〜ITが繋ぐ想い〜
青年海外協力隊の最適マッチング

独立行政法人 国際協力機構 青年海外協力隊事務局
鉄道情報システム株式会社
2019年11月22日
JICAの事業概要

JICAの事業概要

JICA海外協力隊は、開発途上国の国づくりへの貢献を通じて、
「世界を変えたい」
という一人ひとりの強い意志をサポートする事業です。
ボランティア事業の概要

JICAボランティア事業

1965年からの歴史

1965年にラオスへの初代隊員派遣から始まり
発足以来、50年間で97カ国へ、
（アジア、アフリカ、中東、北米中南米、大洋州、欧州）
約53,000名以下の隊員が
派遣されました。
（2019年4月30日現在）

JICAボランティア事業

3つの目的

開発途上国の経済・社会の発展、
復興への寄与

異文化社会における
相互理解の深化と共生

ボランティア経験の社会還元
日本が実際に受けていた援助は？

答え： 全部

完済： 1990年
初代隊員（公衆衛生、果樹栽培、珠算、稲作、獣医）
青年海外協力隊を取り巻く状況

応募者数
減少傾向

※有効求人倍率: 厚生労働省HPより
青年海外協力隊 応募のルール

募集頻度：年二回（春・秋） 公募するポスト：約1300件

職種：約120種

例：
コミュニティ開発、コンピュータ技術、野菜栽培、食用作物・稲作栽培、家畜飼育、自動車整備、
青少年活動、小学校教育、幼児教育、理科教育、体育、日本語教育、PCインストラクター、等…

WEBサイトを見る。
応募する職種を一つに絞る。
応募職種から、希望するポストを3つ選ぶ
課題の根拠：応募前の相談内容

職種選びの悩み相談が最多多い！

大手企業勤務のAさんより
営業経験は、
どの職種に活かせるの？

専門的職業の方からの問い合わせ
✓ 矯正歯科医は？
✓ 柔道整復師は？
✓ ダンス指導者は？
調査：受験者全員にアンケート

職種併願を希望する 16%
特定の職種で併願を希望 24%
何れの職種でも併願を希望 60%

特定の職種で併願を希望 24%
職種併願がいいかも！

※2019春募集期二次受験者735人 職種併願希望アンケート結果
データ分析①：合格後辞退発生要因

<table>
<thead>
<tr>
<th></th>
<th>国もポストも希望外。</th>
<th>ポストは希望外だが、国は希望どおり。</th>
</tr>
</thead>
<tbody>
<tr>
<td>ポスト希望合致</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>国希望合致</td>
<td>×</td>
<td>○</td>
</tr>
<tr>
<td>辞退した割合(%)</td>
<td>14.3</td>
<td>8.1</td>
</tr>
</tbody>
</table>

⇒国・言語も重要な要素。

※NTTデータ数理システム Visual Mining Studio利用。（母数：2009春-2017秋・二次合格者：10421）
分析②：辞退者の理由を分析

＜特徴語分析・・・コミュニティ開発職種＞

コミュニティ開発職種：
要請内容が希望と違う
進学・就職
大学院

看護師職種、小学校教育職種：
家族の反対

応募者層で、事情が異なる。

※NTTデータ数理システム データマイニングスタジオ利用。（母数：2016-2017辞退者328件）
データ分析③：合格者の保有資格

同一資格保有者が、複数の職種に跨る。

職種間の類似性・補完性がある。

※NTTデータ数理システム Text Mining Studio利用。合格者の資格保有件数（2013～2017合格者5455名）。

[グラフの説明]
解決策：選考事業における IT の活用

マイページ
いつでも受験者と繋がる。

適性テスト
人物審査の補完。

ITマッチング
人海戦術に頼らない。
数理最適化のマッチングツールを開発

条件完全一致を条件にすると、合格するのはごく一部。
どのポスト・国にも一定数の応募者をマッチングさせるルールを定義。

＜制約条件の重みづけの例＞
希望ポスト以外→エラー点n
実務経験不足→エラー点n
資格、派遣時期、性別の合致は必須。
緊急度の高いポストは極力あてはめる。

＜目的関数の例＞
要請側、応募側のニーズの最大化
マッチンググループをクラスターで区分

テキストマイニング
辞退理由分析
志望動機分析

データマイニング
辞退の決定木分析や
予測モデル

応募者

キャリアマッチング
ポテンシャルマッチング
マッチングツール開発プロセス

①制約条件の洗い出し（資格、経験、派遣時期等）
②資格要件マスターの統一（〇免許、△経験等）
③資格要件の粒度向上（必須/なるべく）
マッチングに数理最適化を選ぶ理由

①最適バランスを迅速に計算する。
②人がルールを作る。（人と機械の役割分担）
③ルールが標準化する。
選考へのIT活用の効果

① 人間系の作業では困難なことを目指す。
（職種応募制 ⇒ 職種併願制へ）

② マッチングの精度を向上し、合格者の満足度を向上する。

③ データの蓄積により、応募時点でのレコメンデーションが可能に。
（予告）
青年海外協力隊の応募ルールが変わります！

青年海外協力隊・シニア海外協力隊　対象年齢：20歳〜69歳

詳しくは ⇒https://www.jica.go.jp/volunteer/
1. プロトタイプ開発の概要

- ヒアリング・業務分析を通じて抽出した制約条件を実装する最適化Modelのプロトタイプを作成。
- プロトタイプを基にシミュレーションを行い、プロトタイプのブラッシュアップを図る。

シミュレーションは全3回を予定
➢ 2020年春募集の選考においてITマッチングの試行を目指す

<table>
<thead>
<tr>
<th>2019年</th>
<th>2020年</th>
</tr>
</thead>
<tbody>
<tr>
<td>7月</td>
<td>8月</td>
</tr>
<tr>
<td>2019年秋：募集</td>
<td>2019年秋：選考</td>
</tr>
<tr>
<td>業務分析</td>
<td>第1回シミュレーション</td>
</tr>
</tbody>
</table>
2. 最適化のポイント

・プロジェクトの目標

多くの応募者にボランティア派遣の機会を提供すること

同時に合格者にとって満足度の高い選考結果を出す必要がある

応募者の希望（希望する職種、国、言語etc…）を叶えれば満足度は高まるが、同時に合格可能な要請ポストも減ってしまう。

応募者の「希望」をどの程度叶えていくか、いかに両者のバランスをとっていくかがポイント
2. 最適化のポイント

①受験職種の併願を可能に
従来は1回の応募につき1つの職種までしか受験できず、選考も職種内で完結
- 第1〜3まで、3つの職種を希望できるように変更。
- 「職種横断の合格」という従来は考慮しきれなかった合格可能性を自動作成で検討。

②マッチンググループの概念を導入
- 自身の経歴を活かせる職種が分からない
- 明確な希望はないが、ボランティアとして世界に貢献したい
- これらのニーズを汲み取るため、「ポテンシャルマッチンググループ」というグループに分類。
- 職種にとらわれない本人の指向や能力を重視したマッチングを行い、彼らのニーズを掬いあげる。
3. 最適化Modelプロトタイプの概要

• 目的関数
 ➢ マッチングにおける違反量を最小化する（重み付き制約充足問題）

• 決定変数
 ➢ どのポストに／どの派遣時期で／どの応募者を合格させるか

• 制約条件
 ① ポストに応募者を合格させる
 ② 応募者の希望職種／希望国／希望言語etc……を叶える
 ③ ポストで必要な資格や経験の条件を満たす
 など
4. シミュレーションの概要

・ シミュレーションの対象
 1,245件のポストと986名の応募者について
 ➢ 不足しているデータについては手作業で補正

・ シミュレーションの目的
 制約条件に不足や誤りがないか、設定した重みは正しいか等の確認

・ シミュレーションの進め方
 マッチングの結果をJICA担当者様に確認していただき、頂戴したご意見をプロトタイプに反映
 ➢ 最適化Modelの完成度を高める
5. シミュレーションの結果

- シミュレーション結果

<table>
<thead>
<tr>
<th>ポスト数</th>
<th>合格者数</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,245件</td>
<td>511名</td>
<td>581名</td>
</tr>
<tr>
<td>キャリア</td>
<td>48名</td>
<td></td>
</tr>
<tr>
<td>ポテンシャル</td>
<td>22名</td>
<td></td>
</tr>
<tr>
<td>職種振替</td>
<td></td>
<td>46.7%</td>
</tr>
</tbody>
</table>

- 従来の人間による選考

<table>
<thead>
<tr>
<th>ポスト数</th>
<th>一次選考</th>
<th>二次選考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,245件</td>
<td>758名</td>
<td>431名</td>
</tr>
<tr>
<td>合格者</td>
<td>充足率</td>
<td>34.6%</td>
</tr>
<tr>
<td>60.8%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6. 最適化による効果

①作成時間の短縮
従来は数十人が数日をかけて行っていた選考が、最適化Modelによれば数十秒〜数分で処理が完了する。

- 1,000件超の要請に1,000名規模の応募者を割り当てる⇒問題規模大
- 各制約の重みを基準に、問題の「解空間」を予め絞り込むことで処理の高速化を実現
6. 最適化による効果

②第二希望、第三希望職種への合格
職種を跨っての合格が発生。

【応募者】
・第一希望：職種A
・第二希望：職種B
・第三希望：なし

教員免許、実務経験5年

キャリアマッチングにて第二希望職種の要請ポストに合格
6. 最適化による効果

③満足度の高いマッチング結果
多くのケースで第一〜第三希望の国／言語のポストに合格させることができました。

<table>
<thead>
<tr>
<th></th>
<th>合計</th>
<th>希望内</th>
<th>左記以外</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>第一希望</td>
<td>第二希望</td>
</tr>
<tr>
<td>国</td>
<td>581名</td>
<td>253名</td>
<td>114名</td>
</tr>
<tr>
<td></td>
<td></td>
<td>合計432名（74%）</td>
<td></td>
</tr>
<tr>
<td>言語</td>
<td>581名</td>
<td>274名</td>
<td>150名</td>
</tr>
<tr>
<td></td>
<td></td>
<td>合計506名（87%）</td>
<td></td>
</tr>
</tbody>
</table>
7. 今後について

①合格者数の増加とマッチング精度向上の両立
 ➢ ポスト、応募者それぞれで一層データを充実させる

②ユーザーの入力コスト
 ➢ ユーザーインターフェース、業務フローの適切な制度設計

③実運用への落とし込み
 ➢ 人間系とITの融和を目指していく
発表は以上となります。ご清聴ありがとうございました。