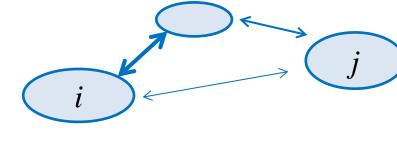
2013年度 S-PLUS 学生研究奨励賞応募

空間効果を考慮した多項離散選択モデルによる 土地利用分布の推定

吉田 崇紘

筑波大学大学院 システム情報工学研究科 博士前期課程


位置情報を持ったデータ:空間データの特性

- 空間依存性
 - 地理学の第一法則(Tobler, 1970)
 - "Everything is related to everything else, but near things are more related than distant things."
 - 空間計量経済学では,近接性を表す行列:空間重み行列Wによって表現される
 - Wの要素w_{ij}の定義の例:

$$w_{ij} = \left(\frac{1}{d_{ij}}\right)^2$$

$$w_{ij} = \begin{cases} 1, & \text{if i is contiguous with } j \\ 0, & \text{otherwise} \end{cases}$$

線の太さの大小:関係性の強弱を表現

空間依存性を考慮しないと... ⇒ 推定精度不良を招く

空間離散選択モデル

• 空間依存性を考慮した被説明変数が質的データのモデル

$$\mathbf{u}_{j} = \rho_{j} \mathbf{W} \mathbf{u}_{j} + \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\varepsilon}_{j}$$

近接するデータの効用は似通る

uj: 選択肢jを選んだときの効用のベクトル

「ρ_j:選択肢jを選んだときの空間ラグパラメータ

₩: 空間重み行列

X: 説明変数行列

β: パラメータ

 $arepsilon_i$: 誤差ベクトル

例:土地利用分布推定モデル

説明変数(属性) 人口 標高 傾斜 , etc.

土地利用(選択肢)

建物用地

森林

田

水域

土地利用分布

空間離散選択モデルの推定法

• 空間離散選択モデルの対数尤度関数(一般形) (Smirnov, 2010)

$$\ln P(\mathbf{y}|\rho,\boldsymbol{\beta}) = \ln \left(\int \cdots \int \left(\prod_{i=1}^{n} \prod_{j=1}^{M} I(u_{ij} > u_{ik}) \right) f_{\varepsilon}(\varepsilon_{11}, \cdots, \varepsilon_{nm}) d\varepsilon \right)$$

- 欠点: 内生変数項の存在で計算負荷が非常に高い (Smirnov, 2010)
- 選択肢が二値(二項)のケースの汎用な推定法は存在 (e.g., Klier and McMillen, 2008)
- 選択肢が多値(多項)のケースの推定法は未確立 (Smirnov, 2010)

実用的な空間多項離散選択モデルを提案できないか...?

背景と目的

- 空間離散選択モデルの隆盛
 - e.g., McMillen, 1992; Chakir and Parent, 2009
 - ➤ 近年の空間計量経済学におけるホットトピックの一つ (Anselin, 2009; Pinkse and Slade, 2010)
 - ▶ 多項モデルにおけるモデリング・推定法は未確立(Smirnov, 2010)
 - ✓ 従来の推定法は計算負荷が高

本研究の目的:

空間多項離散選択モデルにおける実用的な手法を提案

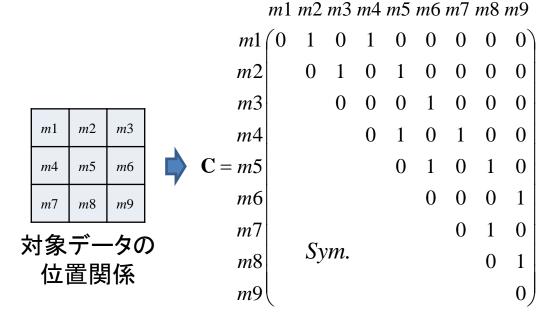
空間依存性を考慮する方法

- 固有ベクトル空間フィルタリング法(ESF)(Griffith, 2003)
 - Eigenvector-based Spatial Filtering
 - 空間統計学の手法
 - ▶利点
 - モラン統計量内の近接性を表す行列の固有ベクトルを説明 変数に追加するだけで空間依存性を考慮可能
 - 計算負荷の大きい推定法が不要
 - 固有ベクトルとそのパラメータの線形和が潜在的な空間分 布と解釈可能

ESFを多項離散選択モデルに援用 空間計量経済学とは異なるアプローチを提案

固有ベクトル空間フィルタリング法の手順

Step:


1. 隣接行列(ル―ク型)℃の生成

 $C: n \times n$ の隣接行列

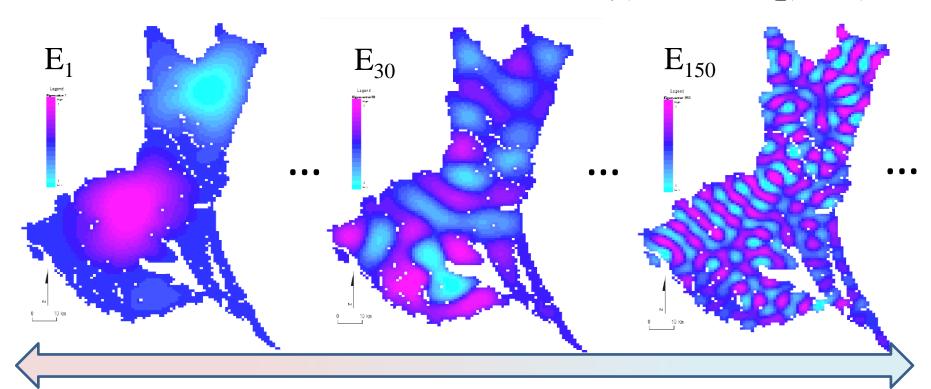
 $I: n \times n$ の単位行列

1: *n*×1の全要素が1のベクトル

n: サンプル数

- Cの変形(行基準化)
- 3. 固有ベクトルの算出
- 4. 追加する固有ベクトルの選定 (*e.g.,* AIC最小化基準)
- 5. モデルの説明変数に追加

$$\mathbf{\Omega} = (\mathbf{I} - \mathbf{1}\mathbf{1}^T/n)\mathbf{C}(\mathbf{I} - \mathbf{1}\mathbf{1}^T/n)$$


$$\widetilde{\mathbf{E}} = eigenvector[\mathbf{\Omega}] \equiv \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$$

$$\mathbf{E} = subset\left(\widetilde{\mathbf{E}}\right)$$

$$y = X\beta + E\gamma + \varepsilon$$

算出した固有ベクトル

図はArcGIS 10.2を用いて出力

大 大域(Global) 固有値 空間パターン

小 局所的(local)

後述するモデルにおいて、AIC最小化基準のもと、 選定された固有ベクトルの数は488であった.

ESF法を用いて空間依存性を考慮した 多項離散選択モデル

• 各選択肢の選択確率 p_{ii}

固有ベクトルの追加

$$p_{ij} = \Pr(y_i = j) = \frac{\exp(\mathbf{X}_i^T \boldsymbol{\beta}_j + \mathbf{E}_i^T \boldsymbol{\gamma}_j)}{\sum_{j=0}^{J} \exp(\mathbf{X}_i^T \boldsymbol{\beta}_j + \mathbf{E}_i^T \boldsymbol{\gamma}_j)}$$

$$i = 1, 2, \dots, n$$

 $j = 0, 1, \dots, J$
 $\boldsymbol{\beta}_0, \boldsymbol{\gamma}_0 = \mathbf{0}$

 P_{ij} : selection probability

 \mathbf{E}_i : eigenvectors

 \mathbf{x}_i : explanatory variables

 β_j , γ_j : parameters for Alt. j

- > 対数尤度関数
 - 通常の多項離散選択モデルと同一

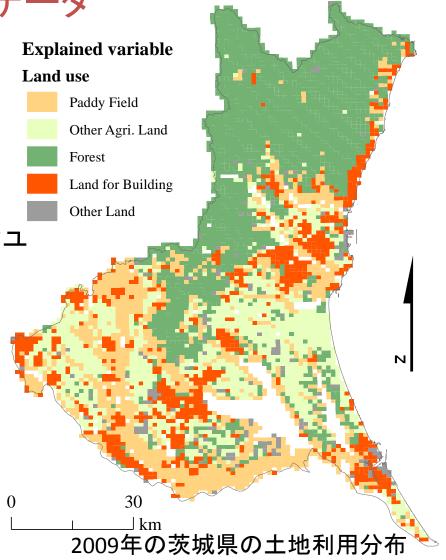
$$L = \prod_{i=1}^{n} \prod_{j=0}^{J} p_{ij}^{d_{ij}}, \quad d_{ij} = \begin{cases} 1, & y_i = j \\ 0, & y_i \neq j \end{cases}$$

9

実証分析

• 推定対象データ:土地利用データ

- 範囲:茨城県

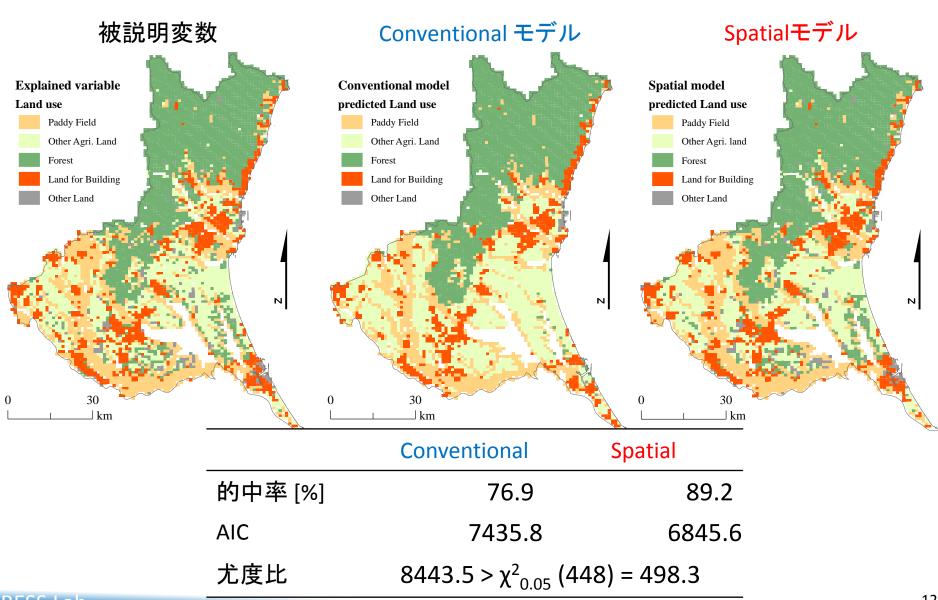

- 時点:2009

- 分類数:5

- サンプル数:5,614

- 集計単位:1 Km ×1 Kmメッシュ

- 出所:国土数值情報



使用するデータ

Variable	Description	Source of data			
社 Land Use	土地利用区分(Paddy Field: 1, Other Agri. Land: 2, Forest: 3, Land for Building: 4, Other Land: 0)	土地利用3次メッシュ, NLNI			
会 Dens. POP	人口密度 [人/km²]	Census 2005			
済 Dist. Sta.	メッシュ重心点から最寄駅までの直線距離 [km]	鉄道時系列, NLNI			
的 Ave. SLOPE 条 件 GEOM2	平均傾斜度 [度]	標高・傾斜度3次メッシュ, NLNI			
件 GEOM2	微地形区分が山麓地 : 1, othewise: 0	Legend Legend Degrees to Station			
GEOM3	微地形区分が丘陵 : 1, othewise: 0				
GEOM8	微地形区分が砂礫質台地: 1, othewise: 0				
GEOM9	微地形区分がローム台地 : 1, othewise: 0				
地 GEOM10 理	微地形区分が谷底低地 : 1, othewise: 0				
的 GEOM12	微地形区分が自然堤防: 1, othewise: 0	JEGCM Ave. SLOPE Dist. Sta.			
条 GEOM13 件	微地形区分が後背湿地 : 1, othewise: 0				
GEOM15	微地形区分が三角州・海岸低地:1, othewise: 0				
GEOM16	微地形区分が砂州・砂礫州:1, othewise: 0	説明変数 σ			
GEOM17	微地形区分が砂丘: 1, othewise: 0	図(一部)			
GEOM18	微地形区分が干拓地 : 1, othewise: 0	Dens. Pop.			

NLNI: 国土数値情報. Census: 国勢調査. JEGCM: 日本の地形・地盤デジタルマップ(若松ら, 2005)

推定結果

各土地利用分類ごとの的中率

推定結果の各カテゴリーの数

被説	upper: Conventional lower: Spatial	Paddy Field	Other Agri. Land	Forest	Land for Building	Other Land	Total		
	Paddy Field	901 (71.51%)	228 (18.10%)	84 (6.67%)	47 (3.73%)	0 (0.00%)	1260		
		1075 (85.32%)	86 (6.83%)	60 (4.76%)	32 (2.54%)	7 (0.56%)	1260		
	Other Agri. Land	129 (11.01%)	936 (79.86%)	63 (5.38%)	44 (3.75%)	0 (0.00%)	1172		
明 変		82 (7.00%)	1005 (85.75%)	49 (4.18%)	31 (2.65%)	5 (0.43%)	1172		
数	Forest	55 (2.50%)	233 (10.59%)	1890 (85.91%)	18 (0.82%)	4 (0.18%)	2200		
各		35 (1.59%)	78 (3.55%)	2076 (94.36%)	8 (0.36%)	3 (0.14%)	2200		
カテ	Land for Duilding	56 (6.87%)	155 (19.02%)	19 (2.33%)	582 (71.41%)	3 (0.37%)	815		
	Land for Building	40 (4.91%)	57 (6.99%)	7 (0.86%)	705 (86.50%)	6 (0.74%)	815		
リーの数		21 (12.57%)	87 (52.10%)	42 (25.15%)	7 (4.19%)	10 (5.99%)	167		
		7 (4.19%)	3 (1.80%)	7 (4.19%)	4 (2.40%)	146 (87.43%)	167		
	Total	1162	1639	2098	698	17	5614		
		1239	1229	2199	780	167	5614		
RI	ESS Lab.								

まとめ

- ESF法の多項離散選択モデルへの適用
 - 空間多項離散選択モデルにおける新たな手法を提案
 - ESFによる空間依存性を考慮することで、AIC、的中率が向上

今後の課題

- 各選択肢ごとの潜在的な空間パターンの出力
- 空間多項離散選択モデルと本手法の精度比較
- 土地利用分布の将来予測
 - 動的なモデルへ
- 離散選択モデルの残差における空間依存性測度の開発

固有ベクトルの算出コード

```
## 隣接行列の読み込み
ContigMat <- read.csv(===)
## 単位行列の生成
I \leftarrow diag(n)
## 1を全要素に持つベクトルの生成
                      #0ベクトルの生成
zero.vector <- numeric(n)
one.vector <- zero.vector + 1 # 全要素に1を足す
## 固有ベクトルを計算する行列の算出
mat1 <- one.vector %*% t(one.vector) / n
InegMat1 <- I - mat1
WforESF <- InegMat1 %*% ContigMat %*% InegMat1
## 固有ベクトルの算出
z <- eigen(WforESF)
Eigenvectors <- Z$vector[,1:n]
```

参考文献

- Anselin, L., 2009. Thirty years of spatial econometrics. *Papers in Regional Science*, **89** (1), 3–25.
- Chakir, R. and Parent, O., 2009. Determinants of land use change: A spatial multinomial probit approach. *Papers in Regional Science*, **88** (2), 327–344.
- Grifith, D. A., 2003. Spatial Autocorrelation and Spatial Filtering: Gaining Understanding Through Theory and Scientific Visualization, Springer.
- McMillen, D. P., 1992. Probit with spatial autocorrelation. *Journal of Regional Science*, **32** (3), 335–348.
- Klier, T. and McMillen, D. P., 2008. Clustering of Auto Supplier Plants in the United States: Generalized Method of Moments Spatial Logit for Large Samples. *Journal of Business & Economic Statistics*, **26** (4), 460–471.
- Pinkse, J. and Slade, M. E., 2010. The future of spatial econometrics. *Journal of Regional Science*, **50** (1), 103–117.
- Smirnov, O. A., 2010. Modeling spatial discrete choice. *Regional Science and Urban Economics*, **40**, 292–298.
- Tobler, W., 1970. A computer movie simulating urban growth in the Detroit region. *Economic Geography*, **46** (2), 234–240.
- 若松加寿江、松岡昌志、杉浦正美、久保純子、長谷川浩一(2005):「日本の地形・地盤 デジタルマップ」、東京大学出版。