時空間Krigingを用いた将来予測

筑波大学 システム情報工学研究科 博士前期2年次 村上大輔

時空間内挿手法:時空間Kriging

口代表的手法:時空間Kriging

$$\mathbf{y}_i = \mathbf{X}_i \mathbf{\beta} + \mathbf{\varepsilon}_i$$

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \boldsymbol{\varepsilon}_i \qquad \boldsymbol{\varepsilon}_i \sim N(0, C(\mathbf{d}_{i,j}, \mathbf{t}_{i,j}))$$

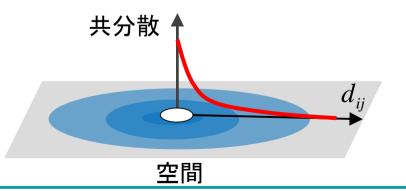
i:地点を表す添え字 \mathbf{y}_i :被説明変数 \mathbf{X}_i :説明変数 $\mathbf{\mathcal{E}}_i$:残差

 \mathbf{d}_{ij} :空間上の距離 \mathbf{t}_{ii} :時間軸上の距離 $C(\mathbf{d}_{i,j},\mathbf{t}_{i,j})$:共分散関数

共分散を距離の関数(共分散関数)で与えることで 下の2つの性質を考慮する

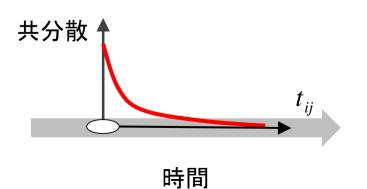
■空間的相関

・距離が近い=観測値が類似



■時系列相関

- 時点が近い=観測値が類似

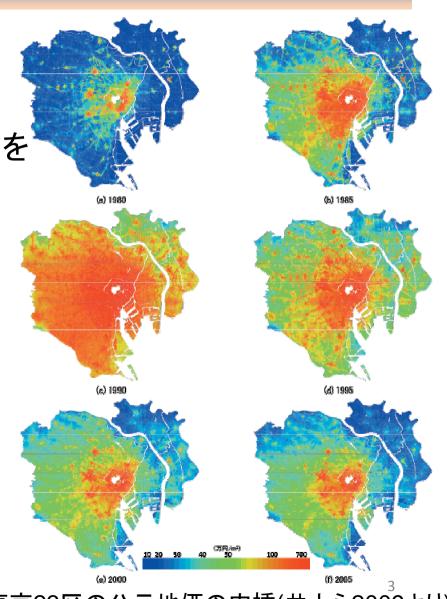


時空間Krigingの適用例

□適用方法

時空間に分布する観測データを用いて任意地点・時点のデータを 内挿する

- □例:公示地価の時空間内挿 (井上ら2009)
- 観測データ 公示地価
- 対象 1975年~2007年の東京都区部



東京23区の公示地価の内挿(井上ら2009より)

時空間Krigingの短所

- ロ大規模データへの適用が難しい
- 時空間Krigingは計算負荷が大きくなりがち
- 原因
- 共分散行列の逆行列の計算負荷が大きいこと

例えば、前スライドの東京23区の時空間内挿を S-plus(32bit版,64bit版)で行うことはできない

□将来予測への適用ができない

Krigingは内挿(データの分布する領域内の予測)手法であり、 外挿(同領域外の予測)への適用は理論に整合しない

研究目標

S-plusによる実行が可能な、

以下の特徴を持つ時空間予測のための手法の提案

- 大規模データへの適用が可能
- 将来予測への適用が可能

■方法

• 非対称共分散(Asymmetric covariance)の概念を用いることで、 上記の特徴を持つ実用的な時空間予測の方法を提示する

発表の流れ

■構築する共分散関数のイメージ

■非対称な共分散関数の構築

■非対称な共分散関数適用の利点

■実証分析

共分散関数が満足すべき性質

(1)正定值性

• 共分散関数が有効(Valid)であるための必要十分条件

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j Cov(\varepsilon_i, \varepsilon_j) \ge 0$$
 a_i : 任意の定数

(2)対称性

$$Cov(\varepsilon_i, \varepsilon_j) = Cov(\varepsilon_j, \varepsilon_i)$$

• 「共分散は基本的に対称」、「解釈が容易」等の理由から通常は仮定

■対称性の仮定はしばしば不適当(Li et al. 2007)

(例)方向に依存する相互依存関係を持つデータ

風力、水流、時空間上のデータ など

近年、非対称な共分散関数の適用が試みられつつある

非対称な共分散: Asymmetric covariance (Lack of symmetric covariance)

非対称性[$Cov(\varepsilon_i, \varepsilon_j) \neq Cov(\varepsilon_j, \varepsilon_i)$]を許容した上で 共分散のモデル化を行う

- □先行研究の例
- 風の強さの空間内挿 (Gneiting et al. 2007; Genton and Sherman 2007)

- 先行研究における非対称性導入の目的
- 柔軟な共分散関数の構築

本研究における非対称共分散の導入

過去、または同時点のデータからのみ影響を受けると仮定する

- 従来の共分散関数
- 時空間上の距離に依存

$$C(\mathbf{d}_{ij}, \mathbf{t}_{ij}) = \begin{cases} \sigma^2 f(\mathbf{d}_{ij}, \mathbf{t}_{ij}) & i \neq j \\ \tau^2 + \sigma^2 & i = j \end{cases}$$

■得られる共分散行列:対称

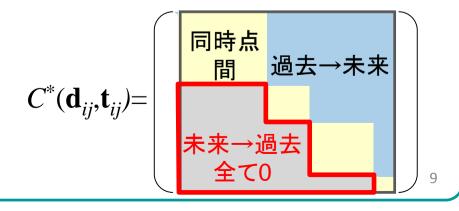
$$C(\mathbf{d}_{ij},\mathbf{t}_{ij})$$
=

- ■本研究で用いる共分散関数
- 時空間上の距離+時流に依存

$$C^{*}(\mathbf{d}_{ij}, \mathbf{t}_{ij}) = \begin{cases} \tau^{2} + \sigma^{2} & i = j \cap t \leq t \\ \sigma^{2} f(\mathbf{d}_{ij}, \mathbf{t}_{ij}) & i \neq j \cap t \leq t \\ \hline 0 & i \neq j \cap t > t \end{cases}$$

距離関数(例) $f(\mathbf{d}_{ij}, \mathbf{t}_{ij}) = \exp(-\mathbf{d}_{ij} / r_d - \mathbf{t}_{ij} / r_t)$ $\tau^2, \sigma^2, r_d, r_t : パラメータ$

■得られる共分散行列:非対称



非対称共分散導入の利点(詳しくは後述)

- ■大規模計算が可能となる
- 共分散行列が計算負荷の低いブロック三角行列となるため

- 将来予測への適用が理論的に許容される
- 過去のデータに基づいて、将来のデータを生みだすメカニズムを定義する手法となり、Harvey (1985)の予測モデルの定義に合致するため

発表の流れ

■構築する共分散関数のイメージ

- ■非対称な共分散関数の性質の確認
- 正定値性満足の是非
- Krigingに導入した場合に算出される予測値の解釈
- ■提案モデル適用の利点

■実証分析

共分散行列の正定値性

行列式が正であれば正定値

■ 非対称共分散行列

$$C^*(\mathbf{d}_{ij}, \mathbf{t}_{ij}) =$$
 $\mathbf{c}^*(\mathbf{d}_{ij}, \mathbf{t}_{ij}) =$
 $\mathbf{c}^*(\mathbf{d}_{ij}, \mathbf{t}_{ij}) =$
 $\mathbf{c}^*(\mathbf{d}_{ij}, \mathbf{t}_{ij}) = \mathbf{c}^*(\mathbf{d}_{ij}, \mathbf{t$

- 対角線上の各小行列は正定値(通常用いられる空間上の共分散行列と同一なため)
- 対角線上の各小行列の行列式は正
- 共分散行列の行列式=各対角線上の小行列の行列式の積=正

本研究で用いる非対称共分散関数は有効(Valid)

Krigingを構成する方程式

- ロ基本モデル $\mathbf{y}_i = \mathbf{X}_i \mathbf{\beta} + \mathbf{\epsilon}_i \quad \mathbf{\epsilon}_i \sim N(0, C(\mathbf{d}_{i,j}, \mathbf{t}_{i,j}))$
- □基本モデルに基づく地点0の予測式

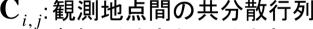
$$\hat{\mathbf{y}}_0 = \mathbf{x}_0 \hat{\boldsymbol{\beta}} + \hat{\boldsymbol{\lambda}}_i' \hat{\boldsymbol{\varepsilon}}_i$$

 y_0 :地点0の被説明変数 X_0 :地点0の説明変数

λ: 各観測データが地点0に与える影響の重み

■ 予測式導出の元となる方程式

$$\begin{pmatrix} \mathbf{c}_{i,0} \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{C}_{i,j} & \mathbf{1} \\ \mathbf{1}' & 0 \end{pmatrix} \begin{pmatrix} \lambda_j \\ \mu \end{pmatrix}$$
 $\mathbf{C}_{i,j}$: 観測地点間の共分散行列 $\mathbf{c}_{i,0}$: 各観測地点と予測地点の共分散ベクトル



μ:ラグランジュ乗数

■ 方程式の意味

(1)[観測点i→予測点0の影響]は[観測点i→各観測点jの影響の加重平均] で表現される

$$\mathbf{c}_{i,0} = \mathbf{C}_{i,j} \lambda_j + \mu$$

(2)[各観測地点に対する加重の総和]は1

$$\mathbf{1}'\boldsymbol{\lambda}_{i}=1$$

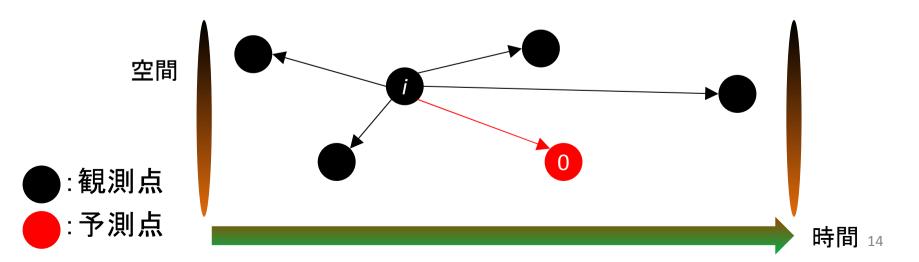
従来のKrigingの相互依存関係

■Krigingの元となる方程式

$$\mathbf{c}_{i,0} = \mathbf{C}_{i,j} \lambda_i + \mu \qquad \mathbf{1}' \lambda_i = 1$$
対称行列

□方程式より導かれる相互依存関係の解釈

• [観測点iから全観測点への影響の強さ(\longrightarrow : $\mathbf{C}_{i,j}$)の加重(λ_i)平均]で [iから予測地点0への影響の強さ(\longrightarrow : $\mathbf{c}_{i,0}$)]を与える

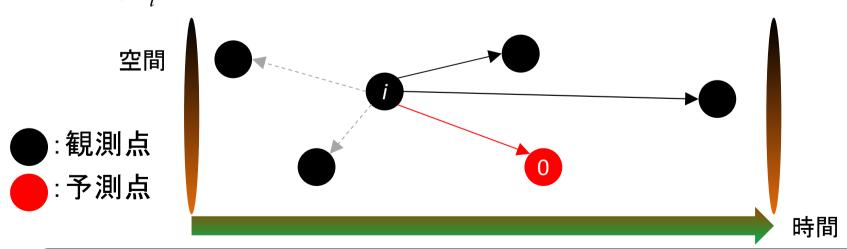


非対称共分散を仮定したKrigingの データ間の相互依存関係

■Krigingの元となる方程式

$$\mathbf{c}_{i,0} = \mathbf{C}_{i,j} \boldsymbol{\lambda}_i + \mu$$
 $\mathbf{1}' \boldsymbol{\lambda}_i = 1$ [未来→過去]を表す共分散が0のブロック上三角行列

- □方程式より導かれる相互依存関係の解釈
- [観測点iから、iより後の時点の各観測点への影響の強さ($\mathbf{C}_{i,j}$)の加重(λ_i)平均]で、[iから予測点0への影響の強さ($\mathbf{c}_{i,0}$)]を与える



発表の流れ

■共分散関数に対する仮定

■非対称な共分散関数の構築

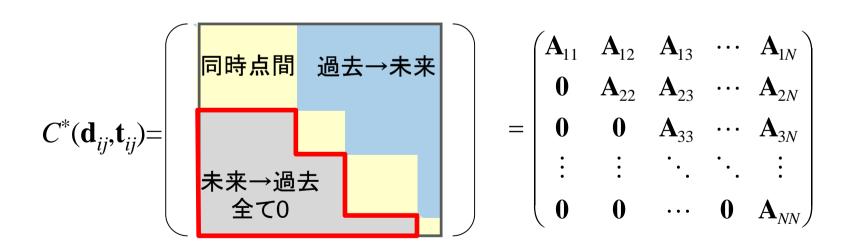
- ■非対称な共分散関数適用の利点
- 大規模データへの適用
- 将来予測への適用

■実証分析

大規模データへの適用の問題点

共分散関数の逆行列の計算(計算量=O(n³))が必要

- 口提案手法の共分散行列の構造
 - ■ブロック上三角行列



共分散行列の逆行列算出

□逆行列算出のイメージ

$$C^{*}(\mathbf{d}_{ij},\mathbf{t}_{ij}) = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \mathbf{A}_{13} & \cdots & \mathbf{A}_{1N} \\ \mathbf{0} & \mathbf{A}_{22} & \mathbf{A}_{23} & \cdots & \mathbf{A}_{2N} \\ \mathbf{0} & \mathbf{0} & \mathbf{A}_{33} & \cdots & \mathbf{A}_{3N} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{A}_{NN} \end{pmatrix} \qquad C^{*}(\mathbf{d}_{ij},\mathbf{t}_{ij})^{-1} = \begin{pmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} & \mathbf{B}_{13} & \cdots & \mathbf{B}_{1N} \\ \mathbf{0} & \mathbf{B}_{22} & \mathbf{B}_{23} & \cdots & \mathbf{B}_{2N} \\ \mathbf{0} & \mathbf{0} & \mathbf{B}_{33} & \cdots & \mathbf{B}_{3N} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{B}_{NN} \end{pmatrix}$$

対角要素: $\mathbf{B}_{ii} = \mathbf{A}^{-1}_{ii}$ 非対角要素: $\mathbf{B}_{ij} = -\mathbf{A}^{-1}_{ii} \sum_{k=i+1}^{J} \mathbf{A}_{ik} \mathbf{B}_{kj}$

- 1列目(正確にはB₁₁のある1~数列目)から、
 列毎に逐次B_{ii}を求めていくことで逆行列が算出可能
- □ 逐次計算による逆行列算出の利点
 - ・ 空間計算量(メモリ使用量)の大幅削減

S-plusを用いた大規模データのための実装が可能

逐次計算による逆行列算出のもう一つの利点

経時的なデータ追加が容易

- 口従来手法を用いた場合のデータ追加
- 逆行列の再計算が必要
- □提案手法を用いた場合のデータ追加
- 逆行列の再計算が不要(例)データセット(1,2,...N)に対するデータセット(N+1)の投入

データ追加前の逆行列

データ追加後の逆行列

$$C^{*}(\mathbf{d}_{ij},\mathbf{t}_{ij})^{-1} = \begin{pmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} & \mathbf{B}_{13} & \cdots & \mathbf{B}_{1N} \\ \mathbf{0} & \mathbf{B}_{22} & \mathbf{B}_{23} & \cdots & \mathbf{B}_{2N} \\ \mathbf{0} & \mathbf{0} & \mathbf{B}_{33} & \cdots & \mathbf{B}_{3N} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{B}_{NN} \end{pmatrix} \qquad C^{*}(\mathbf{d}_{ij},\mathbf{t}_{ij})^{-1} = \begin{pmatrix} C^{*}(\mathbf{d}_{ij},\mathbf{t}_{ij})^{-1} & \vdots & \vdots \\ C^{*}(\mathbf{d}_{ij},\mathbf{t}_{ij})^{-1} & \vdots & \vdots \\ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{B}_{N+1,N+1} \end{pmatrix}$$

B_{1,N+1},... **B**_{N+1,N+1}は逐次計算により算出 ¹⁹

非対称共分散関数を用いた将来予測

- ロ将来予測モデル
- 将来の観測値を生みだすメカニズムを定義するもの(Harvey(1985))
- 通常の時空間Krigingは将来予測モデルとは言い難い
- 理由
 - [過去→将来]と[将来→過去]の両相互依存関係の混在が前提
 - そもそも時流を考慮していない
- 提案モデルは将来予測モデルと解釈可能
- 理由
 - [過去→将来]の影響をモデル化している
 - 一時流を考慮している

期待二乗誤差最小化という点でKrigingは予測モデルとして優れている

時流を考慮した時空間統計モデル

- □時間の流れを考慮した空間統計モデル
- Spatial temporal random effect model(Cressie et al.2010)
- Space-time Kalman filtering (Cressie and Wikle (2002))

・・・など

状態が離散的に遷移するという仮定の下、モデルが構築されてきた

共分散関数自体で時流を連続的に仮定した研究は本研究のみ

発表の流れ

■共分散関数に対する仮定

■非対称な共分散関数の構築

■非対称な共分散関数適用の利点

■実証分析

実証: 地価の時空間予測

□ 対象地域•時点

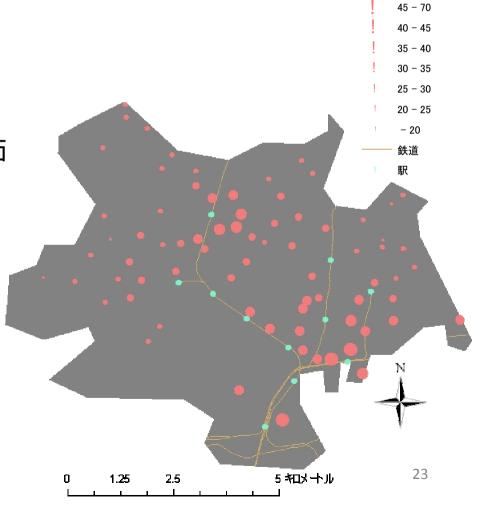
• 東京都足立区

ロデータ

1990年-2000年の住宅地公示地価 (サンプル数は757)

□予測の概要

- 1990年-2000年の地価の内挿
- 2001年-2010年の地価の外挿 (将来予測)



凡例

万円/m2

公示地価(2007年)

モデル

 \blacksquare [LM]線形モデル $\mathbf{y}_i = \mathbf{X}_i \mathbf{\beta} + \mathbf{\epsilon}_i \quad \mathbf{\epsilon}_i \sim N(0, \mathbf{I})$

■ [Krige]通常の時空間Kriging $\mathbf{y}_i = \mathbf{X}_i \mathbf{\beta} + \mathbf{\epsilon}_i \quad \mathbf{\epsilon}_i \sim N(0, C(\mathbf{d}_{i,j}, \mathbf{t}_{i,j}))$

■ [Asy-Krige]非対称共分散関数を用いた時空間Kriging $\mathbf{y}_i = \mathbf{X}_i \mathbf{\beta} + \mathbf{\epsilon}_i \quad \mathbf{\epsilon}_i \sim N(0, C^*(\mathbf{d}_{i,j}, \mathbf{t}_{i,j}))$

※共分散関数はSeparable型の指数モデルを使用

□ 使用する変数

被説明変数		住宅地公示地価の対数	
説明変数	近接性	[東京距離]最寄駅から東京駅までの鉄道ネットワーク距離の対数 [駅距離]最寄駅までの距離の対数	攵
	人口	[人口密度]人口密度の対数	
	土地利用	[田ダミー]田ダミー [農地ダミー]農用地ダミー [幹線ダミー]幹線交通用地ダミー [建物ダミー]建物用地ダミー	
	経済動向	[株価]日経平均株価 24	

パラメータ推定結果

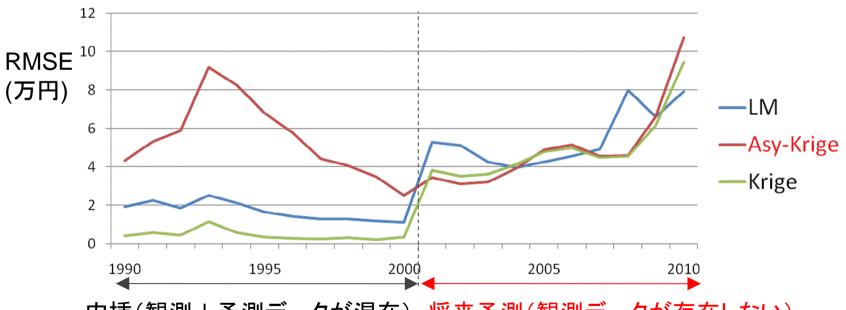
	LM		Krige		Asy-Krige	
パラメータ	推定値	t値	推定值	t値	推定值	t値
[定数項]	5.06	***	4.50	***	3.96	***
[東京距離]	-2.34×10^{-1}	***	-1.03×10^{-2}	***	-8.03×10^{-2}	***
[駅距離]	-1.89×10^{-1}	***	-7.73×10^{-2}	***	-7.54×10^{-2}	***
[人口密度]	5.75	***	8.09	***	10.8	***
[田ダミー]	-1.03×10^{-1}		-1.15×10^{-1}		-2.28×10^{-1}	
[農地ダミー]	6.17×10^{-2}	*	3.77×10^{-2}		1.37×10^{-2}	
[幹線ダミー]	2.06×10^{-2}		1.10×10^{-2}		1.77×10^{-3}	
[建物ダミー]	-2.65×10^{-2}	***	-1.27×10^{-2}	**	-1.29×10^{-2}	**
[株価]	2.05×10^{-5}	***	3.70×10^{-6}	***	7.08×10^{-6}	***
σ^2			5.05×10^{-10}		5.05×10^{-10}	
τ 2			7.12×10^{-3}		6.18×10^{-3}	
r_s			1.59		1.30	
r_t			9.29		10.0	

予測精度の比較

■RMSEによる比較

$$RMSE = 100 \times \sqrt{\sum_{k'} \frac{(y_{k'} - \hat{y}_{k'})^2}{K'}}$$
 ----値が小さい=精度が良い

□年度別のRMSEの比較



内挿(観測+予測データが混在) 将来予測(観測データが存在しない)

Asy-Krigeの予測精度

- □内挿
- 著しく低い
- 口将来予測
- Krigeと類似した変動傾向

通常の時空間Krigingを将来予測に適用し、 その精度の高さを確認したとの報告も存在(李ら2007)

時空間Asy-Krigeは将来予測への適用が適切

Asy-Krigeを用いた 将来予測の誤差率

誤差率 =
$$\sqrt{\left(\frac{\hat{y}_i - y_i}{y_i}\right)^2} \times 100$$

観測値の大きさに対する誤差の大きさ

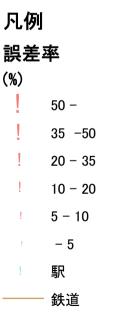
凡例 5 11대사 나 ル 2010年(平均誤差率39%)

2001年(平均誤差率10%)

2005年(平均誤差率22%)

25

5 和以十ル



凡例

(%)

まとめ

S-plusによる実行が可能な、 大規模データのための時空間データの予測手法を提示した

- □非対称共分散関数適用の利点
- 計算負荷の削減
- 計算に必要なメモリの大幅削減
- データ追加の際の逆行列の再計算が不要
- 内挿手法Krigingの将来予測(外挿)手法への拡張
- 時空間上への連続的な将来予測が可能
- □実証分析から
- 将来予測への適用が可能である一方で、内挿には向かない