消費者向けECサイトにおける 顧客の行動予測モデルに関する研究

東京理科大学大学院 工学研究科 経営工学専攻 佐藤 翔太

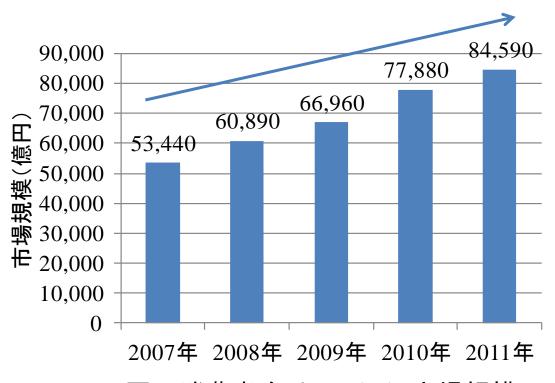
構成

- 1. 研究背景
- 2. 研究目的
- 3. 分析モデル
- 4. データ概要
- 5. 分析結果
- 6. まとめ
- 7. 今後の課題

参考文献

1. 研究背景

研究背景



消費者向け電子商取引 (EC: Electronic Commerce) サイトの 市場規模は増加傾向[4].

図1:消費者向けECサイト市場規模[4]

電子商取引:

インターネット上で行われる財またはサービスの販売または購入[3].

研究背景

- ➤ECサイトの増加.
 - ⇒ECサイト間での競争激化, 顧客奪い合い

ECサイト

顧客A

顧客B

ECサイト

ECサイト

ECサイト

ECサイトのマーケティング担当者にとって

顧客により多くサイトに来てもらい、より多く購買してもらうことを狙う. 顧客の将来における購買・来店予測の必要性.

先行研究

▶ECサイトにおける顧客の行動予測に関する研究

<u>来店予測</u>

- Moe and Fader[6]
 - ―顧客が次にいつ来店するかを予測

購買予測

- Moe and Fader[7]
- Van den Poel and Bunckinx[9]
 - ―「どの来店で購買するか」を分析
 - ―顧客の次回来店時の購買有無を予測

問題点

- ✓ 次回来店が「1か月後」なのか「1時間後」なのかはわからない.
- ✓「どの来店で購買するか」を予測するため、顧客の来店を予測できない.

研究目的

- ▶ 本研究の着目点
 - ―「次回来店」ではなく、「将来のある日時」の行動を予測する
 - ―顧客の購買と来店を同時に予測する
 - →「明日」購買してくれそうな顧客の発見が可能
 - →購買意向が高まっている顧客の発見が可能

研究目的

- →顧客ごとに将来の購買・来店を予測するモデルの構築.

 例)「明日」購買するのか、来店はするのか、
- ▶顧客の購買・来店傾向の把握.

顧客の購買・来店行動をモデル化

■<u>本研究の購買・来店モデル</u>

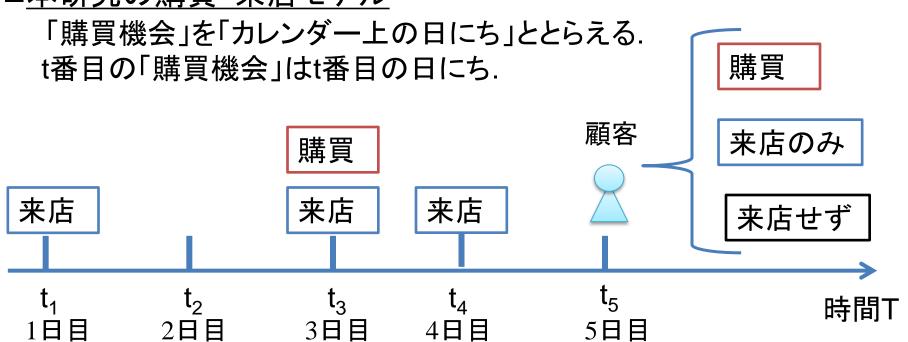


図2:本研究モデルでの顧客行動

第t-1日までの行動から、第t日目(図2の例の場合 t_5)において「購買」、「来店のみ」、「来店せず」のいずれになるかを予測.

3. 分析モデル

来店・購買行動をモデル化

- 第t日に以下の3つの選択肢のうち、どの行動をとるかを予測する
 - •「来店し購買する」
 - •「来店はするが購買はしない」
 - ・「来店しない」
 - →多項ロジットモデル[1]

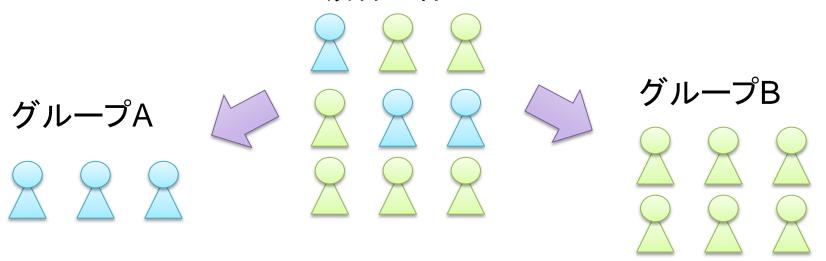
- 顧客の異質性の考慮
 - ・購買や来店に対して顧客ごとに傾向は異なる可能性 例)休日に来店する顧客,平日に来店する顧客
 - →<u>潜在クラスモデル[1]</u>

3. 分析モデル

9

潜在クラス多項ロジットモデルの例

顧客全体



グループAの特徴

- •平日に来店する傾向
- •平日に購買する傾向

<u>グループBの特徴</u>

- •休日も平日も来店する傾向
- ・休日に購買する傾向

<u>3. 分析モデル</u> 潜在クラス多項ロジットモデル

顧客iの第t日における購買・来店を考える(多項ロジットモデル).

x_{it}:顧客iの第t日における説明変数

β_{si}: セグメントsにおける選択肢jに 対するパラメータベクトル P_{its}(j):セグメントsにおける顧客iの 第t日に選択肢iを選択する確率

¦i:i番目の顧客(i=1,...,N)

t:t番目の日にち(t=1,...,T)

j:選択肢(j=1,..,3)

j=1:「購買」,j=2:「来店のみ」

j=3:「来店せず」

<u>3. 分析モデル</u> 潜在クラス多項ロジットモデル

■ モデルの尤度関数

$$L_i = \sum_{s=1}^S r_s \prod_{j=1}^3 \prod_{t=1}^T \left(P_{its}(j)\right)^{y_{itj}}$$
 (3) 各クラスの割合 S 項ロジットモデル $L = \prod_{i=1}^N L_i$ (4)

(4)式の対数をとったものを最大とするパラメータを EMアルゴリズムを用いて推定(最大化問題、S+NUOPTを利用)

y_{iti}:顧客iが第t日に選択肢jを 選択していたら1, それ以外0 r_s:セグメントsの割合を示すパラメータ

L:全体の尤度

データ概要

- ▶ 提供:経営科学系研究部会連合協議会
- ▶ 概要: ゴルフ用品を扱う消費者向けECサイトの アクセスログデータ, 購買データ, 会員データ
- ▶ 期間:2010年8月1日から2011年3月10日までを利用

8月から1月末を学習用データ, 2月から3月10日を検証用データとして利用

- ▶ 分析対象:165人(5回以上購買をしている顧客)
 - ※本研究では日次の顧客行動をモデル化するため データを日ごとに要約して分析に利用.

データ要約

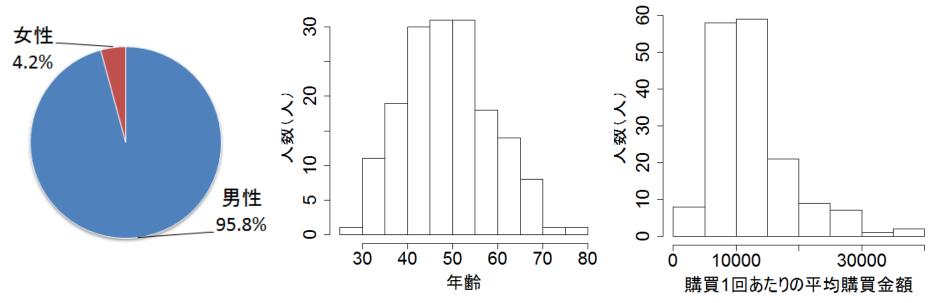


図3:性別の割合

図4:年齢の分布

図5:購買1回当たりの平均金額

- ✓全体165人中, 男性が9割以上. →男性が多い.
- ✓年齢は40歳代~50歳代が中心. →年配層がやや多い.
- ✓1回の購買における顧客の平均購買金額は10,000円前後.

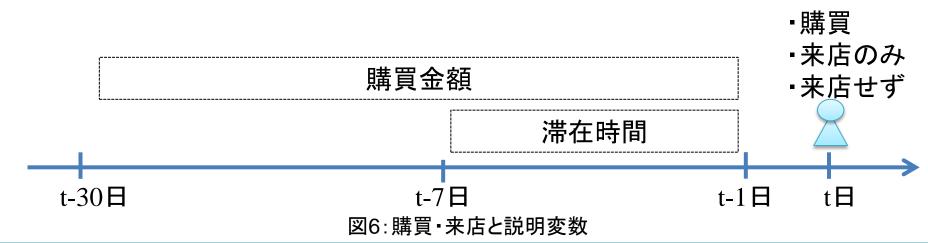
説明変数

➤ Moe and Fader[6]では顧客の来店と購買履歴から購買を予測.

→本研究では顧客iの第t日の購買・来店を以下の要因で予測する.

表1:説明変数

変数名	説明	
1週間累積滞在時間	(t-7)日から(t-1)日のサイト滞在時間の合計(時間)	
1か月累積金額 (t-30)日から(t-1)日までの合計購買金額(万円)		
土日祝日	t日が土日祝日であったら1, それ以外0	



15

セグメント数の決定

- ✓ BIC(Bayesian Information Criteria)によってセグメント数を決定—BIC: 小さいほど良いモデル
- ✓ セグメント数6以上については、構成比がほぼ0のセグメントなど解釈 が困難であったため、セグメント数1から5のBICを比較

表2:各セグメントのBIC

セグメント数	BIC
1	44169.59
2	42056.17
3	41470.71
4	40809.64
5	40634.96

- ✓ セグメント数1から5では セグメント数5が最適なモデル →5セグメントを採用
- ✓ セグメント数1のモデルは 通常の多項ロジットモデル →本研究モデルは通常の多項 ロジットモデルより良いモデル

セグメント別パラメータ推定結果

表3:パラメータ推定結果

		セグメント1	セグメント2	セグメント3
 	切片	-3.429**	-3.839**	-1.964**
	土日祝日	0.388**	1.203**	-0.880**
	1か月購買金額	0.083**	0.007	-0.120
	1週間滞在時間	0.344**	0.319**	0.397**
	切片	-0.623**	-1.632**	0.981**
来店の	土日祝日	0.148**	0.809**	-0.716**
7	1か月購買金額	0.036**	0.027	-0.071**
	1週間滞在時間	0.331**	0.323**	0.288**
	セグメント割合	34.8%	19.0%	11.0%

「来店せず」のパラメータは識別性のために0に固定, **:1%有意

<u>「1週間滞在時間」はどのセグメントでも「来店のみ」,「購買」に正の影響.</u>

・直近1週間で滞在時間が長い時期は、来店・購買する傾向.

セグメント別パラメータ推定結果

表4:パラメータ推定結果

		セグメント4	セグメント5
==	切片	-3.736**	-3.225**
	土日祝日	-0.205	-2.724**
購買	1か月購買金額	0.004	-0.001
	1週間滞在時間	0.554**	0.552**
	切片	-2.271**	-0.337**
来店の	土日祝日	-0.524**	-2.344**
み	1か月購買金額	0.008	-0.031
	1週間滞在時間	0.736**	0.381**
	セグメント割合	23.5%	11.7%

「来店せず」のパラメータは識別性のために0に固定、**:1%有意

「1週間滞在時間」はどのセグメントでも「来店のみ」、「購買」に正の影響.

・直近1週間で滞在時間が長い時期は、来店・購買する傾向.

5. 分析結果

セグメント別特徴

- ▶ セグメント1 割合 34.8%
 - ・購買・来店のみともに休日に行う傾向
 - •「1か月購買金額」が来店・購買で正の影響
 - →購買したら近々また来店や購買を行う
 - →ある一定時期に購買や来店を繰り返す傾向

・購買・来店ともに休日に行う傾向が強い

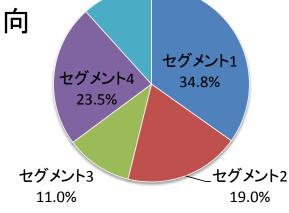


図6:セグメント別割合

セグメント5

11.7%

- ▶ セグメント3 割合 11.0%
 - ・購買・来店ともに休日に行う傾向が強い
 - •「来店のみ」に対する「切片」が正、「1か月購買金額」が負
 - →普段は比較的来店するが, 直近1か月に購買していると 来店しなくなる傾向

5. 分析結果

セグメント別特徴

セグメント4 割合 23.5%

- ・購買は休日平日関係なし
- ・来店は平日に行う傾向
- •「1週間累積時間」の来店への影響が 5セグメント中最も強い

▶ セグメント5 割合 11.7%

- ・購買・来店ともに平日に行う傾向が とても強い
- •「1週間累積時間」の購買への影響が 他セグメントに比べ強い

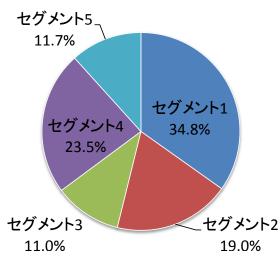


図7:セグメント別割合

モデルの検証

- ▶ 得られたパラメータと検証用データによるモデルの検証
 - ・本研究モデル
 - ・通常の多項ロジットモデル(比較モデル)

表5:モデルの検証

	本研究モデル	比較モデル
的中率	71.9%	68.8%
BIC	40634.96	44169.59

選択確率が最大となる選択肢を選択すると予測的中率: 予測的中数 / 全予測数

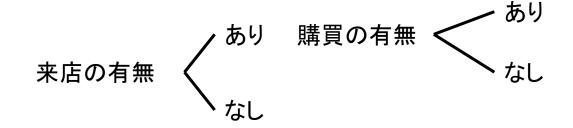
<u>顧客の異質性を考慮したモデルの方があてはまりが良い.</u>

まとめ

- ✓ <u>顧客の将来の来店・購買を予測するモデルを構築し、顧客の購</u> <u>買・来店につながる要因を確認した.</u>
 - ―セグメント4: 直近1週間で滞在時間が長いほど 来店や購買をする傾向が強い
 - ―セグメント5:直近1週間で滞在時間が長いほど 特に購買をする傾向が強い
 - 例1)セグメント4は, 直近1週間で滞在時間が長い時 来店・購買をする傾向なため, 衝動買いを促すアプローチ.
 - 例2)セグメント5は,直近1週間で滞在時間が長い時,購買する傾向なため,滞在時間が長いと購買意向有の可能性.

今後の課題

- ✓ 説明変数の検討による予測精度の向上
- ✓「来店」がおこらないと「購買」がおこらないことを考慮 ―入れ子ロジットモデル[2]



✓ 顧客個別のパラメータの推定

主要参考文献

- [1]阿部誠, 近藤文代:「マーケティングの科学—POSデータの解析—」, 朝倉書店(2005).
- [2]Bucklin, R. E., Gupta, S: "Brand choice, Purchase incidence and segmentation: An integrated modeling approach", *Journal of Marketing Research*, 29, pp.201-205 (1992).
- [3]経済産業省:「平成21年度我が国情報経済社会における基盤整備(電子商取引に関する市場調査) 報告書」,経済産業省(2010).
- [4]経済産業省,
 - (http://www.meti.go.jp/policy/it_policy/statistics/outlook/bessi3H23EChoukokusho.pdf), 最終閲覧日: 2012/9/24
- [5]小西貞則, 越智義道, 大森裕浩:「計算機統計学の方法—ブートストラップ・EMアルゴリズム・MCMC—」, 朝倉書店(2010).
- [6]Moe, W. W., Fader, P S: "Capturing Evolving Visit Behavior in Clickstream Data", *Journal of Interactive Marketing* 18(1), pp.5-19(2004).
- [7]Moe, W. W., Fader, P S: "Dynamic Conversion Behavior at E-Commerce Sites", *Management Science* 50(3), pp.326-335(2004).
- [8]里村卓也:「Rで学ぶデータサイエンス13 マーケティング・モデル」, 共立出版(2010).
- [9] Van den Poel, D., Buckinx, W: "Predicting online-purchasing behaviour", *European Journal of Operational Research* 166(2), pp.557-575(2005).

Appendix

推定方法

(4)式の対数をとったLogLを最大化するパラメータを推定. 推定にはEMアルゴリズムを用いる.

EMアルゴリズム[5][8]

- 1. 観測されない架空の変数を導入
 - 一消費者のセグメントに対する所属変数 z_{ns} を導入 (消費者nがセグメントsに所属: $z_{ns}=1$,所属しない: $z_{ns}=0$)
- 2. 観測されたデータとパラメータの推定値からz_sを推測 (E-step)
- 3. 推測されたz_sに基づいてパラメータの推定値を更新 (M-step)
- 4. 対数尤度の向上が基準以下になるまでE-step, M-stepを反復

EMアルゴリズム

潜在変数෭ҧの導入した対数尤度

$$\log L_{c} = \sum_{i=1}^{N} \sum_{s=1}^{S} \left\{ z_{is} \log f_{s} (y_{i} \mid \beta_{s}; x_{i}) + z_{is} \log r_{s} \right\}$$
 (5)

ただし、

$$f_{s}(y_{i} | \beta_{s}; x_{i}) = \prod_{j=1}^{3} \prod_{t=1}^{T} (P_{its}(j))^{y_{itj}}$$
(6)

EMアルゴリズム

E-step

データとパラメータを既知としてZisの期待値を求める.

$$\hat{z}_{is} = \frac{r_s f_s(y_i | \beta_s; x_i)}{\sum_{s=1}^{S} r_s f_s(y_i | \beta_s; x_i)}$$
(7)

►<u>M-step</u>

(10)式を最大化するパラメータをラグランジュの未定乗数法を 用いて求める.

$$E[\log L_c] = \sum_{i=1}^{N} \sum_{s=1}^{S} \hat{z}_{is} \log r_s + \sum_{n=1}^{N} \sum_{s=1}^{S} \hat{z}_{is} \log f_s(y_i \mid \beta_s; x_i)$$
(8)

$$0 \le r_s \le 1, \sum_{s=1}^{S} r_s = 1,$$
 (9)

予測的中率

モデルより、「購買」、「来店のみ」、「来店せず」それぞれの選択確率が算出できる. 顧客は所属確率が最も高いセグメントに所属するとする.

予測的中率 =
$$\frac{a+e+i}{a+b+c+d+e+f+g+h+i}$$
 (10)

表6:予測・実測の行列

予測\実測	購買	来店のみ	来店せず
購買	a	d	g
来店のみ	b	e	h
来店せず	С	f	i