Under this parameterization, the link function g(�) is the logarithmic function

g(�) = log(�), and the constant  = 1. The total sample size required in the study (across both arms) is
[r + 1]N .

In specifying the null hypothesis, most often �0 and �+ or �� are speci�ed directly. Typically, the null
hypothesis is �0 = 1. Alternative methods of specifying the hypotheses include: 1) specifying the values of 1
and 2 (the medians of the respective distributions) under the null hypothesis, and also the values of 1 and
2 under the alternative hypothesis, and 2) specifying 1 under each of the null and alternative hypotheses,
and assuming that 2 under both the null and alternative is equal to what 1 is under the null. In allowing
for alternative speci�cations of the hypotheses, it should be noted that it is easy to distinguish between the
usual speci�cation of �0 and �+ or �� and the �rst alternative based on the number of values given in the
speci�cation. Distinguishing between the usual speci�cation and the second alternative is not possible by
such means, but it is truly unimportant. Treating those two methods of speci�cation the same will result
in the exact same sample size calculation, because in each case �+=�0 is the same value. When a computer
interface reports values back to a user, those values may be � = 1=2 (in the case of the usual speci�cation
or 1 (in the case of the second alternative), and only the user need know which is which. In the case of the
�rst alternative, it probably is most straightforward to convert the input to the corresponding values of �
and to report those values.

At the jth analysis (and assuming the ratio between the number of measurements from the �rst popu-
lation and the number of measurements from the second population is r:1 for all j), the statistic Xj is the
sample mean of the �rst Nj logarithmically transformed observations

Xj =
1

rNj

rNjX
i=1

U1i � 1

Nj

NjX
i=1

U2i;

and �̂j = exp(Xj). In a typical situation, the variances �21 and �22 are not known, and one would typically
use the sample variances as estimates. For our purposes, we can usually assume su�cient sample sizes such
that a reasonable approximate test is obtained by using as Zj the two-sample t statistic assuming unequal
variances. The statistic Pj is the one-sided P value from such a test used to detect the alternativeH+ : � > �0.
If only a two-sided P value is provided by statistical software (as is quite often the case), then Pj is half the
two-sided P value when Zj > 0, and Pj is 1 minus half the two-sided P value when Zj < 0. As discussed
above, it might be more robust to use the t distribution rather than the standard normal distribution when
the variance is unknown, hence it is probably easiest to use the P -scale when using this statistical model.

It should be noted that although the above derivation assumes that the ratio between the number of
measurements from the �rst population and the number of observations from the second population is r:1
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at each analysis, the statistical behavior of the group sequential test is not substantially a�ected by slight
deviations from that ratio across the di�erent interim analyses. Hence at the design stage, it is su�cient to
assume a constant value for r, and then when actually monitoring the study to use the observed r at each
analysis. This is equivalent to just ignoring any variation in r across analysis times and using the value of
Pj as de�ned above at each analysis.

Of course, major deviations in the distribution of sample sizes from the two populations across analysis
times will a�ect the statistical behavior of the group sequential test when boundaries are determined solely
on the basis of the number of sampling units accrued to date. This problem is alleviated for the most part
when stopping boundaries are determined on the basis of the proportion of the planned maximal statistical
information accrued to date. This aspect is discussed further in section 12.

3.2.3. Test of log median regression slope

Suppose we sample paired observations (Yi;Wi) for i = 1; : : : ;M , with transformed response vari-
able Ui = log(Yi) � N (i; �

2) and where we assume a regression model based on covariates Wi as
i = � + log(�)Wi. We wish to test a null hypothesis about the back transformed linear slope � (which
has interpretation as the median ratio between groups di�ering by one unit in their covariate values),
H0 : � = 1, and in a �xed sample test we use as test statistic the t test based on the estimate of the

slope log(�̂) =
PM

i=1 Ui[Wi �W ]=
PM

i=1[Wi �W ]2 and its standard error ŝe(log(�̂)) = �̂=
qPM

i=1[Wi �W ]2,

where �̂2 =
PM

i=1[Ui � �̂ � log(�̂)Wi]
2=[M � 2] is the estimated residual mean squared error. Thus we use

test statistic

T (~Y ) =

PM
i=1 Ui[Wi �W ]

�̂
qPM

i=1[Wi �W ]2
;

which has a t distribution withM�2 degrees of freedom. For largeM , this distribution is well approximated
by a standard normal distribution.

Such a trial corresponds to our fundamental model with a sampling unit corresponding to a single
observation. Hence, N =M , and the observations Xi = Ui[Wi �W ] on those sampling units have moments
�i = [Wi � X]i and �2i = [Wi � W ]2�2, with averages � = log(�)VW and �2 = �2VW , where VW =PM

i=1[Wi �W ]2=M is the variance of the covariates. Under this parameterization, the link function g(�) is
the logarithmic function g(�) = log(�), and the constant  = VW .

An alternative correspondence to our fundamental model again has a sampling unit corresponding to
a single observation with N = M , but the observations on those sampling units are taken to be Xi =
Ui[Wi �W ]=VW having moments �i = [Wi � X ]i=VW and �2i = [Wi � W ]2�2=V 2

W , leading to averages

� = log(�) and �2 = �2=VW , where again VW =
PM

i=1[Wi �W ]2=M is the variance of the covariates. Under
this parameterization, the link function g(�) is the logarithmic function g(�) = log(�), and the constant
 = 1.

In either correspondence to the fundamental model, the null and alternative hypotheses are typically
speci�ed directly, with �0 = 1 being the usual choice for the null hypothesis.

At the jth analysis (and assuming the mean of the covariates is W and the variance of the covariates is
VW for all j), the statistic Xj is the sample mean of the �rst Nj observations. In the �rst correspondence,
we then have

Xj =
1

Nj

NjX
i=1

Ui[Wi �W ];

and in the second correspondence, we have

Xj =
1

NjVW

NjX
i=1

Ui[Wi �W ]:
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In either case we have that �̂j is just the exponentiation of the least squares estimate of the slope based
on the �rst Nj observations. For our purposes, we can usually assume su�cient sample sizes such that a
reasonable approximate test is obtained by using as Zj the t statistic for the test of the slope. The statistic
Pj is the one-sided P value from such a test used to detect the alternative H+ : � > 0. If only a two-sided P
value is provided by statistical software (as is generally the case), then Pj is half the two-sided P value when
Zj > 0, and Pj is 1 minus half the two-sided P value when Zj < 0. As discussed above, it might be more
robust to use the t distribution rather than the standard normal distribution when the variance is unknown,
hence it is probably easiest to use the P -scale when using this statistical model.

It should be noted that although the above derivation assumes that the mean W and variance VW
for the covariates is constant at each analysis, the statistical behavior of the group sequential test is not
substantially a�ected by slight deviations from those values across the di�erent interim analyses. Hence at
the design stage, it is su�cient to assume constant value for W and VW , and then when actually monitoring
the study to use the observed values at each analysis. This is equivalent to just ignoring any variation in W
and VW across analysis times and using the value of Pj as de�ned above at each analysis.

Of course, major deviations in the distribution of covariates across analysis times will a�ect the statistical
behavior of the group sequential test when boundaries are determined solely on the basis of the number of
sampling units accrued to date. This problem is alleviated for the most part when stopping boundaries are
determined on the basis of the proportion of the planned maximal statistical information accrued to date.
This aspect is discussed further in section 12.

We note that a two sample test of equality between medians assuming equal variances of the log trans-
formed response (so variance proportional to the means for the original response) is equivalent to a test of
linear slope in a regression model when the covariates Wi are dichotomous. The same inference is obtained
under either the regression model described here or the two sample model described in section 3.2.2 with
�21 = �22 .

3.2.4. Test of equality of medians among K groups (ANOVA)

Suppose we sample independently from K populations with Uki = log(Yki) � N (log(k); �
2) for i =

1; : : : ;Mk and k = 1; : : : ;K. For notational convenience, we de�ne M =
PK

k=1Mk and ~r = (r1; : : : ; rK),
where rk =Mk=M is the proportion of the total sample size that is apportioned to the kth group. We wish
to test a null hypothesis about the equality of population medians 1 = 2 = � � � = K , and in a �xed sample
test we perform a F test from a one-way analysis of variance (ANOVA) on the log transformed responses.

Such a trial cannot be couched in our fundamental model. The F statistic is asymptotically distributed
according to a chi square distribution as the sample sizes within every group gets large, and that distribution
would be approximately normal only as the number of groups K approaches in�nity. Hence, the methods we
derive for group sequential tests will not apply directly to this statistical model. We do present here sample
size formula that can apply to this setting for �xed sample trials. The null hypothesis is understood to be
exact equality of the medians in this model, and the alternative hypothesis can be speci�ed either by listing
the K values 1, 2, : : :, K , or by providing the variance of the values for the log()'s.

The sample size formula for the K-sample problem can be derived by considering the regression model
in which dummy variables are �t for groups 2 through K, and then testing that those K � 1 regression
parameters are simultaneously equal to 0. If we assume that �2 is known, the test statistic has a noncentral
�2K�1(�

2) distribution with K � 1 degrees of freedom and noncentrality parameter �2 =MVlog()=�
2 where

Vlog() =

8<
:

KX
k=1

rk log
2(k)�

"
KX
k=1

rk log(k)

#29=
; (37)

is a weighted variance of the population means. Note that �2 = 0 under H0, and in that case the test statistic
has a central �2 distribution.

In experimental design, we often desire to �nd a sample size which would under some speci�ed alternative
hypothesis supply prespeci�ed power � to reject the null hypothesis when performing a level � ANOVA. To
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obtain a level � test, we compare the ANOVA test statistic to the critical value �2K�1(0; 1� �) which is the
upper �th quantile of the central chi square distribution with k � 1 degrees of freedom. The distribution of
the test statistic depends on the alternative only through the value Vlog(). Thus we need to �nd the value of
M such that a random variable U having a noncentral chi square distribution with K�1 degrees of freedom
and noncentrality parameter MVlog()=�

2 satis�es

Pr(U > �2K�1(0; 1� �)) = �:

In S-Plus this can be e�ected using the following code (where alpha = � is the size of the test, beta = �
is the desired power, gamma = ~ = (1; : : : ; K) is the vector of population medians under the alternative,
vrnc = �2 is the within group variance, and r = ~r is the vector of sample size proportions to be accrued to
each group)

K <- length (gamma)

crit.value <- qchisq ( 1-alpha, K-1)

noncent <- (sum (r * log(gamma)2̂) - sum (r * log(gamma))2̂ ) / vrnc

pwr <- 1 - pchisq (crit.value, K-1, (1:1000) * noncent)

group.sample.sizes <- r * (sum (pwr < 1 - beta) + 1)

The vector group:sample:sizes= (M1; : : : ;MK).

3.3. Dichotomous responses

In many clinical trials, the outcome is measured on a binary scale: success or failure. The summary
measure used to describe the probability distribution for the response variable is typically either the binomial
proportion (the probability of success) or the binomial odds (the odds of success). Treatment e�ects are,
respectively, summarized as the di�erence in binomial proportions or the odds ratio.

In this application, we assume that sample sizes are su�ciently large to allow inference based on the
normal approximation to the binomial distribution.

3.3.1. One sample test of a binomial proportion

Suppose we have a random sample of independent Bernoulli random variables with Yi � B(1; �) for
i = 1; : : : ;M . We wish to test a null hypothesis about the population mean �, H0 : � = �0, and in a �xed
sample test we perform a one sample Z test using test statistic

T (~Y ) =
p
M

[YM � �0]q
Y M (1� YM )

:

Such a trial corresponds exactly to our fundamental model with a sampling unit corresponding to a
single observation. Hence, N = M , and the observations Xi = Yi on those sampling units have moments
�i = � and �2i = �(1 � �), with averages � = � and �2 = �(1 � �). Under this parameterization, the link
function g(�) is merely the identity function g(�) = �, and the constant  = 1.

At the jth analysis, the statistic Xj is the sample mean of the �rst Nj observations, and �̂j = Xj . In a
typical situation, the variance �(1� �) is not known, and one would typically use either the variance under

the null hypothesis or, more usually, the maximum likelihood estimate �̂j(1 � �̂j) as an estimate. The test
statistic Zj is just the test statistic for a one sample test of a binomial proportion as given above, and the
statistic Pj is the one-sided P value from such a test used to detect the alternative H+ : � > �0. If only a
two-sided P value is provided by statistical software (as is quite often the case), then Pj is half the two-sided
P value when Zj > 0, and Pj is 1 minus half the two-sided P value when Zj < 0.
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3.3.2. Two sample test of binomial proportions

Suppose we sample independently from two populations: a treatment group with Y1i � B(1; 1) for
i = 1; : : : ;M1 and a comparison group with Y2i � B(1; 2) for i = 1; : : : ;M2. For notational convenience,
we de�ne r = M1=M2. We wish to test a null hypothesis about the di�erence in population probabilities
of success � = 1 � 2, H0 : � = �0, and in a �xed sample test we perform a two sample Z test using test
statistic

T (~Y ) =
[Y 1M1 � Y 2M2 ]� �0r

Y �M [1� Y �M ]
h

1
M1

+ 1
M2

i :

Such a trial corresponds to our fundamental model with a sampling unit corresponding to a single
observation from the copmparison group (population 2), and r observations from the treatment group (pop-

ulation 1). Hence, N =M2, and the observations Xi =
Pri

k=ri�r+1 Y1k=r�Y2i on those sampling units have
moments �i = � and �2i = 1[1� 1]=r + 2[1� 2], with averages � = � and �2 = 1[1� 1]=r + 2[1� 2].
Under this parameterization, the link function g(�) is merely the identity function g(�) = �, and the constant
 = 1.

At the jth analysis (and assuming the ratio between the number of measurements from the treatment
group and the number of measurements from the comparison group is r:1 for all j), the statistic Xj is the
sample mean of the �rst Nj observations

Xj =
1

rNj

rNjX
i=1

Y1i � 1

Nj

NjX
i=1

Y2i;

and �̂j = Xj . In a typical situation, the variance must be estimated because 21 and 22 are not known, and
one would typically use the sample means Y 1j and Y 2j as estimates for 1 and 2, respectively. The statistic
Zj is the Z test statistic comparing two binomial proportions, as given above. This is the signed square root
of Pearson's chi square statistic. The statistic Pj is the one-sided P value from the Z test used to detect the
alternative H+ : � > �0. If only a two-sided P value is provided by statistical software (as is quite often the
case), then Pj is half the two-sided P value when Zj > 0, and Pj is 1 minus half the two-sided P value when
Zj < 0.

It should be noted that although the above derivation assumes that the ratio between the number of
measurements from the �rst population and the number of observations from the second population is r:1
at each analysis, the statistical behavior of the group sequential test is not substantially a�ected by slight
deviations from that ratio across the di�erent interim analyses. Hence at the design stage, it is su�cient to
assume a constant value for r, and then when actually monitoring the study to use the observed r at each
analysis. This is equivalent to just ignoring any variation in r across analysis times and using the value of
Pj as de�ned above at each analysis.

Of course, major deviations in the distribution of sample sizes from the two populations across analysis
times will a�ect the statistical behavior of the group sequential test when boundaries are determined solely
on the basis of the number of sampling units accrued to date. This problem is alleviated for the most part
when stopping boundaries are determined on the basis of the proportion of the planned maximal statistical
information accrued to date. This aspect is discussed further in section 12.

3.3.3. One sample test of binomial odds

Suppose we have a random sample of independent Bernoulli random variables with Yi � B(1; ) for
i = 1; : : : ;M . We wish to test a null hypothesis about the population odds of success � = =[1 � ],
H0 : � = �0. One possible approach in a �xed sample test is to use the score test for the intercept in a
logistic regression model having no covariates. We thus perform a one sample Z test using test statistic

T (~Y ) =
p
M
fYM � e�0=[1 + e�0 ]gq

Y M (1� YM )
:
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Such a trial corresponds exactly to our fundamental model with a sampling unit corresponding to a
single observation. Hence, N = M , and the observations Xi = Yi on those sampling units have moments
�i = e�=[1 + e�] and �2i = (1 � ), with averages � = e�=[1 + e�] and �2 = [1 � ]. Under this
parameterization, the link function g(�) is the function g(�) = e�=[1 + e�], and the constant  = 1.

At the jth analysis, the statisticXj is the sample mean of the �rstNj observations, and �̂j = Xj=[1�Xj ].
In a typical situation, the variance (1 � ) is not known, and one would typically use either the variance
under the null hypothesis or, more usually, the maximum likelihood estimate Xj [1 � Xj ] as an estimate.
The test statistic Zj is just the test statistic for a one sample test of a binomial proportion as given above,
and the statistic Pj is the one-sided P value from such a test used to detect the alternative H+ : � > �0. If
only a two-sided P value is provided by statistical software (as is quite often the case), then Pj is half the
two-sided P value when Zj > 0, and Pj is 1 minus half the two-sided P value when Zj < 0.

An alternative test statistic in the �xed sample case can be based on the Wald test of the intercept
from a logistic regression model having no covariates. This corresponds to a test based on a logarithmic
transformation of the maximum likelihood estimate of the odds, with a standard error derived using the
delta method. Hence, in a �xed sample setting we might use test statistic

T (~Y ) =
p
M

log(Y M=[1� Y M ])� log(�0)q
1

YM (1�YM )

:

Such a trial corresponds exactly to our fundamental model with a sampling unit corresponding to a
single observation. Hence, N =M , but the observations Xi are not easily characterized. We can, however,
de�ne averages � = log(�) and �2 = 1=f[1� ]g. Under this parameterization, the link function g(�) is the
function g(�) = log(�), and the constant  = 1.

At the jth analysis, the statistic Xj is the estimate of the intercept in a logistic regression model

having no covariates based on the �rst Nj observations, and �̂j = eXj . In a typical situation, the variance
1=f[1 � ]g is not known, and one would typically use either the variance under the null hypothesis or,
more usually, the maximum likelihood estimate 1=fXj [1�Xj ]g as an estimate. The test statistic Zj is just
the test statistic for the intercept in the logistic regression model described above, and the statistic Pj is the
one-sided p value from such a test used to detect the alternative H+ : � > �0. If only a two-sided P value
is provided by statistical software (as is quite often the case), then Pj is half the two-sided P value when
Zj > 0, and Pj is 1 minus half the two-sided P value when Zj < 0.

3.3.4. Two sample test of binomial odds ratio

Suppose we sample independently from two populations: a treatment group with Y1i � B(1; 1) for
i = 1; : : : ;M1 and a comparison group with Y2i � B(1; 2) for i = 1; : : : ;M2. For notational convenience,
we de�ne r = M1=M2. We wish to test a null hypothesis about the ratio of odds of success in the two
populations � = 1[1 � 2]=f2[1 � 1]g, H0 : � = 1, and in a �xed sample test we perform the score test
from a logistic regression model with a dichotomous covariate. Such a test is equivalent to the signed square
root of Pearson's chi square test and the two sample Z test of binomial proportions, with test statistic

T (~Y ) =
[Y 1M1 � Y 2M2 ]� �0r

Y �M [1� Y �M ]
h

1
M1

+ 2
M2

i :

Such a trial corresponds exactly to the model speci�ed in section 3.3.2 above.

An alternative test could be based on the asymptotic distribution of the log odds ratio log(�̂) = log(̂1[1�
̂2]=f̂2[1�̂1])g, where ̂1 = Y 1M1 and ̂2 = Y 2M2 . The statistic is thus the Wald test of the slope parameter
in a logistic regression with binary predictor. This corresponds to our fundamental model with a sampling
unit corresponding to a single observation from the comparison group, and r observations from the treatment
group. Hence, N = M2, and the average moments of our observations are Xi = Y1i �

Pri
k=ri�r+1 Y2k=r on
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those sampling units � = log(�) and �2 = 1=fr1[1 � 1]g + 1=f2[1 � 2]g. Under this parameterization,
the link function g(�) is the log function g(�) = log(�), and the constant  = 1.

At the jth analysis (and assuming the ratio between the number of measurements from the �rst popula-

tion and the number of measurements from the second population is r:1 for all j), the statistic Xj = log(�̂j)
is the log odds ratio estimate based on the �rst Nj observations. In a typical situation, the variance must
be estimated because 1 and 2 are not known, and one would typically use the sample means Y 1j and Y 2j

as estimates for 1 and 2, respectively. The statistic Zj is the Z test statistic from a logistic regression
analysis. The statistic Pj is the one-sided P value from the Z test used to detect the alternative H+ : � > �0.
If only a two-sided P value is provided by statistical software (as is quite often the case), then Pj is half the
two-sided P value when Zj > 0, and Pj is 1 minus half the two-sided P value when Zj < 0.

It should be noted that although the above derivation assumes that the ratio between the number of
measurements from the �rst population and the number of observations from the second population is r:1
at each analysis, the statistical behavior of the group sequential test is not substantially a�ected by slight
deviations from that ratio across the di�erent interim analyses. Hence at the design stage, it is su�cient to
assume a constant value for r, and then when actually monitoring the study to use the observed r at each
analysis. This is equivalent to just ignoring any variation in r across analysis times and using the value of
Pj as de�ned above at each analysis.

Of course, major deviations in the distribution of sample sizes from the two populations across analysis
times will a�ect the statistical behavior of the group sequential test when boundaries are determined solely
on the basis of the number of sampling units accrued to date. This problem is alleviated for the most part
when stopping boundaries are determined on the basis of the proportion of the planned maximal statistical
information accrued to date. This aspect is discussed further in section 12.

3.3.5. Test of logistic regression slope

Suppose we sample paired observations (Yi;Wi) for i = 1; : : : ;M , with binary response variable Yi �
B(1; i) and where we assume a regression model based on covariatesWi as log(i=[1� i]) = �+�Wi, with
� = e�. We wish to test a null hypothesis about the odds ratio � comparing two populations which di�er by
one unit in their value of W , H0 : � = 1, and in a �xed sample test we use as test statistic the Wald test of
the slope parameter in a logistic regression, which statistic is asymptotically normally distributed.

Such a trial corresponds to our fundamental model with a sampling unit corresponding to a single
observation, hence, N = M . The speci�cation of the individual observations can be based on weighted
versions of the e�cient scores from the logistic regression model. The average moments from this model will
be

� = � = log(�) and �2 =

PM
i=1 i[1� i]PM

i=1 i[1� i]
PM

i=1 i[1� i]W 2
i � f

PM
i=1 i[1� i]Wig2

:

Under this parameterization, the link function g(�) is the log function g(�) = log(�), and the constant  = 1.

The null and alternative hypotheses are typically speci�ed directly, with �0 = 1 being the usual choice
for the null hypothesis.

At the jth analysis (and assuming the mean of the covariates is W and the weighted variance of the

covariates is constant for all j), the statistic Xj = �̂ is the estimate of the slope from logistic regression in
an analysis of the �rst Nj observations. For our purposes, we can usually assume su�cient sample sizes such
that a reasonable approximate test is obtained by using as Zj the Z statistic for the test of the slope. The
statistic Pj is the one-sided P value from such a test used to detect the alternative H+ : � > 0. If only a
two-sided P value is provided by statistical software (as is generally the case), then Pj is half the two-sided P
value when Zj > 0, and Pj is 1 minus half the two-sided P value when Zj < 0. As discussed above, it might
be more robust to use the t distribution rather than the standard normal distribution when the variance is
unknown, hence it is probably easiest to use the P -scale when using this statistical model.

It should be noted that although the above derivation assumes that the mean W and weighted variance
or the covariates is constant at each analysis, the statistical behavior of the group sequential test is not
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substantially a�ected by slight deviations from those values across the di�erent interim analyses. Hence at
the design stage, it is su�cient to assume constant values, and then when actually monitoring the study
to use the observed values at each analysis. This is equivalent to just ignoring any variation in W and the
weighted variance of the covariance across analysis times and using the value of Pj as de�ned above at each
analysis.

Of course, major deviations in the distribution of covariates across analysis times will a�ect the statistical
behavior of the group sequential test when boundaries are determined solely on the basis of the number of
sampling units accrued to date. This problem is alleviated for the most part when stopping boundaries are
determined on the basis of the proportion of the planned maximal statistical information accrued to date.
This aspect is discussed further in section 12.

3.4. Poisson Response

In some clinical trials, the outcome counts the number of events occurring over some period of time,
some prescribed space, or a combination of the two. In such a setting, a common probability model is to
assume those counts are distributed according to the Poisson distribution, with a summary measure based on
the event rate. Comparisons across groups can be based on di�erences in the event rates or based on ratios
of the event rates. Only the models based on the multiplicative measures (rate ratios) are implemented in
S+SeqTrial.

In this application, we assume that sample sizes are su�ciently large to allow inference based on the
normal approximation to the Poisson distribution.

3.4.1. One sample test of a Poisson event rate (additive model)

Suppose we have a random sample of independent Poisson random variables with Yi � P(�ti) for
i = 1; : : : ;M . We wish to test a null hypothesis about the population mean event rate �, H0 : � = �0, and
in a �xed sample test we perform a one sample Z test using test statistic

T (~Y ) =

vuut MX
i=1

ti
[�̂M � �0]p

�0
;

where �̂M =
PM

i=1 Yi=
PM

i=1 ti.

Such a trial corresponds exactly to our fundamental model with a sampling unit corresponding to the
observation of a single unit of time. Hence, N =

PM
i=1 ti counts the subject time accrued to the study.

The average moments of the observations are thus � = � and �2 = �. Under this parameterization, the
link function g(�) is merely the identity function g(�) = �, and the constant  = 1. In such a study, the
actual number of subjects to be accrued would be computed as the value of N divided by the average time
of observation t, that is M = N=t.

At the jth analysis, the statistic Xj is the estimated mean event rate �̂j computed based on the
observations during the �rst Nj of study time. In a typical situation, the variance � is not known, and one
would typically use either the variance under the null hypothesis or, more usually, the maximum likelihood
estimate �̂j as an estimate. The test statistic Zj is just the test statistic for a one sample test of a Poisson rate
as given above, and the statistic Pj is the one-sided P value from such a test used to detect the alternative
H+ : � > �0. If only a two-sided P value is provided by statistical software (as is quite often the case), then
Pj is half the two-sided P value when Zj > 0, and Pj is 1 minus half the two-sided P value when Zj < 0.

S+SeqTrial does not implement this probability model directly.

3.4.2. Two sample test of di�erence in Poisson event rates (additive model)

Suppose we sample independently from two populations: a treatment group with Y1i � P(1t1i) for
i = 1; : : : ;M1 and a comparison group with Y2i � P(2t2i) for i = 1; : : : ;M2. For notational convenience,
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we de�ne r =
PM1

i=1 t1i=
PM2

i=1 t2i. We wish to test a null hypothesis about the di�erence in population event
rates � = 1� 2, H0 : � = �0, and in a �xed sample test we perform a two sample Z test using test statistic

T (~Y ) =
[̂1M1 � ̂2M2 ]� �0s

̂�M

�
1P

M1

i=1
t1i

+ 1P
M1

i=1
t1i

� ;

where ̂`M`
=
PM`

i=1 Y`i=
PM`

i=1 t`i for ` = 1; 2 and ̂�M = [
PM1

i=1 Y1i +
PM2

i=1 Y2i=[
PM1

i=1 t1i +
PM2

i=1 t2i].

Such a trial corresponds exactly to our fundamental model with a sampling unit corresponding to the
observation of a single unit of time on the comparison arm and r units of time on the treatment arm. Hence,
N =

PM2

i=1 t2i counts the subject time accrued to the study. The average moments of the observations are
thus � = � and �2 = 1=r + 2. Under this parameterization, the link function g(�) is merely the identity
function g(�) = �, and the constant  = 1. In such a study, the total observation time for both arms is
[r+1]N , and the actual number of subjects to be accrued would be computed as the total observation time

divided by the average time of observation t =
P2

`=1

PM`

i=1[t`i=M`], that is M = [r + 1]N=t.

At the jth analysis (and assuming the ratio between the observation time from the treatment group and
from the comparison group is r:1 for all j), the statistic Xj is the di�erence in the estimated mean event

rates �̂j = ̂1j � ̂2j computed based on the �rst Nj of study time on the comparison arm and the �rst rNj

of study time on the treatment arm. In a typical situation, the variance �2 is not known, and one would
typically use the maximum likelihood estimates ̂1j and ̂2j in estimating �̂2. The statistic Zj is the Z test
statistic comparing two Poisson rates, as given above. The statistic Pj is the one-sided P value from the Z
test used to detect the alternative H+ : � > �0. If only a two-sided P value is provided by statistical software
(as is quite often the case), then Pj is half the two-sided P value when Zj > 0, and Pj is 1 minus half the
two-sided P value when Zj < 0.

It should be noted that although the above derivation assumes that the ratio between the observation
time from the �rst population and the observation time from the second population is r:1 at each analysis,
the statistical behavior of the group sequential test is not substantially a�ected by slight deviations from that
ratio across the di�erent interim analyses. Hence at the design stage, it is su�cient to assume a constant
value for r, and then when actually monitoring the study to use the observed r at each analysis. This is
equivalent to just ignoring any variation in r across analysis times and using the value of Pj as de�ned above
at each analysis.

Of course, major deviations in the distribution of sample sizes from the two populations across analysis
times will a�ect the statistical behavior of the group sequential test when boundaries are determined solely
on the basis of the number of sampling units accrued to date. This problem is alleviated for the most part
when stopping boundaries are determined on the basis of the proportion of the planned maximal statistical
information accrued to date. This aspect is discussed further in section 12.

S+SeqTrial does not implement this probability model directly.

3.4.3. One sample test of Poisson event rates (multiplicative model)

Suppose we have a random sample of independent Poisson random variables with Yi � P(�ti) for
i = 1; : : : ;M . We wish to test a null hypothesis about the population mean event rate �, H0 : � = �0. In
a �xed sample test we might use the score test for the intercept in a Poisson regression model having no
covariates, in which case the test statistic is the same as described in section 3.4.1.

An alternative test statistic in the �xed sample case can be based on the Wald test of the intercept
from a Poisson regression model having no covariates. This corresponds to a test based on a logarithmic
transformation of the maximum likelihood estimate of the event rate, with a standard error derived using
the delta method. Hence, in a �xed sample setting we might use test statistic

T (~Y ) =

vuut MX
i=1

ti
[log(�̂M )� log(�0)]q

1
�̂M

;
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where �̂M =
PM

i=1 Yi=
PM

i=1 ti.

Such a trial corresponds exactly to our fundamental model with a sampling unit corresponding to the
observation of a single unit of time. Hence, N =

PM
i=1 ti counts the subject time accrued to the study. The

average moments of the observations are thus � = log(�) and �2 = 1=�. Under this parameterization, the
link function g(�) is the log function g(�) = log(�), and the constant  = 1. In such a study, the actual
number of subjects to be accrued would be computed as the value of N divided by the average time of
observation t, that is M = N=t.

At the jth analysis, the statistic Xj is the estimate of the intercept in a Poisson regression model having

no covariates based on the �rst Nj observation time, and �̂j = eXj . In a typical situation, the variance 1=�
is not known, and one would typically use either the variance under the null hypothesis or, more usually,
the maximum likelihood estimate 1=�̂j as an estimate. The test statistic Zj is just the test statistic for the
intercept in the Poisson regression model described above, and the statistic Pj is the one-sided p value from
such a test used to detect the alternative H+ : � > �0. If only a two-sided P value is provided by statistical
software (as is quite often the case), then Pj is half the two-sided P value when Zj > 0, and Pj is 1 minus
half the two-sided P value when Zj < 0.

3.4.4. Two sample test of Poisson event rate ratio (multiplicative model)

Suppose we sample independently from two populations: a treatment group with Y1i � P(1t1i) for
i = 1; : : : ;M1 and a comparison group with Y2i � P(2t2i) for i = 1; : : : ;M2. For notational convenience,

we de�ne r =
PM1

i=1 t1i=
PM2

i=1 t2i. We wish to test a null hypothesis about the ratio in population event
rates � = 1=2, H0 : � = �0. In a �xed sample test we might use the score test for the slope in a Poisson
regression model having a binary covariate, in which case the test statistic is the same as described in section
3.4.2.

An alternative test could be based on the asymptotic distribution of the log event rate ratio log(�̂) =
log(̂1=̂2, where ̂1 = Y 1M1 and ̂2 = Y 2M2 . The statistic is thus the Wald test of the slope parameter in a
Poisson regression with binary predictor.

Such a trial corresponds exactly to our fundamental model with a sampling unit corresponding to the
observation of a single unit of time on the comparison arm and r units of time on the treatment arm. Hence,
N =

PM2

i=1 t2i counts the subject time accrued to the study. The average moments of the observations are
thus � = log(�) and �2 = 1=[r1] + 1=2. Under this parameterization, the link function g(�) is the log
function g(�) = log(�), and the constant  = 1. In such a study, the total observation time for both arms is
[r+1]N , and the actual number of subjects to be accrued would be computed as the total observation time

divided by the average time of observation t =
P2

`=1

PM`

i=1[t`i=M`], that is M = [r + 1]N=t.

At the jth analysis (and assuming the ratio between the number of measurements from the �rst popula-

tion and the number of measurements from the second population is r:1 for all j), the statistic Xj = log(�̂j)
is the log event rate ratio estimate based on the �rst Nj observations. In a typical situation, the variance
must be estimated because 1 and 2 are not known, and one would typically use the maximum likelihood
estimates ̂1 and ̂2, respectively. The statistic Zj is the Z test statistic from a Poisson regression analysis.
The statistic Pj is the one-sided P value from the Z test used to detect the alternative H+ : � > �0. If only a
two-sided P value is provided by statistical software (as is quite often the case), then Pj is half the two-sided
P value when Zj > 0, and Pj is 1 minus half the two-sided P value when Zj < 0.

It should be noted that although the above derivation assumes that the ratio between the observation
time from the �rst population and observation time from the second population is r:1 at each analysis, the
statistical behavior of the group sequential test is not substantially a�ected by slight deviations from that
ratio across the di�erent interim analyses. Hence at the design stage, it is su�cient to assume a constant
value for r, and then when actually monitoring the study to use the observed r at each analysis. This is
equivalent to just ignoring any variation in r across analysis times and using the value of Pj as de�ned above
at each analysis.

Of course, major deviations in the distribution of observation times from the two populations across
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analysis times will a�ect the statistical behavior of the group sequential test when boundaries are determined
solely on the basis of the number of sampling units accrued to date. This problem is alleviated for the most
part when stopping boundaries are determined on the basis of the proportion of the planned maximal
statistical information accrued to date. This aspect is discussed further in section 12.

3.4.5. Test of Poisson regression slope

Suppose we sample paired observations (Yi;Wi) for i = 1; : : : ;M , with count response variable Yi �
P(i) and where we assume a regression model based on covariates Wi as log(i) = � + �Wi, with � = e� .
We wish to test a null hypothesis about the event rate ratio � comparing two populations which di�er by
one unit in their value of W , H0 : � = 1, and in a �xed sample test we use as test statistic the Wald test of
the slope parameter in a Poisson regression, which statistic is asymptotically normally distributed.

Such a trial corresponds to our fundamental model with a sampling unit corresponding to a single
observation, hence, N = M . The speci�cation of the individual observations can be based on weighted
versions of the e�cient scores from the Poisson regression model. The average moments from this model will
be

� = � = log(�) and �2 =

PM
i=1 iPM

i=1 i
PM

i=1 iW
2
i � [

PM
i=1 iWi]2

:

Under this parameterization, the link function g(�) is the log function g(�) = log(�), and the constant  = 1.

The null and alternative hypotheses are typically speci�ed directly, with �0 = 1 being the usual choice
for the null hypothesis.

At the jth analysis (and assuming the mean of the covariates is W and the weighted variance of the

covariates is constant for all j), the statistic Xj = �̂ is the estimate of the slope from Poisson regression in
an analysis of the �rst Nj observations. For our purposes, we can usually assume su�cient sample sizes such
that a reasonable approximate test is obtained by using as Zj the Z statistic for the test of the slope. The
statistic Pj is the one-sided P value from such a test used to detect the alternative H+ : � > 0. If only a
two-sided P value is provided by statistical software (as is generally the case), then Pj is half the two-sided P
value when Zj > 0, and Pj is 1 minus half the two-sided P value when Zj < 0. As discussed above, it might
be more robust to use the t distribution rather than the standard normal distribution when the variance is
unknown, hence it is probably easiest to use the P -scale when using this statistical model.

It should be noted that although the above derivation assumes that the mean W and weighted variance
or the covariates is constant at each analysis, the statistical behavior of the group sequential test is not
substantially a�ected by slight deviations from those values across the di�erent interim analyses. Hence at
the design stage, it is su�cient to assume constant values, and then when actually monitoring the study
to use the observed values at each analysis. This is equivalent to just ignoring any variation in W and the
weighted variance of the covariance across analysis times and using the value of Pj as de�ned above at each
analysis.

Of course, major deviations in the distribution of covariates across analysis times will a�ect the statistical
behavior of the group sequential test when boundaries are determined solely on the basis of the number of
sampling units accrued to date. This problem is alleviated for the most part when stopping boundaries are
determined on the basis of the proportion of the planned maximal statistical information accrued to date.
This aspect is discussed further in section 12.

3.5. Censored Time to Event

In some clinical trials, the outcome measures the time to some event. A complicating factor of many
such studies is that some of the observations are right censored. That is, some of the events have not yet
been observed, and instead we only know that they have not occurred prior to some censoring time that is
noninformative with respect to the true event time.

There are many probability models that have been extended to the case of such right censored data.
One such model is the semiparametric proportional hazards model. In the setting of a two arm clinical trial,
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that model leads to the logrank test. In this application, we assume that sample sizes are su�ciently large
to allow inference based on the normal approximation to the logrank test statistic, which is described in
section 3.5.1.

In censored time to event analyses, the statistical information is proportional to the number of observed
(uncensored) events. Hence, after obtaining a sample size estimate for the number of events, some model
must be used to devise a sampling scheme that would result in that number of events in a prescribed period
of follow-up. This is discussed in section 3.5.2.

3.5.1. Logrank test comparing times to event in two sample

Consider a clinical trial in whichM subjects are randomly allocated to treatment or control in the ratio
of r:1. Further suppose that the hazard function for the distribution of failure times in the control group is
given by �0(t) and in the treatment group is given by �1(t) = �0(t)�. We wish to test the null hypothesis
that the hazard ratio comparing the treatment group to the control group is 1, H0 : � = 1. In such a trial,
we can use our fundamental model with Sj the partial likelihood based score function for � = log(�) in
a proportional hazards regression model at the jth analysis, with moments � = log(�)r=(r + 1)2, �0 = 0,
�2 = r=(r + 1)2, and Nj counts the number of failures observed by the jth analysis.

In this application, in our parameterization of � =  g(�) = log(�)r=(r + 1)2, the hazard ratio � is
the natural parameter �,  = r=(r + 1)2, and the tranformation g(�) is the logarithmic transformation
g(�) = log(�). Alternatively, a user may wish to make inference in the scale of the log hazard ratio �, in
which case � would be treated as the natural parameter �,  = r=(r + 1)2, and the transformation g(�) is
the identity transformation g(�) = �.

3.5.2. Determining the sampling scheme to obtain a desired number of events

In clinical trial that has a primary endpoint measuring time to event, the statistical information is
proportional to the number of observed (uncensored) events. The actual number of subjects to be accrued
will have to be computed based on some assumption about the accrual rate, the time of accrual, the time
of additional follow-up after accrual has stopped, the baseline hazard �0(t), and some hypothesized value of
the hazard ratio �. One such method of determining sample size can be based on the assumption of accrual
of subjects uniformly over the interval (0,a), the assumption that censoring of observations occurs only by
continued survival at time of analyses, that the �nal analysis takes place at time � � a, and that the survival
times in the control population follows an exponential distribution with hazard rate �0.

Under the above model, the probability of observing a failure by time t in the control sample is(
t
a � 1

�0a
+ expf��0tg

�0a
if t < a

1� expf��0(t�a)g
�0a

+ expf��0tg
�0a

if t � a

For the treatment sample, a similar formula holds in which �0 is replaced by �1 = �0�. Thus if the subjects
are randomized r treatment : 1 control, then in order to expect to observe N failures by time � � a, we
must randomize M subjects overall according to

M = N

"�
1

r + 1

��
1� expf��0(t� a)g

�0a
+

expf��0tg
�0a

�
+

�
r

r + 1

��
1� expf��1(t� a)g

�1a
+

expf��1tg
�1a

�#�1

3.6. Statistics Based on E�cient Scores

The above settings can all be shown to be special cases of tests based on regression parameters using
statistics derived from e�cient likelihood theory. From asymptotic likelihood theory, we have that the
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e�cient score function U(�) evaluated at � = �0 has asymptotic distribution

U(�0) _�N ([� � �0]I(�); I(�));

where I(�) is Fisher's information at the true value of �.

Thus we can apply our fundamental model to this setting by considering the normal probability model
for a one arm study. Furthermore, if we use � = [� � �0], �

2 = 1 and N = I(�), the \sample size" N is just
measuring the accrual of statistical information for observations Xi = log(f(Yi; �0)).

This formulation can be used to implement what is often referred to as \information based" monitoring
in the group sequential literature. The test statistic Zj would just be the score statistic calculated at the
jth analysis, with boundaries chosen according to the magnitude of the Fisher's information Ij(�) at the jth
analysis relative to the planned maximal information IJ (�).
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4. Group Sequential Stopping Rules

Our goal is to decide between hypotheses H0 : � = �0, H+ : � � �+, and H� : � � �� by repeatedly
analyzing the data (up to J times) as it accrues. That is, the sample sizes N1; : : : ; NJ = N correspond to the
sample sizes at which an analysis of the data is performed. The group sequential stopping rule is speci�ed by
de�ning the conditions under which a study is stopped and the conditions under which a study is continued
to the next analysis. In this section we de�ne �rst a general structure for stopping rules based on the partial
sum statistic. We then illustrate the way that this general framework can be used to construct some of the
more common group sequential stopping rules. Finally, we discuss the transformation of stopping rules from
the partial sum scale to other scales, and vice versa.

4.1. Stopping Rules on the Partial Sum Scale

A stopping rule for the partial sum statistic shall be de�ned by specifying continuation sets, CSj �
(�1;1), for j = 1; : : : ; J , where we use the subscript `S' to explicitly denote a continuation set de�ned for
the S-scale. The complements of the continuation sets will be termed the stopping sets.

We will use these continuation sets to de�ne a stopping rule in the following manner. Starting with
j = 1, we compute Sj and compare that value to CSj . If Sj 62 CSj , we stop the study (later we shall discuss
the decisions that we shall make at the time of stopping the study). Otherwise, we continue the study by
incrementing j and again computing the value of the statistic and comparing that value to the continuation
set. We shall let M be the analysis at which the study is terminated, and we shall de�ne S (without a
subscript) as the value of the partial sum statistic when the study terminates. That is,

M = minfj : Sj 62 CSjg
S = SM

(4:1)

In order to guarantee that there are at most J analyses performed, we require that the Jth continuation
set be empty. In order to guarantee a unique speci�cation for each stopping rule based on a particular
statistic, we shall also adopt the convention that all continuation sets before the Jth are neither empty nor
exhaustive. Thus we have constraints

CSj 6= ; j = 1; : : : ; J � 1

CSj 6=(�1;1) j = 1; : : : ; J � 1

CSJ = ;
(4:2)

The basic goal of a stopping rule is to stop a study as soon as we can be su�ciently con�dent of the
decision we would have made if we had continued the study long enough to observe the entire sample. In
choosing a stopping rule that is appropriate for the three hypotheses H+, H0, and H�, we need only consider
the possibilities that we might want to stop when the data tend to be so high as to suggest that we would
want to decide for H+, that we might want to stop when the data tend to be so low as to suggest that we
would want to decide for H�, or that we might want to stop when the data tend to be so close to �0 as to
suggest that we would want to decide for H0. We note that in some situations, we may not want to decide
early in favor of certain of these three hypotheses. Our purpose now is to provide enough exibility that we
can construct stopping rules that would allow such early decisions if desired.

At each of the J analyses, the partial sum statistic Sj is stochastically ordered in the sense that the
statistic tends to be larger when the value of � is larger. It is intuitively reasonable that our most general
stopping rule would allow us to stop the study when the statistic is extremely large, extremely small, or
tending closely to the middle. Thus our stopping rule needs to consider continuation sets that allow us to
continue the study when we can not yet distinguish between H+ and H0 or when we can not yet distinguish
between H0 and H�. Thus, we �nd it adequate to consider continuation sets that can be speci�ed as the
union of two disjoint intervals. Thus, the continuation sets for the partial sum statistic can be de�ned for
j = 1; : : : ; J as

CSj = (aSj ; bSj ] [ [cSj ; dSj) (4:3)
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We shall adopt the convention that the boundaries of the continuation sets satisfy

aSj � bSj � cSj � dSj : (4:4)

Due to the constraints imposed by eqn (4.2), we must have that

aSj 6= bSj OR cSj 6= dSj j = 1; : : : ; J � 1

aSJ = bSJ

cSJ = dSj

(4:5)

The continuation sets speci�ed in eqn (4.3) were speci�ed as unions of half open intervals. These
continuation sets were motivated by the desire to continue whenever we had not yet distinguished between
two adjacent hypotheses (i.e, either H+ and H0 or H0 and H�). This plan allows the greatest exibility
when considering decisions involving three hypotheses (e.g., a two-sided hypothesis test). However, when
testing a two-sided hypothesis in which we do not desire to stop early if the data are consistent with H0, we
may want a continuation set that can be represented as a single interval. In such a case, however, we need
only choose the continuation intervals to be contiguous, i.e., choose bj = cj . For notational convenience, we
adopted the convention that

aSj < bSj = cSj < dSj ) bSj 2 CSj : (4:6)

That is, in this case we shall assume that the two intervals comprising the continuation set are half open
intervals, rather than open intervals as denoted in (4.3).

4.2. Classes of Commonly Used Group Sequential Stopping Rules

The usual way in which stopping rules are used to implement a group sequential stopping test is to divide
the stopping sets (the complements of the continuation sets) into subsets corresponding to the decisions to
be made regarding the null and alternative hypotheses. This concept was used as the motivation for our
choice of the general structure of a continuation set as the union of two disjoint intervals as described in
eqn (4.3). Thus, while the distribution of our statistics is determined solely by the continuation sets at each
analysis (see section 5), it seems intuitively clear that greater statistical e�ciency will be obtained if the
boundaries of the continuation sets also demarcate the boundaries between decisions for H+, H0, and H�,
as appropriate for the application.

The exact correspondence between our stopping boundaries and the decision we make regarding the hy-
potheses will depend somewhat upon the goals of the clinical trial. That is, the decision that will correspond
to early stopping will depend upon whether we are trying to distinguish between all three hypotheses H+,
H0, and H� (e.g., a two sided test), or whether we want to combine two of the hypotheses (e.g., a one sided
test). For instance, there have been several basic structures proposed in the statistical literature for group
sequential hypothesis tests. The following describe such stopping rules in our notation. In this description,
all boundaries left unspeci�ed can be chosen arbitrarily (subject to the constraints imposed by eqns (4.4)
and (4.5)) in order to meet the desired operating characteristics for the test.

A. A single upper early stopping boundary.

dSj = arbitrary for j = 1; : : : ; J

cSj = bSjj = 1; : : : ; J

aSj = �1; j = 1; : : : ; J � 1

aSJ = dSJ

Situations for which such a group sequential design might be appropriate include:

1. Testing H0 against H+ in a situation where the study should be stopped early only in the case of
evidence against the null hypothesis. That is, we do not desire to distinguish between H� and H0,
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and it is only deemed important to terminate the study early in situations where the data look to
be inconsistent with H� and H0. Our decision rule might be to decide H+ if S � dSM , and to
decide H0 if S < aSM . We note that the latter situation, which could also be written S < dSM , can
only occur if M = J .

2. Testing the one-sided hypotheses H0 against H� when early stopping is only desired in the case
of data which is so consistent with H0 (or H+) as to preclude our further consideration of H�. In
such a setting, our decision rule might be to decide H0 if S � dSM , and to decide H� if S < aSM .
We note that the latter situation can only occur if M = J .

B. A single lower early stopping boundary.

aSj = arbitrary for j = 1; : : : ; J

bSj = cSj ; j = 1; : : : ; J

dSj =1; j = 1; : : : ; J � 1

dSJ = aSJ

Situations for which such a group sequential design might be appropriate include:

1. Testing H0 against H� in a situation where the study should be stopped early only in the case of
evidence against the null hypothesis. That is, we do not desire to distinguish between H+ and H0,
and it is only deemed important to terminate the study early in situations where the data look to
be inconsistent with H+ and H0. Our decision rule might be to decide H� if S � aSM , and to
decide H0 if S > dSM . We note that the latter situation can only occur if M = J .

2. Testing the one-sided hypotheses H0 against H+ when early stopping is only desired in the case
of data which is so consistent with H0 (or H�) as to preclude our further consideration of H+. In
such a setting, our decision rule might be to decide H0 if S � aSM , and to decide H+ if S > dSM .
We note that the latter situation can only occur if M = J .

C. Lower and upper early stopping boundaries which meet at the �nal analysis:

dSj = arbitrary for j = 1; : : : ; J

cSj = bSj ; j = 1; : : : ; J

aSj = arbitrary for j = 1; : : : ; J � 1

aSJ = dSJ

Situations for which such a group sequential design might be appropriate include:

1. Testing the one-sided hypotheses H0 against H+ when early stopping might be desired in the case
of data which is so consistent with H0 (or H�) as to preclude our further consideration of H+, or
when the data suggests that H0 (and H�) should be rejected. In such a setting, our decision rule
might be to decide H0 if S � aSM , and to decide H+ if S � dSM .

2. Testing the one-sided hypotheses H0 against H� when early stopping might be desired in the case
of data which is so consistent with H0 (or H+) as to preclude our further consideration of H�, or
when the data suggests that H0 (and H+) should be rejected. In such a setting, our decision rule
might be to decide H0 if S � dSM , and to decide H� if S � aSM .

D. Lower and upper early stopping boundaries which do not meet at the �nal analysis:

dSj = arbitrary for j = 1; : : : ; J

cSJ = dSJ

cSj = bSj ; j = 1; : : : ; J � 1

bSJ = aSJ

aSj = arbitrary for j = 1; : : : ; J
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Situations for which such a group sequential design might be appropriate include:

1. Testing two-sided hypotheses H� against H0 against H+ when early stopping might be desired only in
the case of evidence against the null hypothesis. In such a setting, our decision rule might be to decide
H+ if S � dSM , to decide H� if S � aSM , and to decide H0 if bSM < S < aSM . We note that the latter
decision can be made only if M = J .

E. Four early stopping boundaries:

dSj = arbitrary for j = 1; : : : ; J

cSj = arbitrary for j = 1; : : : ; J � 1

cSJ = dSJ

bSj = arbitrary for j = 1; : : : ; J � 1

bSJ = aSJ

aSj = arbitrary for j = 1; : : : ; J

Situations for which such a group sequential design might be appropriate include:

1. Testing two-sided hypotheses H� against H0 against H+ when early stopping might be desired in
the case of evidence against the null hypothesis or when the data are so consistent with the null
hypothesis as to preclude further consideration of H+ or H�. In such a setting, our decision rule
might be to decide H+ if S � dSM , to decide H� if S � aSM , and to decide H0 if bSM < S < cSM .
We note that it frequently happens that bSj = cSj at some of the earliest analyses, in which case
stopping with a decision for the null hypothesis is impossible at those analysis times.

It should be clear that the above list is not exhaustive: There are many other patterns of group sequential
tests that are possible within this framework. It is rare, however, that any other patterns of designs will be
used in practice.

It should also be clear that the applications described for each of the types of designs is not exhaustive.
In particular, we shall discuss the application of these designs to equivalence testing later in this document.

4.3. Transformations of Stopping Rules to Other Scales

In section 4.1, we described stopping rules in terms of the partial sum scale. However, because of the
one to one relationship between the statistics de�ned in eqn (1.12), we can also specify a particular stopping
rule based on any of the statistics. This is because the speci�cation of the continuation sets for any one of
the statistics given in eqn (1.12) automatically induces a corresponding continuation set for the others. That
is, given a stopping rule speci�ed by particular choices of aSj , bSj , cSj , and dSj for j = 1; : : : ; J , the stopping
rules for other choices of test statistic are easily found by applying the transformations in eqn (1.14) to each
of the boundaries. For example, the stopping rule for the sample mean statistic can be found as

aXj = aSj=Nj bXj = bSj=Nj cXj = cSj=Nj dXj = dSj=Nj

Note that if the boundaries on the partial sum scale satify the constraints given by eqns (4.4) and (4.5), then
the boundaries on the sample mean scale satisfy similar constraints.

In order to explicitly denote the stopping rule for a speci�c test statistic, we shall subscript the boundary
with the letter denoting the scale. Hence, for instance, aSj , aXj , aZj , aPj , aBj , aCj , aHj , aEaj , aEbj , aEcj , and
aEdj shall denote the lower boundary for the partial sum statistic, the sample mean statistic, the normalized
Z statistic, the �xed sample P value, the Bayesian posterior probability, the conditional futility statistic,
the predictive futility statistic, the lower type I error spending statistic, the lower type II error spending
statistic, the upper type II error spending statistic, and the upper type I error spending statistic, respectively.
It should be noted that in the case of the stopping rules on the B-, C-, H-, and E-scales, the transformations
depend upon some particular choice of hypothesized mean, testing threshold, or both. We shall thus have
to make clear the choices of those parameters when using stopping boundaries on those scales.
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In later sections, we shall de�ne families of group sequential stopping rules based on the various scales.
In fact, in some families, di�erent transformations will be used for the a, b, c, and d boundaries in that
di�erent choices of hypothesized means and/or testing thresholds will be used. In such cases, it is not always
immediately clear by inspection that the constraints in eqn (4.2) are satis�ed. Nonetheless, we shall require
that a group sequential stopping rule de�ned on other scales satisfy eqns (4.4) and (4.5) when the stopping
rule is transformed to the partial sum scale.
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5. Sampling Density

When choosing a group sequential stopping rule for use in frequentist hypothesis testing, we generally
desire to �nd stopping boundaries to guarantee a level � test for some speci�ed value of �. As discussed in
the next section, there are a number of other operating characteristics that one might typically examine in
the process of selecting an appropriate stopping rule for a clinical trial. In order to compute many of these
operating characteristics, we need to know the sampling density for the test statistic.

5.1. Sampling Density for Partial Sum Statistic

In the previous section, we de�ned stopping rules for the partial sum statistic in detail, and then we
discussed the ways in which stopping rules could be derived for other test statistics by using the transfor-
mations given in section 1.5. When deriving the sampling density for the test statistics, it is also easiest to
derive the density for the partial sum statistic or the sample mean statistic, and to use one of those forms
when making probability statements about other test statistics.

Hence, we consider a group sequential stopping rule having continuation sets for the partial sum statistic
given by

CSj = (aSj ; bSj] [ [cSj ; dSj): (5:1)

For a particular value of �, we desire to �nd the sampling density p(m; s;�) for the test statistic (M = m;S =
s), m = 1; : : : ; J , s 2 (�1;1), as de�ned by eqn (4.1). This can be shown to be (Armitage, McPherson,
and Rowe, 1969)

p(m; s;�) =
n
f(m; s;�) s 62 CSm, and
0 else

(5:2)

where the function f(j; s;�) is recursively de�ned as

f(1; s;�) =
1p
n1�

�

�
s� n1�p
n1�

�

f(j; s;�) =

Z
CS(j�1)

1p
nk�

�

�
s� u� nk�p

nk�

�
f(k � 1; u;�) du; j = 2; : : : ;m

(5:3)

where �(x) = e�x
2=2=

p
2� is the density for the standard normal distribution and n1 = N1 and nj =

Nj �Nj�1 for j = 2; : : : ; J denote the size of the groups accrued between successive analyses.

The function f(j; s;�) is the subdensity for Sj . For notational convenience, it is useful to de�ne the
cumulative function

F (j; s;�) =

Z s

�1

f(j; u;�) du: (5:4)

It should be noted that

F (j;1;�) = 1�
j�1X
k=1

Pr(M = k;�); (5:5)

which is strictly less than 1 for j > 1. We de�ne the inverse function F�1(j; y;�) by

F�1(j; y;�) = sy , F (j; sy;�) = y: (5:6)

The function f(j; s;�) can not be integrated in closed form, thus numerical integration routines are
necessary. The use of such routines for testing/estimating an unknown mean � is made easier by the relation

f(j; s;�) = f(j; s; 0) exp

�
s�

�2
� �2

2�2
Nj

�
: (5:7)

The most common uses of the sequential density p(m; s;�) involve integrations of the formR y
x
g(m; s)p(m; s;�) ds, where g(m; s) is some known function such as g(m; s) = 1 (for the computation



Technical Overview, Section 5- 20 Feb 00, Page 50

of probabilities), g(m; s) = s (for the computation of expectations), or g(m; s) = s2 (for the computa-
tion of variances). Some computational e�ciency is obtained by the following derivation. Suppose that
p(m; s;�) > 0 for all s 2 (x; y) (that is, interval (x; y) does not overlap with the continuation set at the mth
analysis) and that g(m; s) = st for t = 0; 1; 2. Then by interchanging the order of integration, we can write

Z y

x

g(m; s)p(m; s;�) ds =

Z y

x

Z
CS(m�1)

st
1p
nm�

�

�
s� u� nm�p

nm�

�
f(m� 1; u;�) du ds

=

Z
CS(m�1)

f(m� 1; u;�)

�Z y

x

st
1p
nm�

�

�
s� u� nm�p

nm�

�
ds

�
du

=

Z
CS(m�1)

f(m� 1; u;�)ht(u; x; y;m;�) du

(5:8)

where the functions h0(), h1(), and h2() are given by

h0(u; x; y;m;�) = �

�
y � u� nm�p

nm�

�
��

�
x� u� nm�p

nm�

�
h1(u; x; y;m;�) = (u+ nm�)h0(u; x; y;m;�)�

p
nm�

�
�

�
y � u� nm�p

nm�

�
� �

�
x� u� nm�p

nm�

��
h2(u; x; y;m;�) = ((u+ nm�)

2 + nm�
2)h0(u; x; y;m;�)�

p
nm�

�
(y + u+ nm�)�

�
y � u� nm�p

nm�

�
� (x+ u+ nm)�

�
x� u� nm�p

nm�

��
(5:9)

The advantage a�orded by the above formulas is that good approximations to the standard normal cumulative
distribution function �(x) exist in closed form. Thus, the integral

R
g(m; s)p(m; s;�)ds is computed for

approximately the same cost as computing p(m; s;�).

5.2. Sampling Density for Sample Mean Statistic

As noted above, computation of probabilities is most easily performed on the partial sum scale. We
include the sampling density for the sample mean scale here for for informational purposes only.

We de�ne the density for a group sequential stopping rule having continuation sets for the sample mean
statistic given by CXj = (aXj ; bXj) [ (cXj ; dXj), which can be derived from the stopping rule for the partial
sum statistic given in eqn (5.1) by applying the transformation eqn (1.14) to each of the continuation set
boundaries. The sampling distribution for (M;X), denoted by pX(m;x;�), can be written in the recursive
form of Armitage, McPherson, and Rowe (1969):

pX(m;x;�) =
n
fX(m;x;�) x 62 CXm, and
0 else

(5:10)

where the function fX(j; s;�) is recursively de�ned as

fX(1; x;�) =
n1p
n1�

�

�
xn1 � n1�p

n1�

�

fX(j; x; �) =
Njp
nj�

�

�
xNj � uNj�1 � nj�p

�j�

�
fX(j � 1; u;�) du;

(5:11)

for j = 2; :::; J .
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5.3. Sampling Density under the Standardizing Transformation

As noted in section 1.6, in most study design situations, we are interested in determining the sample
size which would provide adequate power to detect an alternative hypothesis of interest. We thus need to be
able to compute the operating characteristics of a group sequential test in some standardized form, and then
solve for the sample size that would provide those operating characteristics for a speci�c alternative. In this
section, we present the sampling density for the partial sum statistic under the standardizing transformation
given in eqn (1.15).

Under the standardizing transformation, the group sequential stopping rule for the standardized partial
sum statistic S�j has continuation sets

C�Sj = (a�Sj ; b
�
Sj] [ [c�Sj ; d

�
Sj);

where the continuation set boundaries are found by applying the transformation of eqn (1.31) to the stopping
boundaries CSj = (aSj ; bSj) [ (cSj ; dSj) to obtain

a�Sj = [aSj �Nj�0]=[�
p
NJ ]

b�Sj = [bSj �Nj�0]=[�
p
NJ ]

c�Sj = [cSj �Nj�0]=[�
p
NJ ]

d�Sj = [dSj �Nj�0]=[�
p
NJ ]

(5:12)

The partial sum statistic in the untransformed problem is (M�; S�), where M� = M and S� = [S �
Nj�0]=[�

p
NJ ] as speci�ed in eqn (1.31). For a particular value of � =

p
NJ [� = �0]=�, we desire to �nd

the sampling density p�(m�; s�; �) for the test statistic (M� = m�; S� = s�), m� = 1; : : : ; J , s� 2 (�1;1).
This can be shown to be (Armitage, McPherson, and Rowe, 1969)

p�(m�; s�; �) =
n
f�(m�; s�; �) s� 62 C�S�m� , and
0 else

(5:13)

where the function f�(j; s�; �) is recursively de�ned as

f(1; s�; �) =
1p
�1
�

�
s� � �1�p

�1

�

f(j; s�; �) =

Z
C�
S(j�1)

1p
�j�

�

�
s� � u� �j�p

�j

�
f�(j � 1; u;�) du; j = 2; : : : ;m

(5:14)

where �(x) = e�x
2=2=

p
2� is the density for the standard normal distribution and �1 = N1=NJ and �j =

�j � �j�1 = [Nj � Nj�1]=NJ for j = 2; : : : ; J denote the proportion of the maximal sample size which is
accrued between successive analyses. We again have the computationally useful form

f�(j; s�; �) = f(j; s�; 0) exp

�
s�� � �2�k

2

�
: (5:15)

Given the 1:1 transformation of the stopping boundaries for the original data and the stopping bound-
aries for the standardized problem, it should be clear that testing or estimating � in the standardized setting
is equivalent to testing or estimating � with the original data. That is, a hypothesis test of H0 : � = 0 is
equivalent to testing H0 : � = �0. Furthermore, for speci�ed sample sizes N1; : : : ; NJ = N , the operating
characteristics of the group sequential test for the standardized problem for a given value of � = �� will be
equivalent to the suitably transformed operating characteristics for the the corresponding group sequential
test de�ned for the original data (using the relationships given in eqns(1.32)) when

�� = �0 +
�p
NJ

��: (5:16)
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Similarly, when we obtain an estimate �̂ of � from the standardized problem, using (1.33) we can easily

obtain an estimate �̂ for � in the fundamental model and �̂ for the natural parameter in an application of
the fundamental model (see section 3) according to

�̂ = �0 +
�p
NK

�̂

�̂ = g�1
�
�̂

 

�
:

(5:17)
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6. Operating Characteristics

In a �xed sample study in which all data are accrued prior to any analysis, reference to the operating
characteristics of the test is usually taken to mean the size (type I error) and power curve (one minus the
type II error). In the presence of a stopping rule, however, there are more features of the study design
that might need to be examined. For instance, the sample size accrued during the study is now a random
variable, and hence summary statistics for that distribution might be of interest. In this section we describe
some of the measures that might be used to evaluate whether a particular stopping rule is appropriate in a
given clinical trial situation.

6.1. Power functions

In Neyman-Pearson hypothesis testing, we generally choose critical values for rejection of the null
hypothesis such that the probability of falsely rejecting the null (referred to as the type I statistical error)
is acceptably low. This agreed upon value for the type I error is called the level of signi�cance, or just the
level or size of the test.

It is often more convenient, however, to consider the probability of rejecting the null hypothesis under
various hypothesized treatment e�ects. Thus we consider the power function of the test �(�), the probability
of rejecting the null hypothesis as a function of the true value of the unknown mean. The type I error is
then the value of the power function when the null hypothesis is true (e.g., � = �(�0), and the type II error
(the probability of falsely failing to reject the null) for some given value of the unknown mean � is 1��(�).

In the group sequential tests described in the previous section (as well as in the usual �xed sample
hypothesis tests), the stopping sets consistent with rejection of the null hypothesis vary in structure according
to whether we are testing one-sided or two-sided hypotheses. In de�ning the operating characteristics of a
group sequential test, we shall therefore �nd it more useful to de�ne three functions

�+(�) = Pr(S � dSM ; �)

�0(�) = Pr(bSM < S < cSM ; �)

��(�) = Pr(S � aSM ; �)

(6:1)

We note that these functions must satisfy �+(�)+�0(�)+��(�) = 1 for all �, thus any two of these functions
is actually su�cient to specify the operating characteristics of the test. We shall typically restrict attention
to the `upper power function' �+(�) and the `lower power function' ��(�).

The functions speci�ed in eqn (6.1) are easily related to the classical way of characterizing a hypothesis
test. For instance, for the group sequential tests de�ned in the previous section, the classic power function
would be

�(�) =

8<
:
�+(�) + ��(�) for two-sided tests of type D or E,
�+(�) for one-sided tests of type A1, B2, or C1, and
��(�) for one-sided tests of type A2, B1, or C2.

(6:2)

A level � test of the null hypothesis would have �(�0) = �.

We can also de�ne the operating characteristics of a group sequential test in the standardized setting
for appropriate transformations of the hypotheses (eqn (1.33)), boundaries (eqn (1.31)), and statistics (eqn
(1.31)) by

��+(�) = Pr(S� � d�
SM ; �)

��0 (�) = Pr(b�SM < S < c�SM ; �)

���(�) = Pr(S� � a�
SM ; �)

(6:3)

The classic power function would be

��(�) =

8<
:
��+(�) + ���(�) for two-sided tests of type D or E,
��+(�) for one-sided tests of type A1, B2, or C1, and
���(�) for one-sided tests of type A2, B1, or C2.

(6:4)
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A level � test of the null hypothesis would have ��(0) = �.

6.2. Stopping Probabilities

The power function described in the previous subsection applies equally well to both the �xed sample
(J = 1) and group sequential (J > 1) settings. In the group sequential setting, however, it is often of interest
to consider the probability of making a given decision at each of the analysis times. Hence we de�ne the
stopping probabilities at the jth analysis time as

�+j(�) = Pr(S � dSM&M = j; �) = F (j;1;�)� F (j; dSj ;�)

�0j(�) = Pr(bSM < S < cSM&M = j; �) = F (j; cSj ;�)� F (j; bSj ;�)

��j(�) = Pr(S � aSM&M = j; �) = F (j; aSj ;�)

(6:5)

where F (j; s;�) is de�ned by eqn (5.4). We note that these stopping probabilities satisfy

�+(�) =

JX
j=1

�+j(�)

�0(�) =

JX
j=1

�0j(�)

��(�) =

JX
j=1

��j(�)

It is also at times convenient to consider for 1 � k < j � J the probability of stopping at the jth
analysis conditional upon not having stopped at or prior to the kth analysis. We thus de�ne conditional
stopping probabilities

�+jjk(�) = �+j(�)=Pr(M > k)

�0jjk(�) = �0j(�)=Pr(M > k)

��jjk(�) = ��j(�)=Pr(M > k)

(6:6)

6.3. Error Spending Functions

In some group sequential design families or implementations of monitoring strategies, it is of interest to
consider the rate at which a type I or type II error is allocated across analysis times. The statistical errors
associated with a particular set of hypotheses and stopping rule are type I errors �` and �u and type II
errors 1��` and 1��u. We thus can de�ne the following four error spending functions for an analysis when
the proportion of the maximum sample size accrued is � as

Ea(�) =
1

�`

X
j:�j��

��j(�0�)

Eb(�) =
1

1� �`

X
j:�j��

[�0j(��) + �+j(��)]

Ec(�) =
1

1� �u

X
j:�j��

[�0j(�+) + ��j(�+)]

Ed(�) =
1

�u

X
j:�j��

�+j(�0+)

(6:7)
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It should be noted that the type I and II errors can be de�ned by

�` = ��(�0�) =

JX
j=1

��j(�0�)

1� �` = �0(��) + �+(��) =

JX
j=1

[�0j(��) + �+j(��)]

= 1� ��(��) = 1�
JX
j=1

��j(��)

1� �u = �0(�+) + ��(�+) =

JX
j=1

[�0j(�+) + ��j(�+)]

= 1� �+(�+) = 1�
JX
j=1

�+j(�+)

�u = �+(�0+) =

JX
j=1

�+j(�0+)
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Note also that the error spending functions de�ned above are related to, but not in all cases exactly
equivalent to, the error spending scales for the group sequential test statistics de�ned in eqns (1.10) and
(1.11). For �a = �0� and Sj = aSj , Eaj = Ea(�j). For �d = �0+ and Sj = dSj , Edj = Ed(�j). The
error spending scale at the `b' and `c' boundaries, however, di�er slightly from the type II error spending
functions. The di�erence arises because the error spending scale was de�ned for every possible value of the
Sj 's, and thus considered the probability mass within the continuation regions at the jth analysis. The error
spending function only considers values at the boundaries and does not include the probability mass at each
analysis that occurs within continuation sets. It should be noted that the S+SeqTrial functions seqDesign()
and seqBoundary() return the error spending functions when display.scale="E", while the S+SeqTrial
function changeSeqScale() returns the statistics on the error spending scale.

6.4. Sample Size Distribution

In group sequential testing, we are also often interested in characterizing the operating characteristics
of a test with respect to the distribution of sample sizes at the time of study termination. Often this
distribution is characterized by the expected number of subjects accrued prior to study termination, the
average sample number (ASN), although other summary measures of the sample size distribution (median,
75th percentile, 90th percentile) might be more appropriate in speci�c situations. Two tests with the same
level of signi�cance and the same statistical power to detect a particular alternative may have very di�erent
probability distributions for the sample size at the time the study is terminated. In general, the sample size
distribution is a function of the stopping boundaries and the value of the true mean �. The distribution
function FN (n;�), the average sample size function ASN(�), and the sample size quantile function QN (p;�)
are de�ned by

FN (n;�) =
X

j:Nj�n

Pr(M = j;�)

ASN(�) =

JX
j=1

NjPr(M = j;�)

QN (p;�) = Nj such that Pr(M � j;�) � p and Pr(M � j;� � 1� p

(6:9)

Computation of the probability functions is possible through the sampling density de�ned in section 5.
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6.5. Measures of Futility

When evaluating a group sequential stopping rule, it is often of interest to evaluate a stopping rule with
respect to the probability that the decision made when stopping at some interim analysis might be di�erent
than the decision which might have been reached at the �nal analysis had the study not been terminated
prematurely. Evaluations of the stopping rule with respect to these criteria are based on the distribution
of some test statistic at the �nal analysis conditional upon the test statistic being equal to the stopping
boundary at an interim analysis. Because each stopping boundary is associated with rejection of a particular
hypothesis, it may be of interest to consider the conditional probabilities under the corresponding hypotheses
as determined by the group sequential design. This then leads to the following de�nitions for

CDaj = Pr(XJ > aXJ jXj = aXj ; � = �0�)

= 1��

 
NJ [aXJ � �0�]�Nj [aXj � �0�]

�
p
NJ �Nj

!

CDbj = Pr(XJ < bXJ jXj = bXj ; � = ��)

= �

 
NJ [bXJ � ��]�Nj [bXj � ��]

�
p
NJ �Nj

!

CDcj = Pr(XJ > cXJ jXj = cXj ; � = �+)

= 1��

 
NJ [cXJ � �+]�Nj [cXj � �+]

�
p
NJ �Nj

!

CDdj = Pr(XJ < dXJ jXj = dXj ; � = �0+)

= �

 
NJ [dXJ � �0+]�Nj [dXj � �0+]

�
p
NJ �Nj

!
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It can be seen that these functions are closely related to the test statistic on the conditional probability scale
de�ned by eqn (1.7). That is, CDaj = Cj(aXJ ; �0�) when Xj = aXj , CDbj = 1�Cj(bXJ ; ��) when Xj = bXj ,

CDcj = Cj(cXJ ; �+) when Xj = cXj , and CDdj = 1� Cj(dXJ ; �0+) when Xj = dXj .

An alternative evaluation can be based on the conditional probabilities under the current best estimate
of �. This then leads to the following de�nitions

CEaj = Pr(XJ > aXJ jXj = aXj ; � = Xj)

= 1��

 
NJ [aXJ � aXj ]

�
p
NJ �Nj

!

CEbj = Pr(XJ < bXJ jXj = bXj ; � = Xj)

= �

 
NJ [bXJ � bXj ]

�
p
NJ �Nj

!

CEcj = Pr(XJ > cXJ jXj = cXj ; � = Xj)

= 1��

 
NJ [cXJ � cXj ]

�
p
NJ �Nj

!

CEdj = Pr(XJ < dXJ jXj = dXj ; � = Xj)

= �

 
NJ [dXJ � dXj ]

�
p
NJ �Nj

!
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Again it can be seen that these functions are closely related to the test statistic on the conditional probability
scale de�ned by eqn (1.8). That is, CEaj = Cj(aXJ ; � = Xj) when Xj = aXj , CEbj = 1� Cj(bXJ ; � = Xj)

when Xj = bXj , CEcj = Cj(cXJ ; � = Xj) when Xj = cXj , and CEdj = 1� Cj(dXJ ; � = Xj) when Xj = dXj .
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We can also evaluate the stopping boundaries with respect to the predictive probability that an opposite
decision might be made at the �nal analysis, where the predictive probability is computed by conditioning
on the value of the test statistic at the boundary and averaging over the posterior distribution �(� jXj). For
instance, based on a noninformative prior distribution for � (� � N (�; �2) and taking the limit as �2 !1)
this then yields

Haj =

Z
Pr(XJ > aXJ jXj = aXj ; �)�(� jXj = aXj)

= 1��

0
@ NJ [aXJ � aXj ]

�
q

NJ

Nj
NJ �Nj

1
A

Hbj =

Z
Pr(XJ < bXJ jXj = bXj ; �)�(� jXj = bXj)

= �

0
@ NJ [bXJ � bXj ]

�
q

NJ

Nj
NJ �Nj

1
A

Hcj =

Z
Pr(XJ > cXJ jXj = cXj ; �)�(� jXj = cXj)

= 1��

0
@ NJ [cXJ � cXj ]

�
q

NJ

Nj
NJ �Nj

1
A

Hdj =

Z
Pr(XJ < dXJ jXj = dXj ; �)�(� jXj = dXj)

= �

0
@ NJ [dXJ � dXj ]

�
q

NJ

Nj
NJ �Nj

1
A
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It can be seen that these functions are closely related to the test statistic on the predictive probability scale
de�ned by eqn (1.9) with �2 = 1. That is, Haj = Hj(aXJ ; �;1) when Xj = aXj , Hbj = 1�Hj(bXJ ; �;1)

when Xj = bXj , Hcj = Hj(cXJ ; �;1) when Xj = cXj , and Hdj = 1�Hj(dXJ ; �;1) when Xj = dXj .

6.6. Bayesian Posterior Probabilities

The Bayesian properties of a particular stopping rule can be evaluated for a speci�ed prior by considering
the posterior probabilities of the various hypotheses. As discussed in section 2, we will consider posterior
probabilities that are associated with rejection of the hypotheses. Hence for prior distribution � � N (�; �2)
we de�ne

Baj = Pr(� < �0� jXj = aXj)

= �

 
�0�[Nj�

2 + �2]�Nj�
2aXj � �2�

��
p
Nj�2 + �2

!

Bbj = Pr(� < �� jXj = bXj)

= �

 
��[Nj�

2 + �2]�Nj�
2bXj � �2�

��
p
Nj�2 + �2

!

Bcj = Pr(� > �+ jXj = cXj)

= 1��

 
�+[Nj�

2 + �2]�Nj�
2cXj � �2�

��
p
Nj�2 + �2

!

Bdj = Pr(� > �0+ jXj = dXj)

= 1��

 
�0+[Nj�

2 + �2]�Nj�
2dXj � �2�

��
p
Nj�2 + �2

!

(6:13)
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It can be seen that these functions are closely related to the test statistic on the Bayesian posterior probability
scale de�ned by eqn (1.6). That is, Baj = 1�Bj(�; �

2; �0�) when Xj = aXj , Bbj = 1�Bj(�; �
2; ��) when

Xj = bXj , Bcj = Bj(�; �
2; �+) when Xj = cXj , and Bdj = Bj(�; �

2; �0+) when Xj = dXj .
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7. Sample Size Determination

From the discussion in sections 1.6 and 5.3, it is clear that equivalent group sequential tests can be
speci�ed either for the original data or for the standardizing transformation of the data. In group sequential
test design, the standardized problem allows us to determine sample sizes which provide desired operating
characteristics for speci�c alternative hypotheses. For instance, when considering a one-sided level � hy-
pothesis test of H0 : � = �0 we might have a speci�ed alternative hypothesis, say, H1 : � = �1, for which
we desire some level of statistical power, say �(�1) = �. These constraints suggest that we want the group
sequential test in the standardized setting to have operating characteristics ��+(0) = � and ��(�1) = �, where
�1 and �1 are related by eqn (1.33).

When determining sample size, however, we have not yet determined the exact values of N1; : : : ; NJ .
In the standardized problem, however, we only need to know the relative sizes of the Nj 's. That is, the
density in eqns (5.13) - (5.15) depends on the Nk's only through the values �j = (Nj=NJ). Thus, so long as
we specify the values of J and (�1 = N1=NJ ; : : : ;�J = 1), we can compute the density of the test statistic
(M;S�) for the standardized problem. Determination of the group sequential test design and sample size
than proceeds in the following stages.

1. Search for standardized stopping boundaries having desirable operating characteristics on the standard-
ized scale, where the characteristics de�ned as desirable might be any of those described in section
6.

2. Search for the standardized alternative �1 such that ��(�1) = �. Note that for the purposes of study
design ��(�1) is most typically either ��+(�1) or �

�
�(�1), rather than the sum of the upper and lower

power functions.

3. Solve for the sample size N = NJ by using the relation eqn (1.33) to obtain

NJ =
�21�

2

(�1 � �0)2
(7:1)

The sample size at the kth analysis is then Nj = �jNJ .

It is often the case that the maximum sample size is constrained by other considerations. In this case,
we would use the sampling density to determine the value of �+ for which the group sequential test has
�+(�+) = �u.

We note parenthetically that in later sections we describe families of group sequential designs which are
parameterized in part by �u and �`, which will continue to have interpretations as the power of the study
under certain alternatives. Even in those settings, however, it is possible to choose sample size based on some
other alternative �1 and a desired level of statistical power �1. We then use the relationships �u = �+(�+)
and �` = ��(��) to de�ne the values of �+ and ��.
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8. General Framework for Families of Group Sequential Stopping Rules

In section 2, we discussed the desirability of framing a hypothesis test in such a way as to allow more
precise interpretation of a failure to reject H0. The de�ciencies of classical hypothesis testing in this regard
become even more evident when using a group sequential design. However, the application of the strategy
adopted in section 2 is not always straightforward.

There is no particular problem in applying the model speci�ed in section 2 to the case of one-sided group
sequential designs (e.g., designs A - C in section 4 above). That is, providing we have chosen a stopping
boundary that has the desired level of signi�cance (�+(�0) = � for a test of H0 versus H+ or ��(�0) = �
for a test of H0 versus H�) we can always �nd the appropriate alternative �+ or �� for which the test has
statistical power �u or �`, respectively. Similarly, for two-sided designs (e.g., designs D and E in section 4), if
we have chosen a stopping boundary that has �+(�0) = �=2 and ��(�0) = �=2, we can �nd the alternatives
�+ and �� such that ��+(�+) = �u and ���(��) = �`.

There are, however, designs intermediate to the one-sided and two-sided designs. These are designs
which would have, for instance, ��+(�0) = �=2 and ���(�0) > �=2. One use of such designs would be when
comparing a new treatment to a standard treatment when the goal is to show that the treatments are roughly
equivalent with respect to some primary endpoint (e.g., survival), but that the new treatment is superior
with respect to a secondary endpoint (e.g., quality of life). In such a situation, we may not want to use a
design which treats the two therapies symmetrically. If we observed a trend for the new treatment to be
worse with respect to the primary endpoint, we might be unwilling to continue the trial to show statistically
that it is actually worse than the standard therapy. On the other hand, the requirements for the burden of
proof may be such that in order to abandon the standard therapy, we would need to have a result that is
highly statistically signi�cant.

In the above discussion, we have implicitly parameterized these intermediate tests by the asymmetry of
the upper and lower power functions under the null hypothesis. In keeping with the philosophy presented
in section 2, however, we would like to maintain common standards of evidence for rejection of hypotheses.
Hence we consider an alternative parameterization of the intermediate tests based on the hypotheses rejected
by each of the stopping boundaries.

To implement this approach, we thus describe each of the four potential stopping boundaries (`a', `b',
`c', or 'd') as having two fundamental determinants: the hypothesis �� being rejected by the boundary and
a boundary shape function v�(�j) describing the relationship between the boundaries of the continuation
sets at successive analyses. The ways in which the hypotheses and the boundary shape function is used shall
di�er according to the scale of the group sequential test statistic which will be compared to the boundaries.
However, in all cases, a two-sided hypothesis test will be viewed as the superposition of two one-sided tests:
an upper hypothesis test of H0+ : � � �0+ versus H+ : � � �+, and a lower hypothesis test of H0� : � � �0�
versus H� : � � ��, subject to the constraints

�� � �0+ � �0� � �+ (8:1)

The size of the upper and lower tests will be denoted �u and �`, respectively. Similarly, the power of the
upper and lower tests to detect their respective alternative hypotheses will be denoted �u and �`, respectively.
The individual hypotheses of the the superposed hypothesis tests are associated with the hypotheses rejected
by each of the four stopping boundaries according to

�a = �0�

�b = ��

�c = �+

�d = �0+

(8:2)

In this representation of a hypothesis test, we can obtain the classic one- and two-sided hypothesis tests
through appropriate choices of the four hypotheses:
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1. A one-sided hypothesis test of the null hypothesis H0 : � � �0 versus a greater alternative H+ : � � �1
is obtained by choosing the null and alternative hypotheses of the upper hypothesis test to correspond
to the desired one-sided hypothesis tests: �0+ = �0 and �+ = �1. The lower hypothesis test is then
chosen to be superposed exactly on top of that upper hypothesis test. Determination of the exact
correspondence between the hypotheses of the upper and lower hypothesis tests will of course depend
upon the values chosen for the size �` and power �` for the lower test. However, it is easy to see that
if �` = 1 � �u and �` = 1 � �u, the desired coincident tests are obtained by setting �0� = �+ and
�� = �0+.

2. A one-sided hypothesis test of the null hypothesis H0 : � � �0 versus a lesser alternative H� : � � �1
is obtained by choosing the null and alternative hypotheses of the lower hypothesis test to correspond
to the desired one-sided hypothesis tests: �0� = �0 and �� = �1. The upper hypothesis test is then
chosen to be superposed exactly on top of that lower hypothesis test. Determination of the exact
correspondence between the hypotheses of the upper and lower hypothesis tests will of course depend
upon the values chosen for the size �u and power �u for the upper test. However, it is easy to see that
if �u = 1 � �` and �u = 1 � �`, the desired coincident tests are obtained by setting �0+ = �� and
�+ = �0�.

3. A classical two-sided hypothesis test of the null hypothesis H0 : � = �0 versus two-sided alternative
H1 : � 6= �0 with power � to reject the null hypothesis when � = �1 is obtained by choosing the
null hypotheses of the lower and upper hypothesis tests to each correspond to the null hypothesis:
�0+ = �0� = �0. The alternative hypotheses of the lower and upper tests are then set according to the
value of �1: If �1 > �0, then we choose �+ = �1, and if �1 < �0, we choose �� = �1. The alternative
hypothesis that is not set equal to �1 is determined from the corresponding choice of statistical power.

We formalize this approach for other hypothesis tests intermediate to these classical tests by param-
eterizing the shifts of the upper and lower hypothesis tests. We de�ne shift parameters 0 � �u � 1 and
0 � �` � 1 for the upper and lower hypothesis tests, respectively. The parameterization is such that when
the shift parameter is zero, it is not of interest to discriminate between the hypotheses of the corresponding
hypothesis test. That is, when �u = 0, it is not of interest to discriminate between a null hypothesis � = �0
and a greater alternative � > �0. Similarly, when �` = 0, it is not of interest to discriminate between a null
hypothesis � = �0 and a lesser alternative � < �0.

The exact parameterization of the hypothesis shifts are based on the classical hypotheses of a two sided
hypothesis test (�0, �+, and �� as described in section 2) and some maximal shift ��. The hypothesis
rejected by each boundary is de�ned by

�a = �0 + [1� �`]��

�b = �� + [1� �`]��

�c = �+ � (1� �u)��

�d = �0 � (1� �u)��

(8:3)

From eqns (8.1) - (8.3), and by considering the maximal shift of the hypotheses when �` + �u = 1, we
�nd that

�� � min(�+ � �0; �0 � ��): (8:4)

From eqn (8.3), we can see that when �` = �u = 1, both the `a' and `d' boundaries reject the hypothesis
that � = �0, and a two-sided hypothesis test is obtained. Furthermore note that if �u = 0 and �` = 1, then
�d = �b = �� and �c = �a = �0 when �� = �0 � �� = �+ � �0. Similarly, if �u = 1 and �` = 0, then
�b = �d = �+ and �a = �c = �0 when �� = �0 � �� = �+ � �0. Thus we obtain one-sided tests with
coincident hypotheses for the upper and lower hypothesis tests.

Choices of �u+ �` between 1 and 2 result in tests that are in some sense intermediate to one-sided tests
(when �u + �` = 1) and two-sided tests (when �u + �` = 2). Moving �` from 1 to 0 corresponds to deciding
that it is unimportant to distinguish between H� and H0 as de�ned in section 2. Analogous interpretations
hold as �u is decreased. Of special note is the choice �u = �` = 0:5, which corresponds to a test design which
is sometimes used in one-sided equivalence (noninferiority) testing.
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9. Parameterizations for Boundary Shifts for Group Sequential Families

The general framework for group sequential tests described in section 8 must be implemented in slightly
di�erent fashions depending upon the scale used for the group sequential test statistic. That is, the way in
which the hypothesis and the boundary shape function are used to construct a group sequential stopping
rule is di�erent for the various test statistic scales.

9.1. Uni�ed family of group sequential test designs (sample mean scale)

In the uni�ed family of group sequential test designs described by Kittelson & Emerson (1999), a family
of group sequential designs is parameterized on the sample mean statistic scale in part because on this scale
the boundary shapes are invariant to shifts in the value of ��. In this family, the stopping boundaries at the
jth analysis are determined from the hypothesis �� being rejected by the boundary and the boundary shape
function v(�j) according to

dXj = �d + vd(�j)

cXj =

�
�c � vc(�j) if �c � vc(�j) > �b + vb(�j)
(dXj + aXj)=2 else

bXj =

�
�b + vb(�j) if �c � vc(�j) > �b + vb(�j)
(dXj + aXj)=2 else

aXj = �a � va(�j)

(9:1)

On the nonstandardized sample mean scale, the boundary shape functions v�(�) will depend also on
the maximal sample size N = NJ . At the time of study design it is most convenient to work on the
standardized scale, in which case the stopping boundaries at the jth analysis will depend upon the ��'s and
the standardized boundary shape functions v�a(�), v�b (�),v�c (�), and v�d(�).

d�
Xj = �d + v�d(�j)

c�
Xj =

�
�c � v�c (�j) if �c � v�c (�j) > �b + v�b (�j)
(d�

Xj + a�
Xj)=2 else

b�
Xj =

�
�b + v�b (�j) if �c � v�c (�j) > �b + v�b (�j)
(d�

Xj + a�
Xj)=2 else

a�
Xj = �a � v�a(�j)

(9:2)

In the next section, we consider a speci�c form for the boundary shape functions v�(�k). Here we
merely note that constraints (4.4) and (4.5) are satis�ed if the boundary shape functions are monotonically
nonincreasing in �k and if the hypotheses rejected by the boundaries satisfy the following constraints.

�c � �d = v�d(1) + v�c (1) � �+

�a � �b = v�b (1) + v�a(1) � ���
�a � �d � v�d(1) + v�a(1) � �#

(9:3)

where �#, a standardized form of �� represents the maximal shift of the lowest boundary (speci�ed by the
a�
Xk's) toward the uppermost boundary (speci�ed by the d�

Xk's).

Applying the general framework of eqn (8.3) to this standardized setting thus results in

�d = (�u � 1)�#

�c = (�u � 1)�# + �+

�b = (1� �`)�
# + ��

�a = (1� �`)�
#

(9:4)
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where 2 � �u + �` � 1.

9.2. Partial sum scale

The partial sum scale is a straightforward transformation of the sample mean scale, and thus the
framework of section 9.1 is easily modi�ed to apply to the partial sum statistic scale. In the standardized
setting, the stopping boundaries are of the form

d�Sj = �j�d + v�d(�j)

c�Sj =

�
�j�c � v�c (�j) if �j�c � v�c (�j) > �j�b + v�b (�j)
(d�

Sj + a�
Sj)=2 else

b�
Sj =

�
�j�b + v�b (�j) if �j�c � v�c (�j) > �j�b + v�b (�j)
(d�

Sj + a�
Sj)=2 else

a�
Sj = �j�a � v�a(�j)

(9:5)

It should be noted that the straightforward transformation from the standardized partial sum scale to
the sample mean scale means that the partial sum scale family can be regarded as the sample mean scale
with an alternative parameterization of the boundary shape function. That is, because d�

Sj=P ij = d�
Xj , the

same stopping rule that is obtained with boundary shape function v�d(�j) in the partial sum family would
be obtained with boundary shape function �jv

�
d(�j) in the sample mean family. This correspondence is the

way that this family is implemented in S+SeqTrial.

9.3. Normalized Z statistic scale

The normalized Z statistic scale is a straightforward transformation of the sample mean scale, and thus
the framework of section 9.1 is easily modi�ed to apply to this scale. In the standardized setting, the stopping
boundaries are of the form

d�
Zj =

p
�j�d + v�d(�j)

c�
Zj =

�p
�j�c � v�c (�j) if

p
�j�c � v�c (�j) >

p
�j�b + v�b (�j)

(d�
Zj + a�

Zj)=2 else

b�
Zj =

�p
�j�b + v�b (�j) if

p
�j�c � v�c (�j) >

p
�j�b + v�b (�j)

(d�
Zj + a�

Zj)=2 else

a�Zj =
p
�j�a � v�a(�j)

(9:6)

It should be noted that the straightforward transformation from the standardized partial sum scale to
the sample mean scale means that the partial sum scale family can be regarded as the sample mean scale
with an alternative parameterization of the boundary shape function. That is, because d�

Zj=
p
Pij = d�

Xj , the

same stopping rule that is obtained with boundary shape function v�d(�j) in the partial sum family would
be obtained with boundary shape function

p
�jv

�
d(�j) in the sample mean family. This correspondence is

the way that this family is implemented in S+SeqTrial.

9.4. Error spending scale

Stopping boundaries for the error spending scale will be based on the error spending functions. In the
de�nition of the error spending scales (eqns (1.10) and (1.11)) and the error spending functions (eqns (6.7)
and (6.8)), the various hypotheses being rejected by their respective boundaries appear in the computation
of the error spending statistics in a complicated fashion along with the stopping boundaries at the various
analysis times. In de�ning stopping boundaries based on the error spending statistics, the dependence of
the stopping boundaries on the hypothesis being rejected will be through which error spending function is
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related to the boundary shape function. Hence, the stopping boundaries will be de�ned by

Ed(�j) = vd(�j)

Ec(�j) = vc(�j)

Eb(�j) = vb(�j)

Ea(�j) = va(�j)

(9:7)

The way that this de�nition can be used to de�ne stopping boundaries is illustrated by considering the
`d' boundary. The function Ed(�j) represents a probability that the group sequential statistic Sj will exceed
dSj under the hypothesis �d. Eqn (9.7) stipulates that dSj must be chosen such that Ed(�j) is exactly equal
to the value given by the boundary shape function vd(�j). Clearly this is an implicitly de�ned value{ no
closed form solution for dSj is possible.

In the formulation of the error spending statistic boundaries, the value of �� will be taken to be the
upper bound on the range speci�ed by eqn (8.4): �� = min(�+ � �0; �0 � ��).
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10. Parameterizations for Boundary Shape Functions for Group Sequential Families

In specifying designs A - E in section 4 above, one or more of the boundaries of the continuation sets
were described as arbitrary. Generally, the space of all possible choices of those arbitrary boundaries which
would provide the desired operating characteristics for a group sequential test is too large to work with
easily. In the last section, we described a partial parameterization of the boundaries which makes the search
for stopping rules more tractable. In this section, we describe a family of boundary shape functions that
impose a functional relationship on successive points along the continuation set boundaries.

For notational convenience, the boundary shape functions are described on the standardized scales. The
general form of the boundary shape functions used in S+SeqTrial is given by

v�(�) = fA+��P [1��]RgG (10:1)

for speci�ed parameter P , R, and A. As a general rule, the constant G is found in order to provide desired
type I error and statistical power. The ranges of valid choices for the parameters P , R, and A depend upon
the group sequential test statistic scale for which the boundaries are de�ned. Nevertheless, from the above,
we can deduce the basic roles that each of the parameters play in determining a stopping boundary. All of
the parameters can be thought of as relating to the conservatism of the decision to terminate the study at
the earliest analyses. The way in which they a�ect that conservatism in terms of the shape of the stopping
boundary is very di�erent, however.

1. P, when positive, is a measure of conservatism at the earliest analyses: The higher the value of P, the
more di�cult it will be for a study to terminate at t he earliest analyses. When P is in�nite, the stopping
boundary is in�nite at all interim analyses.

2. P when negative, is a measure of conservatism at the earliest analyses: The more negative the value of
P, the more di�cult it will be for a study to terminate at the earliest analyses. Exactly how di�cult
it will be to terminate at the earliest analysis relative to the �nal analysis will be a�ected by the value
of the A parameter. (Note that it is di�cult to compare the degree of conservatism for positive P and
negative P, as the boundary shape is quite di�erent.)

3. R, when positive, is a measure of lack of conservatism at the earliest analyses: The higher the value of
R, the less di�cult it will be for the study to terminate at the earliest analyses. The degree to which
the value of R can a�ect the conservatism at the earliest analyses is greatly a�ected by the values of P
and A. If P is also positive, the R parameter a�ects the curvature of the stopping boundary at the later
analyses, but the P parameter has the greatest inuence on the conservatism at the earliest analyses.

4. A is a measure of separation between the �rst and last analyses, and thus can a�ect the conservatism
of the test overall. When the G critical value is positive (as tends to be the case when P is positive
or zero), a larger value of A tends to make the design less conservative at the earlier analyses. When
the G critical value is negative, then A tends to be negative, and a more negative value of A makes to
design less conservative at the earlier analyses. This behavior can be deduced for some cases from the
fact that when the magnitude of A is large, the di�erence between A and A+1 is less substantial.

10.1. Uni�ed family of group sequential test designs (sample mean scale)

There are two general forms of boundary shape functions that have received substantial attention in
the statistical literature. Whitehead and Stratton (1983) and Whitehead (1992) consider boundary shape
functions which are linear in �j on the partial sum statistic scale. That is, a plot of, say, the dSj 's versus
�j produces a straight line. The computer package PEST3 implements such boundaries for continuous
monitoring (so nj = 1 for all j = 1; : : : ; J) with an approximation used for group sequential tests. Such
linear boundaries have been implemented in PEST3 for stopping rules of types A, C, D, and E (as described
in section 4) for situations in which all stopping boundaries use the same boundary shape function.

Wang and Tsiatis (1987) consider boundary shape functions which are powers of �j on the partial sum
scale. Speci�cally, they examined tests of type D having dSj = �aSj = ��

j where 0 � � � 0:5. This
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family includes the Pocock (1977) and O'Brien and Fleming (1979) designs as special cases. These boundary
shape functions were then extended to stopping rules of types C and E by Emerson and Fleming (1989) and
Pampallona and Tsiatis (1994). They were used in stopping rules of type A and B by Emerson (1988). The
software package EaSt implements these boundary shape functions for stopping rules of types A, C, D, and
E for situations in which all stopping boundaries use the same boundary shape function.

We consider here a boundary shape function which uni�es these two families, as well as extending them
to include additional boundary shapes. In this parameterization, we use parameters A�, P�, and R�, and
critical value G� to de�ne

v�(�k) = fA� +��P�
k [1��k]

R�gG�:

As described in the next section, the parameters A�, P�, and R� are usually speci�ed by a user subject to
constraints outlined below, and the critical value G� is usually found in a computer search to obtain desired
operating characteristics.

The above boundary shape function includes the following special cases:

1. A� = 0, P� � 0, R� = 0: This corresponds to the Wang and Tsiatis (1987) family of boundary shape
functions extended to the range considered by Emerson and Fleming (1989), although the parameteri-
zation is di�erent. In the current parameterization, the choice P� = 0:5 corresponds to a Pocock (1977)
boundary shape, and the choice P� = 1 corresponds to an O'Brien and Fleming (1979) boundary shape.
In general, P� is a measure of the tendency of the stopping rule to test conservatively at the earliest
analyses, with larger values of P� corresponding to greater early conservatism.

2. A� = 1, P� = 1, R� = 0: This corresponds to the boundary shape function used in the triangular and
double triangular tests of Whitehead and Stratton (1983).

3. A� unconstrained, P� = 1, R� = 0: This corresponds to the boundary shape function used in the
restricted procedures described by Whitehead (1992) and implemented in PEST3.

4. A� unconstrained, P� = 0:5, R� = 0:5: This corresponds to the sequential conditional probability ratio
tests described by Xiong (1995).

5. A� = 1, P� = 1, R� = 1: This is an alternative parameterization of the O'Brien & Fleming (1979) tests.

It is useful to examine the behavior for this family of boundary shape functions over a range of parameter
choices. First we note that the boundary shape function is monotonically nonincreasing in �k only if R� � 0.
Furthermore, it may not be possible to �nd critical values which provide the desired operating characteristics
for arbitrary choices of A�. In general, however, the general behavior of the boundary shape function can
be determined from the following table.

Range Range Value of Value of
of P� of R� v�(0) v�(1) Concavity

(0,1) [1,1] 1 A�G� upward
(0,1) (0,1) 1 A�G� upward then downward
(0,1) 0 1 (A� + 1)G� upward
0 (1,1] (A� + 1)G� A�G� upward
0 1 (A� + 1)G� A�G� none (line)
0 (0,1) (A� + 1)G� A�G� downward
0 0 (A� + 1)G� (A� + 1)G� none (line)

(-1,0) 0 A�G� (A� + 1)G� downward
-1 0 A�G� (A� + 1)G� none (line)

(-1,-1) 0 A�G� (A� + 1)G� upward

Of the three boundary shape function parameters, all tend to control the degree of conservatism used
in stopping at the earliest analyses. The parameter P� is perhaps the most interpretable of these, as larger
values of P� make it increasingly di�cult to terminate a study at the earliest analyses. As discussed below,
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a value of P� =1 will preclude early stopping for the corresponding boundary. Note that when P� � 0, the
stopping boundary is �nite even when no data has been collected.

Generally, it can be seen that the boundary shape functions previously described and implemented
in commercially available software packages are concave upward. Through expanding the range of the
parameter P�, as well as introducing R�, we have included boundary shapes which are concave downward.
Of particular note is the case where P� > 0 and 0 < R� < 1, when the boundary shape is concave upward
for �k < (P� �

p
(P�R�=(P� �R� + 1))=(P� �R�).

In the group sequential tests de�ned in (9.2), we allow each of the four potential boundaries to have its
own boundary shape function. That is, we can choose A�; P�; R� separately for each of the four boundaries
speci�ed by the dXk's, the cXk's, the bXk's and the aXk's. This is an extension of the designs described
previously in the statistical literature, but one which facilitates the exploration of candidate stopping rules
for a particular clinical trial. This is e�ected by the fact that such exibility allows the basic types of designs
described in section 4 to be joined by a continuous parameter.

To see this, note that when P� = 1, the corresponding boundary allows no early stopping. That is,
we can construct each of the 5 types of designs in section 4 by considering only design type E with suitable
choices of the boundary shape function parameters.

A. A single upper early stopping boundary: Pd arbitrary, Pc = Pb = Pa =1
1. Test of H0 versus H+: �u = 1, �` = 0

2. Test of H0 versus H�: �u = 0, �` = 1

B. A single lower early stopping boundary: Pa arbitrary, Pd = Pc = Pb =1.

1. Test of H0 versus H�: �u = 0, �` = 1

2. Test of H0 versus H+: �u = 1, �` = 0

C. Lower and upper early stopping boundaries which meet at the �nal analysis: Pd, Pc, Pb, and Pa
arbitrary (however, choosing vc(�j) = va(�j) and vb(�j) = vd(�j) will tend to yield the most intuitive
relationships among the critical values Gd; Gc; Gb; Ga, because when �u + �` = 1 the boundaries within
each of those pairs are coincident).

1. Test of H0 versus H+: �u = 1, �` = 0

2. Test of H0 versus H�: �u = 0, �` = 1

D. Lower and upper early stopping boundaries which do not meet at the �nal analysis: Pd and Pa arbitrary,
Pc = Pb =1; �u + �` > 1

E. Four boundary design: Pd; Pc; Pb; Pa arbitrary; �u + �` > 1

It should be noted that depending upon the exact choices of the boundary shape function parameters
and the maximal number of analyses J , early stopping may not be possible under all four boundaries.
This should be clear, given our ability to de�ne stopping rules of types A, B, C, and D using the general
structure of these four boundary designs.

10.2. Partial sum scale

As noted in section 9.2, the family of group sequential designs implemented with the boundary shape
function given by eqn (10.1) on the partial sum scale can just be regarded as a family of group sequential
designs implemented on the sample mean scale with boundary shape function

v�(�) = �fA+��P [1��]RgG (10:2)

This is the way that this family is implemented in S+SeqTrial.

10.3. Normalized Z statistic scale

As noted in section 9.3, the family of group sequential designs implemented with the boundary shape
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function given by eqn (10.1) on the normalized Z statistic scale can just be regarded as a family of group
sequential designs implemented on the sample mean scale with boundary shape function

v�(�) =
p
�fA+��P [1��]RgG (10:3)

This is the way that this family is implemented in S+SeqTrial.

10.4. Error spending scale

A design family based on a generalization of the error spending function approach of Lan and DeMets
(1983) and Pampallona, Tsiatis, and Kim (1995) is de�ned by setting the error spending function for each
of the four possible stopping boundaries (the `a', `b', `c', and `d' boundaries) independently. The boundary
shape function is again based on eqn (10.1) to de�ne the cumulative proportion of the type I error (for the
`a' and `d' boundaries) or type II error (for the `b' and `c' boundaries) that is spent at the analysis in which
proportion 0 < �j < 1 of the statistical information has been accrued. At the �nal analysis, it is assumed
that all of the type I and type II error will have been spent, and thus all boundaries at the �nal analysis
correspond to error spending functions of 1.

Boundaries on the error spending function range from 0 to 1. Because of this restricted range, boundary
shape functions are only possible for certain combinations of the boundary shape function parameters:

1. Negative values of P (with R = 0). In this setting, P measures the early conservatism of the stopping
rule with more negative values of P corresponding to stopping rules that have lower probabilities of
terminating the study at the earliest analyses. A value of P = �3:25 approximates the operating
characteristics of an O'Brien-Fleming boundary relationship for a one-sided type I error of .025 (although
this error spending function based stopping rule does not exhibit the very extreme conservatism at the
earliest analyses that is common with the O'Brien-Fleming boundary relationship).

2. Positive values of R (with P = 0). In this setting, as R increases the stopping rule becomes less
conservative at the earliest analyses.

3. The interesting special case of P = 0 and R = 0 can be used to preclude early termination of the study.

In each case, the values of A and G are uniquely determined by the choice of P and R, thus you never
need specify either of these latter two parameters when using the error spending function family.
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11. Constrained Boundaries for Group Sequential Families

It can often happen that the stopping rule obtained from a parametric design family is unsatisfactory
at one or more analyses. For instance, many clinical trialists �nd the extreme conservatism of the O'Brien-
Fleming boundary relationships at the earliest analyses undesirable. One common modi�cation of O'Brien-
Fleming boundary relationships is to use the least extreme of the O'Brien-Fleming boundary or a critical
value corresponding to a �xed sample two-sided P value of .001. In order to facilitate this type of modi�cation
of stopping rules, constraints on the boundaries at particular analyses can be speci�ed, with all unconstrained
boundaries being determined from a parametric design family in such a way to maintain the desired operating
characteristics (size and power) of the study design.

Constraints on the boundaries can be

1. Exact constraints. You enter the exact stopping boundary desired for a particular boundary (`a', `b',
`c', or `d') at a speci�c analysis.

2. Minimum constraints. You enter a value for the stopping boundary that is the minimum value that you
would like desired for a particular boundary (`a', `b', `c', or `d') at a speci�c analysis. If the parametric
design family would result in a higher threshold for early termination at that analysis time, the boundary
from the parametric family will be used instead of this minimum constraint.

3. Maximum constraints. You enter a value for the stopping boundary that is the maximum value that you
would like desired for a particular boundary (`a', `b', `c', or `d') at a speci�c analysis. If the parametric
design family would result in a lower threshold for early termination at that analysis time, the boundary
from the parametric family will be used instead of this maximum constraint.

If the group sequential design family is based on the sample mean, partial sum, or normalized Z statistic
scales, the boundary constraints can be speci�ed on any valid boundary scale EXCEPT the error spending
function scale. On the other hand, if the group sequential design family is based on the error spending scale,
the boundary constraints can ONLY be speci�ed on the error spending function scale.

When specifying the minimum or maximum constraints, the concept of "minimum" and "maximum"
is based on the ordering of the sample mean statistic. That is, one boundary is less than another if the
boundary is lower on the sample mean scale. This distinction is important because some boundary scales
have a reverse ordering. For instance, because the �xed sample P value scale is measured on the scale of a
P value for a one-sided test of an upper alternative regardless of the type of hypothesis test being designed,
a higher boundary on the sample mean scale actually corresponds to a lower number on the �xed sample
P value scale. Thus if you want to apply a constraint to avoid having the upper e�cacy boundary of an
O'Brien-Fleming test more extreme than the critical value of a �xed sample two-sided P value of .001, you
would create a maximum constraint on the �xed sample P value scale that has .0005 in the appropriate
position in the constraint matrix.

On the sample mean scale, the search for a particular group sequential design is thus e�ected through
the following steps:

1. The user speci�es a particular probability model for the problem, including the number of arms, a
probability model for the response, and a summary measure for describing the response within treatment
arms. In this speci�cation, speci�c values for  , �0, g(�), and �2 are determined (see section 3).

2. The user speci�es the desired operating characteristics

a. The size of the upper test �u

b. The size of the lower test �`

c. The power of the upper test �u

d. The power of the lower test �`

In keeping with the philosophy of Emerson & Fleming (1989) and the discussion of section 2, typical
choices might generally be �u = �` = � and �u = �` = 1� �, although group sequential stopping rules



Technical Overview, Section 11- 20 Feb 00, Page 70

are also well-de�ned for other choices of operating characteristics.

3. The user speci�es the number J and timing of the analyses �1;�2; : : : ;�J . Several authors have found
that the general operating characteristics of a design are fairly robust to slight variations in the number
and timing of analyses, so for design purposes it is adequate to have a rough idea of these parameters.
At the time of actual monitoring of the study, exact methods can be used to maintain the general
behavior of the stopping boundaries while controlling the type I error exactly. We also note that in our
standardized test, it is su�cient to merely specify the �j 's, but it is also possible to specify the Nj 's and
compute the �j 's from them. Lastly, because a �xed sample test is a special case of a group sequential
test, and the usual �xed sample critical values will be found by choosing J = 1.

4. For each of the four potential boundaries, the user speci�es the values for the three parameters A�, P�,
R� of the boundary shape functions (see section 10).

5. The user speci�es the parameters �u and �` which correspond to gradations between one- and two-sided
hypothesis tests (see sections 8 and 9).

6. The computer searches for critical values Gd; Gc; Gb; Ga. In general, each of these critical values are
dependent upon all of the design parameters speci�ed in steps 2 - 5 above. That is, changing the values
of Ad; Pd; Rd will a�ect not only the value of Gd, but it will also have a slight e�ect on the values of
Gc; Gb; Ga. In this search,

a. values for the critical values are guessed, and the stopping boundaries computed using eqn (9.2) with
the appropriate boundary shape functions as speci�ed by eqn (10.1). The values of the standardized
alternatives �+ and �� are easily computed according to eqn (9.3).

b. Each of the potential boundaries are then compared to any speci�ed constraints, and any necessary
modi�cations made.

c. The operating characteristics of the trial design are computed.

d. A new guess for the critical values is made using a Newtonian search with �nite di�erence estimates
of the Jacobian matrix.

e. When a design with acceptable precision for the operating characteristics is found, the search
terminates.

7. The sample size for the trial is determined. Typically, this is done by either of the following two methods:

a. The user speci�es which of the two alternative hypotheses (H+ or H�) is to be used for satisfying
the power constraint, and the value of the natural parameter � is speci�ed for that hypothesis. The
sample size NJ can then be computed using (30), with the value of the other alternative computed
by substituting that value of NJ into (7.1) and solving for the value of �� (if H+ was used to
determine the sample size) or �+ (if H� was used to determine the sample size).

b. The user speci�es the sample size NJ which is practical, and that value is then substituted into
(7.1) to determine the values of �+ and ��.

8. A candidate design should then typically be evaluated for its unconstrained operating characteristics
and stopping boundaries. Such evaluation might typically include

a. Power curves as a function of various speci�ed values of the natural parameter �.

b. Appropriate summary measures of the probability distribution for the sample size at study termi-
nation as a function of various speci�ed values of the natural parameter �.

c. A description of the statistical inference possible (P values, point estimates, con�dence intervals)
at each of the stopping boundaries at each of the analyses (see section 13 below).

d. Examination of the stopping boundaries on other scales, such as the futility or Bayesian scales.

Through the use of exact constraints you may enter arbitrary stopping rules. When using the sample
mean, partial sum, or normalized Z statistic design families, if the exact constraint matrix is fully speci�ed,
all group sequential design parameters are ignored except the alpha and beta parameters. The values of the
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alpha and beta parameters will be used to �nd the hypotheses rejected by each boundary.

When an exact constraint matrix is fully speci�ed on the error spending scale, a group sequential design
having the speci�ed error spending functions is obtained. In this way, arbitrary error spending functions can
be used for group sequential test design.

The search for boundaries using error spending functions is e�ected as described in the appendix of
Kittelson & Emerson (1999).
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12. Flexible Implementation of Stopping Rules Based on Constrained Boundaries

The stopping rule chosen in the design of a clinical trial serves as a guideline to a Data Monitoring
Committee as it makes the decision to recommend continuing or stopping a clinical trial. If all aspects of the
conduct of the clinical trial adhered exactly to the conditions stipulated during the design, the stopping rule
obtained during the design phase could be used directly. However there are usually at least two complicating
factors that must be dealt with when during the conduct of the clinical trial.

First, the schedule of interim analyses does not follow that used in the design of the trial. Often,
meetings of the Data Monitoring Committee are scheduled according to calendar time, and thus the sample
sizes available for analysis at any given meeting is a random variable. Similarly, accrual may be slower
or faster than planned, thereby resulting in a di�erent number of interim analyses than was originally
planned. Either of these eventualities will necessitate modi�cations of the stopping rule, because the exact
stopping boundaries are dependent upon the number and timing of analyses. For instance, an O'Brien-
Fleming (1979) design appropriate for four equally spaced analyses has di�erent stopping thresholds than
an O'Brien-Fleming (1979) design appropriate for four analyses scheduled after 50%, 70%, 85%, and 100%
of the data have accrued.

Second, the estimate for response variability that was used at the design phase was incorrect. Often
very crude estimates of response variability or baseline event rates are used at the design phase. As the
trial progresses, more accurate estimates are to be used. Clearly the operating characteristics of particular
stopping rules are heavily dependent on the variability of response measurement.

In order to address these issues, exible methods of implementing stopping rules have been developed
which allow the clinical trialist to maintain at least some of the operating characteristics of the stopping
rule. Typically such exible methods always maintain the size (type I error) at the prescribed level. A choice
must then be made as to whether the maximal sample size or the power to detect the design alternative
should be maintained.

The exible methods of implementing stopping rules followed here are based on the idea of computing a
stopping boundary for the current interim analysis in such a way that the desired operating characteristics
are satisi�ed and that the stopping rule is constrained to agree with the stopping boundaries used at all
previously conducted interim analyses. Thus the exible monitoring methods are based on the concept of
the constrained stopping boundaries described in section 11.

In this approach, a general parameterization of a stopping rule is de�ned at the design stage by choosing

1. desired operating characteristics �`, �u, �`, and �u;

2. hypothesis shift parameters �` and �u;

3. a boundary scale for the group sequential test statistic;

4. boundary shape parameters P , R, and A for each of the four stopping boundaries; and

5. any desired exact, minimum, or maximum boundary constraints (speci�ed according to the planned
schedule of interim analyses).

At the design stage a method of implementing that stopping rule is also speci�ed by choosing

1. a boundary scale for constraining the boundaries at previously conducted analyses; and

2. whether the maximal sample size or the power to detect the design alternative will be maintained (it is
possible to decide to set an absolute limit on the maximal sample size, but to maintain statistical power
otherwise).

If the error spending scale is chosen as the scale for constraints with a design originally chosen on the
sample mean scale, the error spending function for the parametric design using the planned schedule of
interim analyses is used as an exact constraint of a design on the error spending scale. That is, the stopping
rule de�ned at the design stage is converted to a stopping rule speci�ed by a fully constrained error spending
function.
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The monitoring of the trial then proceeds as follows:

1. At the �rst analysis, the stopping boundaries are derived by using the parametric family (possibly
constrained) speci�ed in the design. The exact stopping boundary is computed by considering the
proportion �1 of statistical information available at that �rst analysis. The value of �1 depends on
which operating characteristics of the stopping rule are maintained during the monitoring process:

a. If the maximal sample size N is to be maintained, �1 = N1=N .

b. If the power of the test to detect the design alternative is to be maintained, an estimated schedule of
future analyses is used to compute �2; : : : ;�J , and then a stopping rule using the design parametric
family (possibly constrained) is found which has the desired power. This consists of searching for
the value of N which has the correct type I error and power to detect the alternative for the
parametric design family for the estimated schedule of interim analyses.

In either case, interpolation of the exact, minimum, or maximum constraints speci�ed at the design
stage is used to derive any constraints for the interim analyses speci�ed by the estimated schedule of
future analyses (which may di�er from the schedule speci�ed at the design stage). The current best
estimate of the statistical information contributed by a single sampling unit (based on the best estimate
of �2) is used instead of the estimate supplied at the design stage.

2. At later interim analyses, the exact stopping boundaries used at previously conducted interim analyses
are used as exact constraints at those analysis times, and the stopping boundaries at the current analysis
and all future analyses speci�ed by an estimated schedule of future analyses are computed using the
parametric family of designs speci�ed at the design stage. The basic approach is that described for the
�rst analysis, in which the proportion of statistical information at the jth analysis is computed based
either on the planned maximal sample size N if that operating characteristic is to be maintained, or
it is computed based on a recomputation of a sample size which takes into account the new schedule
of interim analyses and the current best estimate of the statistical information contributed by a single
sampling unit. In either case, �j = Nj=N is used as the proportion of statistical information available
at the jth analysis (see comments below on the di�erence between this approach and that used by PEST
and EaSt).

It should be noted that due to the re-estimation of �2 at each analysis, the stopping boundaries at
previously conducted interim analyses depend upon which boundary scale is used when constraining the
stopping rules at those analyses. That is, if the value of �2 used in computing the stopping rule is constant
over the course of the study, it is irrelevant which boundary scale is used for the constraints at previously
conducted analyses. If, as is usually the case, the estimate of that statistical information varies over the
study, there will be some di�erence between the boundaries obtained. There is no clear advantage for one
such scale over another.

This approach based on constrained boundaries is a generalization of the error spending approach of
Lan & DeMets (1983) and Pampallona, Tsiatis, & Kim (1995): That approach corresponds to boundary
constraints speci�ed on the error spending scale. It should be noted that if the maximal sample size is not
constrained, the error spending function speci�ed at the design stage is only approximately obtained.

It should be noted that the approach speci�ed here di�ers somewhat from the methods implemented
by PEST and the information based monitoring implemented by EaSt. In those programs, the statistical
information at previously conducted interim analyses is not recomputed to reect updated estimates of the
value of �2. That is, at the jth analysis, an estimate �̂2j was available, and the statistical information available

at the jth analysis was estimated as Nj=�̂
2
j . PEST and East then estimate the proportion of statistical

information available at previously conducted analyses using the estimate of statistical information that
was available at that analysis. Using this kind of approach, if at the �rst analysis the estimated statistical
information was estimated as N1=�̂

2
1 , and at the current jth analysis the estimated maximal statistical

information is N=�̂2j , the value of �1 might be taken to be [N1=�̂
2
1 ]=[N=�̂

2
j ] or the same proportion as

was estimated at the �rst analysis. Again, this is just another way of approximating the true schedule of
interim analyses, and it is not immediately clear that one method is uniformly better than another. The
approach taken here is in e�ect trying to correct for poor estimates of �2 that might have been used at
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the earliest analyses, and thus perhaps better approximate the true sampling distribution. It is still just an
approximation to the sampling distribution, however.
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13. Estimation Following a Group Sequential Test

In a �xed sample study, where the �nal sample size is �xed in advance of collecting any data, the most
attractive estimator of the mean of a normal distribution is the sample mean. We commonly compute P
values and con�dence intervals based on the distribution of this estimator. However, the use of a group
sequential stopping rule generally alters the sampling distribution of the usual �xed sample statistics, thus
special techniques must be used to compute point estimates, interval estimates and P values.

Emerson & Fleming (1990) and Emerson (1993) discuss the various estimators that can be used in the
group sequential setting. Suppose we have observed test statistic (M;S) = (m; s) from a group sequential
test. Estimates that we will be interested in include

1. P values:

P = Pr [(M;S) > (m; s); � = 0] (13:1)

2. Point estimates:

a. Maximum likelihood estimate (MLE): The MLE in the group sequential setting is merely the sample
mean. However, following the use of a group sequential stopping rule, the MLE is now biased, and
its distribution is not normal. The MLE �̂ is computed according to

�̂ =
s

Nm
(13:2)

b. Median unbiased estimate (MUE): The median unbiased estimate is that value ~� such that

Pr
h
(M;S) > (m; s); � = ~�

i
= 0:5 (13:3)

c. Bias adjusted mean (BAM) (Whitehead, 1986): The BAM is that value �� such that

E

�
S

NM
; � = ��

�
=

s

Nm
(13:4)

d. Rao-Blackwell adjusted unbiased estimate (RBUE): This estimator is computed using the Rao-
Blackwell improvement theorem. Within certain classes, this can be shown to be a uniform min-
imum variance unbiased estimator (Liu & Hall, 199?), and hence this estimator has been referred
to as the UMVUE. The estimator �� is found as

�� = E

�
S1
N1

j (M;S) = (m; s)

�
(13:5)

3. Con�dence intervals: A 100(1� 2�)% con�dence interval is (�̂L; �̂U ), where the endpoints are de�ned
such that

Pr
h
(M;S) > (m; s); �̂L

i
= �

Pr
h
(M;S) > (m; s); �̂U

i
= 1� �

(13:6)

In order to compute the P value, MUE, and con�dence intervals, we must de�ne an ordering of the sample
space for the bivariate statististic (M;S). There is no uniformly optimal ordering, but several orderings have
been proposed. Two orderings that each have some advantages are

1. Ordering by analysis time (Tsiatis, Rosner & Mehta, 1984): This ordering is not de�ned for group
sequential designs having aSk < bSk < cSk < dSk at any of the analyses. That is, it is only de�ned for
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designs in which the continuation sets can always be written as a single interval. In such designs, the
ordering is de�ned using the boundaries of the continuation sets. Under this ordering

(m1; s1) < (m2; s2) i�

8<
:
m1 < m2 and s1 < x;8x 2 CSm1

m1 = m2 and s1 < s2
m1 > m2 and s2 > x;8x 2 CSm2

(13:7)

2. Ordering by the sample mean (Emerson & Fleming, 1990): This ordering is de�ned for all group
sequential designs, and for a wide variety of group sequential designs was found to average shorter
con�dence intervals than the ordering based on the analysis time. Under this ordering

(m1; s1) < (m2; s2) i�
s1
Nm1

<
s2
Nm2

(13:8)
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