Bates, D. M. and
Chambers, J. M. (1992). Nonlinear models. In Chambers, J. M. and Hastie,
T. J., editors, Statistical Models in S, pages 421-453. Wadsworth
and Brooks, Pacific Grove, California.
Carr, D. B., Olsen,
A. T., and White, D. (1992). Hexagon mosaic maps for display of univariate
and bivariate geographical data. Cartography and Geographical Information
systems, 19:228-236.
Cleveland, W.
S., Grosse, E., and Shyu, W. M. (1992). Local regression models. In Chambers,
J. M. and Hastie, T. J., editors, Statistical Models in S, pages
309-376. Wadsworth and Brooks, Pacific Grove, California.
Cliff, A. D. and
Ord, J. K. (1981). Spatial Processes: Models and Applications.
Pion Limited, London.
Cressie, N. (1985).
Fitting variogram models by weighted least squares. Mathematical Geology,
17:563-586.
Cressie, N. (1986).
Kriging nonstationary data. Journal American Statistical Association,
81:625-634.
Cressie, N. (1989).
Geostatistics. American Statistician, 43:197-202.
Cressie, N. and
Chan, N. H. (1989). Spatial modeling of regional variables. Journal
American Statistical Association, 84:393-401.
Cressie, N. and
Hawkins, D. M. (1980). Robust estimation of the variogram: I. Mathematical
Geology, 12:115-125.
Cressie, N. and
Read, T. R. C. (1989). Spatial data analysis of regional counts. Biometrical
Journal, 31:699-719.
Cressie, N. A.
C. (1993). Statistics for Spatial Data. Wiley, New York.
Diggle, P. J.
(1983). Statistical Analysis of Spatial Point Patterns. Academic
Press, New York.
Ecker, M. D. and
Heltshe, J. F. (1994). Geostatistical estimates of scallop abundance. In
Lange, N., Ryan, L., Billard, L., Brillinger, D., Conquest, L., and Greenhouse,
J., editors, Case Studies in Biometry, pages 107-124. Wiley, New
York.
Englund, E. and
Sparks, A. (1992). GEO-EAS: Geostatistical Environmental Assessment Software.
User's Manual IGWMC-FOS 53 PC, International Ground Water Modeling Center,
Golden, CO. Version 1. 2. 1.
Gatrell, A. C.,
Bailey, T. C., Diggle, P. J., and Rowlingson, B. S. (1995). Spatial point
pattern analysis and its application in geographical epidemiology. Research
Report 29, North West Regional Research Laboratory, Lancaster University,
Lancaster, UK.
Gerrand, D. J.
(1969). Competition quotient: a new measure of the competition affecting
individual forest trees. Research Bulletin No.20, Agricultural Experiment
Station, Michigan, State University.
Gomez, M. and
Hazen, K. (1970). Evaluating sulfur and ash distribution in coal seams
by statistical response surface regression analysis. Technical Report RI7377,
U. S. Bureau of Mines.
Griffith, D. A.
(1995). Some guidelines for specifying the geographic weights matrix contained
in spatial statistical models. In Arlinghaus, S. L., editor, Practical
Handbook of Spatial Statistics, pages 65-82. CRC Press, Inc., Boca
Raton.
Haining, R. (1990).
Spatial Data Analysis in the Social and Environmental Sciences.
Cambridge University Press, Cambridge.
Harper, W. V.
and Furr, J. M. (1986). Geostatistical analysis of potentiometric data
in the Wolfcamp Aquifer of the Palo Duro Basin, Texas. Technical Report
ONWI-587, Batelle Memorial Institute, Columbus, Ohio.
Hutchings, M.
J. (1979). Standing crop and pattern in pure stands of Mercurialis
perennis and Rubus fruticosus in mixed deciduous woodland. Oikos,
31:351-357.
Isaaks, E. H.
and Srivastava, R. M. (1989). An Introduction to Applied Geostatistics.
Oxford University Press, New York.
Journel, A. G.
and Huijbregts, C. J. (1978). Mining Geostatistics. Academic Press,
London.
Matheron, G. (1963).
Principles of geostatistics. Economic Geology, 58:1246-1266.
Ripley, B. D.
(1976). The second-order analysis of stationary point processes. Journal
o f Applied Probability, 13:255-266.
Ripley, B. D.
(1981). Spatial Statistics. Wiley, New York.
Symons, M. J.,
Grimson, R. C. and Yuan, Y. C. (1983). Clustering of rare events. Biometrics,
39:193-205.
Venables, W. N.
and Ripley, B. D. (1994). Modern Applied Statistics with S-PLUS.
Springer-Verlag, New York.
Zimmerman, D.
L. and Zimmerman, M. B. (1991). A comparison of spatial semivariogram estimators
and corresponding ordinary kriging predictors. Technometrics,
33:77-92
ご意見、ご感想はNTTデータ数理システムS-PLUSグループ <splus-info@ml.msi.co.jp>